
1

Jana Dunfield (jcd@cs.pdx.edu) 31 May 2000
Thesis: Semi-Automatic Verification of Purely Functional Programs

1. Introduction

Since the 1960s, computer scientists have been interested in the verification of computer
programs, by hand or automatically. Checking that a program obeys its specification is
tantamount to showing it is bug-free (provided the specification is right!). Verification by hand
is tedious and prone to error. Automatic verification presents itself as a solution to both
problems (if one is willing to believe that the verifier itself is correct).

Fully automatic verification, however, is not practical. Even if we content ourselves with
merely proving assertions about parts of the program, rather than showing a full specification,
some assertions will be hard to prove automatically. So one must interact with the verifier.
Theorem provers, such as HOL [3], are programs that assist in the creation of formal
mathematical proofs. If a theorem prover is used, the verification occurs in a separate context;
the machine maintains no links between the program and the verification. When the program is
changed—and real programs change often!—it is not clear which verifications (if any) were
rendered invalid. We would like that information to be maintained by the machine, and so a
system built into the programming environment is desirable. Furthermore, the mapping from the
program to the language of the theorem prover may not be trivial, and one must understand that
mapping to interact effectively with the prover. Finally, one must understand how to use the
theorem prover; theorem provers are not known for their ease of use.

Thus, we propose to build a tool that is an integrated part of the programmer’s environment,
and speaks one language well: the underlying language in which the program is written. It
follows that the language of the assertions we desire to prove should match the underlying
language: similar syntax, similar semantics. So-called predicates for use in assertions, such as
sorted to determine whether a list of numbers is in increasing order, can be written as ordinary
functions in the underlying language.

The underlying language is functional and pure. By “functional” we mean a language that is
expression- and function-oriented, rather than command-oriented. A lack of program state and
side effects, known as purity, allows clean equational reasoning about the meanings of programs.
Since functions cannot depend on state, x = y implies f(x) = f(y). (In addition, if f(x) does not
terminate, f(y) won’t either—an equivalent meaning.) If the language had side effects, we
would need to supplement the assertion language with a way to talk about those effects, or else
substantially limit the verifier’s applicability.

Complete automation is not practical, but a worthwhile degree of automation is achievable.
Existing tools, such as the Stanford Validity Checker (SVC), can check the validity of certain
classes of logical formulae without guidance by the user. Using such a system as a “back end”
expedites the implementation of the proof tool. SVC knows nothing of such things as case

2

expressions, but it can handle the subset of the language which corresponds to first-order logic (and

integer relations). Section 4.3 describes how the system could interface with SVC.

The following example illustrates some of the essential properties of the design. Suppose we

have a function min to return the minimum of two integers:

fun min (x, y): int * int -> int =

 if x <= y then x else y end

...

This declares a function of type int * int -> int, that is, taking two integer arguments

(named x and y) and returning an integer result. The return value is defined by the expression

following a=Z: if x <= y then x else y end, which returns x�if x is less than or equal to y,

and y otherwise.

We decide to prove that, for all x and y, min(x,�y)�<=�x. Within the programming editor, we

enterYjust as we would any other piece of textYa corresponding assertion.

fun min (x, y): int * int -> int =

 if x <= y then x else y end

...

{x: int, y: int. min(x, y) <= x}

The x: int, y: int. is a universal quantification over x and y: \for all x, y of integer type,

min(x, y) � x]. The system converts the newly entered assertion to a form acceptable by its back

end, and then invokes the back end. However, since the system will not \open up] or look inside a

function definition without user instruction, all the back end sees is a call of an unknown function

\min.] Clearly, without the body of min, min(x, y) <= x canZt be proved. The failure is

reported by a question mark next to the assertion:1

{x: int, y: int. min(x, y) <= x}?

Taking a cursory glance at the definition (body) of min, we think something like \it should

follow from the definition of min.] So we move the pointer over the assertion and option-click2

min, directing the system to open up the call to min in the assertion.

fun min (x, y): int * int -> int =

 if x <= y then x else y end {_ <= x}?
...

{x: int, y: int. min(x, y) <= x}

An assertion has been created inside the body of min. It contains an underscore (a_Z,

pronounced \this]), representing the value of the preceding expression. Furthermore, the system

has moved the ? from the original assertion to the new assertion. The original assertion hasnZt

been proved, so it has no �, but since the original assertion follows from the new assertion, it lacks

a ?. Thus, the symbols reflect the proper focus of the userZs attention.

1The real system will likely use different assertion colors in addition to the symbols ?, �.

2The Macintosh interface, with one mouse button, is assumed; users accustomed to other windowing systems

may read \option-click] as \right-click].

3

Now we apply the (IfJoin) rule. There are several rules that can be applied to if expressions

(see Section 4.4). We could choose (IfJoin) from a menu, but itZs more convenient to option-click

the end keyword.

fun min (x, y): int * int -> int =

 if x <= y then x {_ <= x}� else y {_ <= x}? end {_ <= x}
...

{x: int, y: int. min(x, y) <= x}

The assertion at the then-expression is proved (�): {_ <= x} means {x <= x}, which is a

simple tautology. The next assertion is not proved, because {y <= x} is not a tautology. To show

that y <= x, we apply (IfElse), again by option-clicking a keyword, else.

fun min (x, y): int * int -> int =

 if x <= y then x {_ <= x}� else y {x > y}{_ <= x}� end {_ <= x}�
...

{x: int, y: int. min(x, y) <= x}�
The new assertion {x > y} is the negation of {x <= y}. x > y implies y <= x, so it is

proved. Together these imply the assertion following end, which implies our goal

min(x, y) <= x.

ItZs important to note that assertions assume termination. An assertion {P} claims only that, if

evaluation of every involved expression terminates, then P must be true. We are proving partial

correctness, not total correctness.

Section 2 describes the language of the examples. Section 3 discusses the user interface and

gives a more involved example. Section 4 considers aspects of the design of the proposed systemZs

internal structure: the inference graph, the interface to the back end, and some rules of inference.

Section 5 discusses related work, and Section 6 concludes.

2. A small functional language

2.1. Overview

The design goals for our \toy] language are to simplify presentation (and eventual

implementation) by avoiding superfluous features, while preserving most of the interesting aspects

common to actual pure functional languages. The grammar is shown in Figure 2.1; {a} denotes

zero or more repetitions of a, [a] indicates that either a or the empty string may appear. The right

column gives brief descriptions.

The tokens of the language need little explanation. Integer literals consist of one or more

decimal digits; identifiers (aidZ) begin with a letter and can be followed by one or more letters,

digits, or underscores; there are several keywords (fun, if, and so on).

Assertions arenZt really part of the language, but they are included in the grammar and typing

rules to precisely specify their allowed positions and type behavior. Grammar productions only

relevant to assertions are marked with a*Z.

4

program ::= {function-dec} in expr Program

function-dec ::= fun id args a->Z type a=Z expr Function declaration

args ::= a(Z id {a,Z id} a)Z a:Z type Names and types of arguments

type ::= int Integers

| bool Booleans

| type list Lists
| a(Z type {a*Z type} a)Z Tuples

expr ::= integer-literal Integer constant

| true | false Boolean literals

| id Named value

| expr binary-op expr see binary-op

| not expr Boolean ¬

| a(Z expr a)Z Grouping

| id expr App

| expr a::Z expr Construct a list: head::tail

| nil The empty list

| a(Z expr a,Z expr {a,Z expr} a)Z Tuple

| a#Z integer-literal expr Selection from a tuple

| if expr then expr else expr end If/then/else

| case expr of nil a=>Z expr

 a|Z id a::Z id a=>Z expr end Case on lists

| let id = expr in expr Bind identifier to expression

| expr a{Z assertion a}Z Assertion*

| a{Z assume assertion a}Z expr Assumption*

| a_Z \This] (expr. to left of assertion)*

assertion ::= [quantification] expr Assertion*

quantification ::= id a:Z type {a,Z id a:Z type} a.Z Universal quantification*

binary-op ::= a+Z | arZ | a*Z | a/Z Integer arithmetic

| a<Z | a>Z | a<=Z | a>=Z Integer relations

| a=Z | a<>Z Comparison (on any type)

| or | and | a=>Z Boolean \/, /\, �

Figure 2.1: Grammar

A program consists of a series of function declarations, the keyword in, and an expression e.

The result of a program is the result of evaluating e. Each declared function can apply (call) any

previously declared function, including itself; furthermore, nested functions are not allowed by the

syntax. This restriction disallows mutual recursion. The program body e appears after all

functions and can apply any of them. Each function has one or more arguments.

Binary operators (+, -, and, etc.) are infix and have the usual precedences. Note that function

application, f x, has higher precedence than any operator: f x * 2 is equivalent to (f x) * 2.

5

2.2. Types

We define the type system of the language thus (Val(�) denotes the set of values of type �).

(int) 1.�int, taking values from the set {u, -2, -1, 0, 1, 2, u}, is a type.

(bool) 2. bool, taking values from the set {true, false}, is a type.

(Tuples) 3. If �1, �2, . . ., �n are non-arrow types, (�1 * u * �n) is a type. Val(�1 * u

* �n) = (Val(�1) × u × Val(�n)), where × is Cartesian product.

(Arrows) 4. If � and � are non-arrow types, the \arrow] or function type � �> � is a

type, with values from the set of functions from � to �.

(Lists) 5. If � is a non-arrow type, � list is a type whose values are drawn from

{nil} � (Val(�) × Val(� list)).

The \non-arrow] conditions forbid functions that take functions as arguments (higher-order

functions). Integers can be of arbitrary size, to avoid consideration of overflow.

This is an example of a type rule:

� |r e1 : int e2 : int

� |r e1 op e2 : int

(ArithOp) where op is a+Z, arZ, a*Z, or a/Z

It states that, if an expression e1 has type aintZ and an expression e2 has type aintZ, the type of e1 op
e2 is alsoaintZ. Figure 2.2 gives the type rules.

2.3. Semantics

Lisp-style lists are provided: nil is the empty list, :: is the \cons] operator. The case

construct permits the extraction of the head and tail. Algebraic datatypes (discriminated unions) are

omitted: they can be simulated by lists and our proof techniques for lists could be generalized.

If evaluation of any of a user-defined functionZs arguments fails to terminate, evaluation of the

function does not terminate: functions are strict, as in traditional imperative languages. The built-in

operators are also strict, with the exceptions of and, or, and => (implication), which are \short-

circuiting], like SMLZs andalso/orelse or CZs &&/||. a => b is shorthand for (not a) or b,

so b is evaluated iff a evaluates to true.

let x = e1 in e2 binds an identifier x to an expression e1 in e2. It is exactly equivalent to e2 with

(e1) substituted for all free occurrences of x in e2.

if e1 then e2 else e3 end evaluates a boolean expression e1; if the result is true, e2 is returned;

otherwise, e3 is returned.

case e of nil => e1 | x::xs => e2 end evaluates a list e. If e is nil, e1 is the result; otherwise, e2

is evaluated with x bound to the head of e and xs to eZs tail.

a#Z selects a component from a tuple. For example, #2 (10, 20, 30) = 20; #1 (x, y) = x.

The various binary operators behave as one would expect; the result of division by zero is

undefined.

6

|r n : int where n is an integer literal (Int)

|9 true : bool (True)

|9 false : bool (False)

� |r x : a where �(x) = a (Var)

� |r e1 : int e2 : int

� |r e1 op e2 : int

(ArithOp), where
op isa+Z, arZ, a*Z, or a/Z

� |r e1 : int e2 : int

� |r e1 op e2 : bool

(RelOp), where
op is a<Z, a>Z, a<=Z, or a>=Z

� |r e1 : T e2 : T

� |r e1 op e2 : bool

(EqOps), where
op is a=Z or a<>Z, and
T is any non-arrow type

� |r e1 : bool e2 : bool

� |r e1 op e2 : bool

(LogOp) where
op is aorZ, aandZ, or a=>Z

� |r e : bool

� |r (not e) : bool

(Not)

� |r e1 : a

� |r a(Z e1 a)Z : a
(Grouping)

� |r f : a -> b expr : a

� |r (f expr) : b
(App)

� |r e1 : T, e2 : T list

� |r (e1 a::Z e2) : T list

(Cons)

|r nil : � list (Nil)

� |r e1 : t1 u en : tn

� |r a(Z e1 a,Z�u a,Z en a)Z : t1 * u * tn

(Tuple)

� |r e : (t1 * ·�·�· * tn)

� |r a#> k e : tk

(Selection)

where 1 � k � n

� |r e1 : bool, e2: T, e3: T

� |r (if e1 then e2 else e3 end) : T

(IfThenElse)

� |r e : a list, e1: b

� + [x : a, xs : a list] |r e2: b

� |r (case e of nil => e1������������������

����������� | x::xs => e2 end) : b

(Case)

� |r e1 : t1 � + [x : t1] |r e2 : t2

� |r (let x = e1 in e2) : t2

(Let)

� + [f : (T1 * · · · * Tn) -> Tresult, x1: T1, u, xn: Tn] |r fbody : Tresult

� + [f : (T1 * · · · * Tn) -> Tresult] |r e : Te

� |r (fun f a(Z x1 a:Z T1 a,Z u, xn a:Z Tn a)Z a->Z Tresult a=Z fbody

in e) : Te

(Fun)

where for all i s.t. 1 � i � n,

 Ti is not an arrow type

� |r e : Te � + [a_Z : Te, v1 : T1, u, vn : Tn] |r a : bool

� |r e a{Z v1, u, vn . a a}Z : Te

(Assertion)

� |r e : Te � + [v1 : T1, u, vn : Tn] |r a : bool

� |r a{Z assume v1, u, vn . a a}Z e : Te

(Assumption)

Figure 2.2: Typing rules

7

3. User interface

The user interface is central to the system: if the tool is not easy to use effectively, it will not be

used. Therefore, there should be no needless \context switch] between editing a program and

proving something about it. One consequence is that we have no special command for adding an

assertion; the user enters it in the same way she would an identifier or function call or if-

expression: by typing it.

Internal machinery should remain invisible whenever possible; for example, the user shouldnZt

have to think in terms of named inference rules. Hence, the extensive use of option-clicking (as

seen in the aminZ example). The effect of option-clicking \end] and the effect of the menu

command \IfJoin] must be learned in much the same way, but option-clicking is faster (one click,

versus one click to select and a menu selection) and more direct. Conceptually, the mapping is

between parts of grammar productions and menu commands:

if expr then expr else expr end

IfJoinIfElseIfThen

We envision commands for showing and hiding all assertions, top-level assertions, assertions

inside a particular function, assertions that depend on a particular assertion, and assertions that a

particular assertion depends on. We assume the environment can present several views of the same

program text. The displayed set of assertions is specific to each view. If an assumption has been

introduced in a view, opening a new view allows one to proceed without that assumption or with a

different set of assumptions. Thus, one can work on several proofs in parallel.

3.1. Example: Merge sort

This section describes a session with the goal of proving that a function implementing the

classic mergesort algorithm fulfills part of its specification. Specifically, we prove that the result is

sorted, but do not prove that it is a permutation of the input.

We begin with the program in Figure 3.1.

8

fun sorted (L): int list -> bool =

 case L of

 nil => true

 | x::xs => case xs of

 nil => true

 | x2::xs => (x <= x2) and sorted (x2::xs)

 end

 end

fun merge (L1, L2): int list * int list -> int list =

 case L1 of

 nil => L2

 | x::xs =>

 case L2 of

 nil => L1

 | y::ys =>

 if x <= y then

 x::(merge (xs, y::ys))

 else

 merge (y::ys, x::xs)

 end

 end

 end

fun split (L): int list -> int list * int list =

 case L of

 nil => (nil, nil)

 | x::xs =>

 case xs of

 nil => (L, nil)

 | x2::xs =>

 let s = split xs

 in (x::#1 s, x2::#2 s)

 end

 end

fun mergesort (L): int list -> int list =

 case L of

 nil => nil

 | x::xs =>

 case xs of nil => L

 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 merge (mergesort L1, mergesort L2)

 end

 end

in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}?

Figure 3.1. Mergesort program, with the goal assertion.

9

We start by option-clicking mergesort to \open it up], placing {sorted _} after the

function body:

fun mergesort (L): int list -> int list =

 case L of

 nil => nil

 | x::xs =>

 case xs of nil => L

 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 merge (mergesort L1, mergesort L2)

 end

 end {sorted _}?
in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}

Option-clicking end applies the (CaseJoin) rule:

fun mergesort (L): int list -> int list =

 case L of

 nil => nil {sorted _}?
 | x::xs =>

 case xs of nil => L

 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 merge (mergesort L1, mergesort L2)

 end {sorted _}?
 end {sorted _}

in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}

ThereZs a nested case, so we apply (CaseJoin) again, obtaining:

fun mergesort (L): int list -> int list =

 case L of

 nil => nil {sorted _}?
 | x::xs =>

 case xs of nil => L {sorted _}?
 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 merge (mergesort L1, mergesort L2)

 {sorted _}?
 end {sorted _}

 end {sorted _}

in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}

10

We option-click on the first {sorted _} assertion. The editing window is automatically split

into two panels to show the definitions of mergesort and the newly opened sorted. The top panel

displays sorted, with an assumption about L inserted:

fun sorted (L): int list -> bool =

 {assume L = nil}

 case L of

 nil => true

 | x::xs => case xs of

 nil => true

 | x2::xs => (x <= x2) and sorted (x2::xs)

 end

 end {_}?

The {_} looks odd, but merely asserts that the previous expression (case L u end) is true.

This is our goal. Since L is nil, itZs logical to suppose we only have to prove that the nil arm

satisfies the goal, i.e., is true. We type {_} in the appropriate spot. ItZs proved automatically (the

system replaces the _ with the expression to the left, and the resultYtrueYis trivially proved by

the back end).

fun sorted (L): int list -> bool =

 {assume L = nil}

 case L of

 nil => true {_}�
 | x::xs => case xs of

 nil => true

 | x2::xs => (x <= x2) and sorted (x2::xs)

 end

 end {_}?

Above, in mergesort, we had a case and didnZt know if the list was nil, so we applied the

(CaseJoin) rule, which says that if an assertion is true of each case arm itZs true of the whole case.

Here, we know L is nil. We donZt need to prove anything about the x::xs armYwe can use the

(CaseNilArm) rule: if L is nil, and we can show something is true of the nil arm, itZs true for the

whole case.

(CaseNilArm) may be applied by option-clicking the nil of the case arm. But suppose we are

confused and option-click the x::xs instead, which applies (CaseConsArm). (CaseConsArm) is

the corresponding rule for the :: case arm, applicable when L <> nil. {L <> nil} isnZt an

assumption or proved assertion, and a message appears near the bottom of the window:

\CaseConsArm requires L <> nil].

We realize thatZs not what we wanted, and option-click nil.

11

fun sorted (L): int list -> bool =

 {assume L = nil}

 case L of

 nil => true {_}�
 | x::xs => case xs of

 nil => true

 | x2::xs => (x <= x2) and sorted (x2::xs)

 end

 end {_}�
And in mergesort, we see a new checkmark:

fun mergesort (L): int list -> int list =

 case L of

 nil => nil {sorted _}�
 | x::xs =>

 case xs of nil => L {sorted _}? *
 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 merge (mergesort L1, mergesort L2)

 {sorted _}?
 end {sorted _}

 end {sorted _}

in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}

The assertion marked * can be proved in a very similar fashion. Now we show the recursive

case. We do this by induction, assuming that mergesort L1 and mergesort L2 are sorted. We

click on the recursive call mergesort L1 and choose \Add Inductive Assumption] from a menu.

The system inserts an induction assumption {assume arg Q} and a version of the assumption

specialized to L1.

fun mergesort (L): int list -> int list =

 {assume arg: int list. length arg < length L =>

 sorted (mergesort arg)}

 case L of

 nil => nil {sorted _}�
 | x::xs =>

 case xs of nil => L {sorted _}�
 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 merge (mergesort L1, mergesort L2)

 {length L1 < length L => sorted (mergesort L1)}�
 {sorted _}?
 end {sorted _}

 end {sorted _}

in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}

12

Deciding to take length L1 < length L on faith, we legislate it: we type {length L1 <

length L}, then choose \Legislate] from a menu. This is rather dangerous, but it may at times be

the most effective way to proceed. The \legislation] is indicated by a !:
fun mergesort (L): int list -> int list =

 {assume arg: int list. length arg < length L =>

 sorted (mergesort arg)}

 case L of

 nil => nil {sorted _}�
 | x::xs =>

 case xs of nil => L {sorted _}�
 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 merge (mergesort L1, mergesort L2)

 {length L1 < length L}!
 {length L1 < length L => sorted (mergesort L1)}�
 {sorted _}?
 end {sorted _}

 end {sorted _}

in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}

With that done, the system can easily prove {sorted (mergesort L1)}. We repeat for

mergesort L2, and arrive at the rather cluttered stage shown below. Note that the !Zs propagate,

so assertions that depend on \legislation] are clearly marked as such.

fun mergesort (L): int list -> int list =

 {assume arg: int list. length arg < length L =>

 sorted (mergesort arg)}

 case L of

 nil => nil {sorted _}�
 | x::xs =>

 case xs of nil => L {sorted _}�
 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 merge (mergesort L1, mergesort L2)

 {length L1 < length L}!
 {length L1 < length L => sorted (mergesort L1)}�
 {sorted (mergesort L1)}!
 {length L2 < length L}!
 {length L2 < length L => sorted (mergesort L2)}�
 {sorted (mergesort L2)}!
 {sorted _}?
 end {sorted _}

 end {sorted _}

in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}

13

Now, if we can show that merge of two sorted lists produces a sorted list, we can prove

{sorted _}. Or can we? Before heading off to prove {L1,L2. sorted L1 and sorted L2 =>

sorted (merge (L1, L2))}, we verify that our goal would follow if we did. After asking the

system to hide some of the assertions, we add the assertion shown in bold:

fun mergesort (L): int list -> int list =

 case L of

 nil => nil {sorted _}�
 | x::xs =>

 case xs of nil => L {sorted _}�
 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 {sorted (mergesort L1)}!
 {sorted (mergesort L2)}!
 merge (mergesort L1, mergesort L2)

 {sorted _}?
 end {sorted _}

 end {sorted _}

in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}

{L1: int list, L2: int list.
sorted L1 and sorted L2 => sorted (merge (L1, L2))}?

Now we \legislate] it.

...

{L1: int list, L2: int list.

sorted L1 and sorted L2 => sorted (merge (L1, L2))}!

For technical reasons (SVCZs inability to handle nested quantifiers), quantified assertions such

as the one just added canZt be used directly. L1 and L2 have to be instantiated to specific values (the

system selected the values automatically for the induction assumptions). To instantiate, we select

mergesort L1 and drag it onto any of the L1Zs in the assertion; the system adds a new assertion:

 ...

 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 {sorted (mergesort L1)}!
 {sorted (mergesort L2)}!
 merge (mergesort L1, mergesort L2)
 {L2: int list. sorted (mergesort L1) and sorted L2 =>
 sorted (merge (mergesort L1, L2))}!
 {sorted _}?
 ...

Note the propagated !. We now drag mergesort L2 onto L2.

14

fun mergesort (L): int list -> int list =

 case L of

 nil => nil {sorted _}�
 | x::xs =>

 case xs of nil => L {sorted _}�
 | y::ys =>

 let r = split L in

 let L1 = #1 r in

 let L2 = #2 r in

 {sorted (mergesort L1)}!
 {sorted (mergesort L2)}!
 merge (mergesort L1, mergesort L2)

 {sorted (mergesort L1) and sorted (mergesort L2) =>

 sorted (merge (mergesort L1, mergesort L2))}!
 {sorted _}!
 end {sorted _}!
 end {sorted _}!
in

 mergesort [2, 5, 17, 6, 7]

{L: int list. sorted (mergesort L)}!
{L1: int list, L2: int list.

sorted L1 and sorted L2 => sorted (merge (L1, L2))}!

The system has proved the ultimate goal (that is, if our legislated assertions hold). ItZs worth

noting that even though we hid the inductive assumption

 {assume arg: int list. length arg < length L =>

 sorted (mergesort arg)},

it remained in the systemZs internal representation. Also notice that the conclusion isnZt guarded by

the inductive assumption: we have

{L: int list. sorted (mergesort L)},

not

{(arg: int list, L: int list. length arg < length L =>

 sorted (mergesort arg)) =>

 (L: int list. sorted (mergesort L))}.

One might be skeptical that this could really happen so conveniently. After all, we began our

proof of {sorted nil} the same way we began our proof of {L: int list.

sorted (mergesort L)}, by opening up a function, and so one would expect that the same, non-

inductive, rule would be applied in both cases. But in the second case, we did invoke the \Add

Inductive Assumption] commandYan obvious sign of intent to prove the result by induction.

Another objection might be: but we didnZt explicitly indicate a base case! No, but in the

traditional two-step process of well-founded induction:

1. Prove P for all minimal elements;

2. Assuming P holds for all predecessors of n, prove P for n.

the first step is an instance of the second: if n is a minimal element, it has no predecessors, and the

assumption says nothing.

15

Thus, there is an equivalent one-step formulation:

Assuming P holds for all predecessors of n, prove P for n.

The system uses this single-step process, and so the base case(s) need not be indicated.

We omit the remainder of the example; it requires similar techniques (including induction to

prove sorted L1 and sorted L2 => sorted (merge (L1, L2))).

4. System design

4.1. Introduction

The design centers around an inference graph, which encodes dependencies among assertions.

In addition, it includes information associating assertions and positions in the program. To

maintain that association, the prover must track changes as they are made. This imposes some

requirements on the programming environment.

At minimum, the environment must be able to give the prover an accurate description of

program changes as they occur. Changes can be effected by editing operations within the

environment, of course, but also via another text editor, text-processing tools, and so on. The scope

of editing within the environment can be ascertained easily: when the system inserts or deletes such-

and-such a piece of text, it can pass on the text range and text to the prover. Changes outside the

environment are trickier; the environment must save an additional copy of the text when it closes the

file and, when it opens the file, compare its copy to the newer version. Then it can report the

differences between the two to the prover.

Beside those minimal requirements, however, it is helpful for the environment to maintain

concrete and abstract syntax treesYpreferably including the result of a type analysis3Yof the

program. The prover needs a parsed version, and (to typecheck the assertions) the types of

identifiers; if the environment produces and maintains this information, it can be used by other tools

(such as an integrated browser or debugger). There are algorithms for incremental parsing and

other means of maintaining syntax trees and type information; the details are beyond the scope of

this paper.

The next section describes the inference graph itself.

4.2. The inference graph

Each node corresponds to an assertion (or assumption). The directed edges indicate the

dependencies between the assertions: if a node Q has predecessors P1, u, Pn, then Q can be proved

using (P1 and u and Pn). Take the example from the Introduction (subscripts have been added to

distinguish between the three {_ <= x} assertions):

3The language used in this paper is not hard to type, but full-blown functional languages have more elaborate

type systems.

16

fun min (x, y): int * int -> int =

 if x <= y then x {_ <= x}Then else y {_ <= x}Else end {_ <= x}End

...

{min(x, y) <= x}

Here is the inference graph:

{_ <= x}Then {_ <= x}Else

{_ <= x}End

{min(x, y) <= x}

The graph does not claim that {_ <= x}Then alone implies {_ <= x}End; it says that

{_�<=�x}Then together with {_ <= x}Else implies {_ <= x}End.

Each node has some associated information: the text of the assertion, a description (such as an

offset into the text) of the assertionZs position in the program, a status indication, an indication of

whether the assertion has been \legislated], and (unless no attempt has been made to prove the

assertion) the inference rule which justifies the assertion. The status indication is either \Proved]

or \Unproved]. Every assertion with one or more \Unproved] predecessors is \Unproved].

Assertions with no predecessors may be \Proved] (by the back end, or because they follow

directly from the program structure), or \Unproved].

The � and ? marks seen by the user are closely related to the internal status indication. The

set of assertions marked � is the same as the set that are \Proved]. On the other hand,

\Unproved] assertions may be marked either by ? or not at all. To the user, the interesting

unproved assertions are those whose nodes donZt have predecessors. In the situation below, we

know {min(x, y) <= x} can be proved on the basis of {_ <= x}EndYthe interesting assertion at this

stage in the proof {_ <= x}Else. So nodes with no predecessors are marked ?, and nodes with
predecessors are unmarked.

fun min (x, y): int * int -> int =

 if x <= y then x {_ <= x}Then� else y {_ <= x}Else? end {_ <= x}End
...

{min(x, y) <= x}

{_ <= x}Then {_ <= x}Else

{_ <= x}End

{min(x, y) <= x}

PROVED

Unproved

Unproved

Unproved

17

Assumptions, too, appear as nodes in the inference graph. Assumptions never have any

predecessors and always have \Proved] status. The user or system might ask this question: what

assumptions is an assertion contingent upon? It would appear that if there is a path from an

assumption node, {assume P}, to an assertion node {Q}, then {Q} is contingent upon {assume P}.

This is correct, except where we eventually lift {Q} out of the assumption (with the (Deduce)

inference rules), resulting in {P => Q}. Although {P => Q} depends on {assume P} and {Q}, in

the sense that the proof of {P => Q} is the proof of {Q} assuming P, {P => Q} is not contingent

on P. It exists in a context where P has not been assumed. The (Induction) rule is similar: its

conclusion is not made the induction assumption.

To handle this case, we modify the contingency test slightly:

If there is a path from an assumption node, {assume P}, to an assertion node {Q}, such that

neither {Q} nor any intermediate nodes in the path are justified by the (Deduce) or (Induction)

rules, then {Q} is contingent upon {assume P}.

{assume P}

{Q}

{P => Q}

PROVED

PROVED

PROVED

Above, {Q} is contingent on P, but as {P => Q} is justified by (Deduce), it is not contingent.

Legislated assertions are similar to assumptions. Like assumptions, they have no predecessors

and are always \Proved]. The question of contingency on a legislated assertion (which is

instrumental in determining if a ! should be displayed) is analogous to the same question about an

assumption. The difference is that legislated rules have no exceptional cases: there is no way to

discharge a legislated assertion.

Finally, note that the commands to show and hide assertions depending on a selected assertion,

and the assertions the selected assertion depends on, can be implemented by simple graph traversal.

4.3. Verification

An external verification engine (\back end]) proves assertions that donZt follow directly from

the program structure. The back end should directly support all the languageZs types: arbitrary-size

integers, booleans, tuples, and lists. It should produce intelligible counterexamples for invalid

propositions (the system itself would not use such counterexamples, but the user might). It should

never require user intervention. Without user intervention, itZs unclear whether a full-blown

theorem prover would be substantially more useful than a \lightweight] checker such as SVC [1].

SVC has some shortcomings. True, it can deal with integer equations and inequalities, but only

if no overflow (arithmetic results outside ±231 or so) occurs. Non-linear equations are beyond its

18

capabilities. It has a theory of flat records (good for tuples), but it cannot handle instances of

recursive datatypes like lists. If it deems a formula invalid, it reports a counterexample (a set of

values for free variables such that the formula is false), but does not give the kind of information

offered by a theorem prover. If it is clear from the counterexample what additional premise(s) must

be included, this level of information is adequate. Finally, if a formula strays outside its domain, it

fails with little grace: **** Result of Addition out of Range Abort (core dumped).]

However, the system could shield the user from these messages. Despite these flaws, SVC remains

a viable back end. Source code is provided, and adding recursive type handling and other features

appears feasible.

The remainder of this section sketches a procedure for transforming assertions into a form

acceptable to a back end that supports all the languageZs types (e.g. an extended SVC).

Suppose the system asks the back end to check an assertion {Q} which follows an expression

e: e�{Q}. The proposition passed to the back end has the form {Z}

� v1, u, vm . ((P1 /\ u /\ Pn)�� C)

where the PZs are the \premises], C is the \conclusion], and v1, u, vm are the free variables

of C. To transform Q into C, we:

1. Replace any occurrences ofa_Z with e.

2. Expand every let-expression: let x = e1 in e2 becomes e2[x / e1].

3. Replace each if and case by a unique identifier v, unless the if or case is

syntactically identical to another if or case already assigned an identifier. (Thus,

(if x = 0 then 1 else 2 end) = (if x = 0 then 1 else 2 end)

becomes (v1 = v1), which the back end can show is valid.)

The premises P1, u, Pn can be drawn from available unquantified assertions/assumptions in

the program. If too few are included, the back end may lack a proposition needed to prove the

conclusion. If too many are included, several issues arise. An assertion {A} may be included

which is not needed to prove C, creating an inference graph with a superfluous edge. This confuses

the inference graph displayed to the user, and it leads to unnecessary verifier activity if {A} is

subsequently removed or rendered invalid. Most dangerous, though, is this situation. Say weZd

like to prove {Z}, and weZve decided that a lemma {Q} is needed. If Z is among the premises given

to the back end to prove Q, a cycle in the graph results:

{Q} {Z}

{Q} {Z}

Some things are always safe to include in the list of premises. Assumption nodes never have

incoming edges, so circularity canZt result. Assertions in \Proved] status wonZt create a cycle,

either. A good first approximation (until we have experience with the tool), then, is to include all

available unquantified assumptions/assertions, except those at the top level of the program.

19

Quantified premises canZt be used because they lead to a proposition with nested quantifiers:

� v1, u, vm . (((�w . P1) /\ u /\ Pn)�� C),

which the back end cannot accept.

Once the list of premises has been determined, each is converted by the means described

above.

4.4. Inference rules

The inference rules introduce valid assertions about programs based on other valid assertions.

The user chooses (often by option-clicking) which rules to apply and where to apply them.

For example, this is a rule pertaining to let expressions:

let x = e1 {P} in e2

let x = e1 in e2 {P[x/_]}

(Let)
Axiom

Read it as \if P is valid and available after the first expression (e1) of a let, then the assertion

P[x/_]YP with x for athisZYis valid following the second expression (e2)]. The precise meaning

of \is available] will be defined shortly.

Implicit in each inference rule is that evaluation of all the expressions and assertions mentioned

in the rule would terminate. So, to apply (Let), evaluating e1, P, P[x/_], and e2 should terminate. If

they donZt, the rule is not guaranteed to work (but the system, which does not reason about

termination, will allow its application!).

In many cases, an assertion not at the given position above the line can be used as though it

were. Such an assertion, at another position p, is said to be \available] at the given position q. The

necessary criterion for availability is that the new assertion be valid at q if and only if it is valid at p.

(Two assertions following each other, as e {P} {Q}, have the same position; both are trivially

available just after e.) Assertions containing a_Z are suspect; assertions inside ifZs and caseZs, as

in the following example, are never available in surrounding scopes.

fun length xs : int list -> int =

 case xs of

 nil => 0

 | y::ys => (length ys + 1) {xs <> nil}

 end {xs <> nil}

Here, the first and second assertions are textually identical, but the first is valid and the second

isnZt. In the first, xs canZt be nil: if it were, the nil case arm would be evaluated, not the y::ys

arm. In the second, xs can be nil. Clearly, the first {xs <> nil} is not available following end.

An assertion {P} at position p is available at q if 1) it does not contain a_Z, and 2) it could be

moved from p to q in the manner described below.

20

Rules for moving assertions have a natural form:

(e {P})

(e) {P}

(e) {P}

(e {P})

Taken together, these mean that an assertion inside parentheses can be moved outside parentheses,

and vice versa. For compactness, however, we use a different notation for most of the rules: the

above two rules become

(e {P}) {P}

Here are the rules:

(e {P}) {P}

(e1 {P} op (e2 {P})) {P} where op is for any binary operator, including a::Z

not (e {P})) {P}

#1 (e {P})) {P} and likewise for #2, #3, etc.

((f {P}) (e {P})) {P}

((e1 {P}) (e {P})) {P}

(e1 {P}, e2 {P}) {P} and likewise for n-tuples

(e1 {P}, e2 {P}) {P}

if e1 {P} then e2 else e3 end {P}

case e1 {P} of nil => e2 | x::xs => e3 end {P}

if e1 {P} then e2 else e3 end {P}

let x = e1 {P} in e2 {P} where x does not appear in P

fun f xs : u = e u in program {P}

fun f xs : u = e {P} u in program
where no x in xs appears in P

case e1 of nil => e2 | x::xs => e3 end {P}

case e1 of nil => e2 {P} | x::xs => e3 {P} end

if e1 then e2 else e3 end {P}

if e1 then e2 {P} else e3 {P} end

An assumption {assume P} e is available iff an assertion following e would be available.

That concludes our treatment of availability; we now give the regular inference rules. All rules

carry the unstated condition that the top and bottom are type-correct, according to the rules in

Section 2. For clarity, we omit type declarations (for function arguments and quantified variables in

assertions).

21

What follows is not necessarily a complete listing of all the rules. Rules that follow from the

semantics of the language are marked \Axiom], rules that can be derived from other rules are

marked \Derived]. The \Axiom] rules should be proved sound with respect to a formal

semantics of the language, and the \Derived] rules proved sound by constructing derivations from

the \Axiom] rules, but we have not done so.

Basic rules of quantifier-free first-order logic could be specified here, but the back end is quite

capable of such feats as inferring Q from P => Q and P. Instead of those rules, we give (Backend):

e {P1} {P2} u {Pn}

e {Q}

(Backend)

where the back end deems
((P1 /\ u /\ Pn) => Q) to be valid.

For assumptions, we have

{assume P} e {Q}

e {P => Q}

(Deduce)
Axiom

Function calls are characterized thus (the double line indicates an equivalence, rather than a

one-way inference: the top can be inferred from the bottom, as well as the bottom from the top):

fun f (x1, u, xn) = body in e {P}

fun f (x1, u, xn) = body in e
{P [body[a1/x1, u, an/xn] / (f (a1, E, an))]}

(Beta)

Axiom

fun f xs = e {P} in e2
fun f xs = e in e2 {xs. P[f xs/_]}

(Lift)
Axiom

e {v1, u, vn . P}

e {v1, u, vir1, vi+1, u, vn . P [e/vi]}

(InstantiateOne)
Axiom

e {v1, u, vn . P}

e {P [e1/v1, u, en/vn]}

(InstantiateAll)
Derived from (InstantiateOne)

e {v1, u, vn . P}

e {w1, u, wn . P[w1/v1, u wn/vn]}

(RenameQuantifiers)
where the wZs contain no duplicates
(i.e., for all i, j, if i � j, wi � wj)
Axiom

e {P}������
�e {P[_/e]}

(This1)
Axiom

e {P}���������
�� e {P[e/_]}

(This2)
Axiom

let x = e1 {P} in e2

let x = e1 in e2 {P[x/_]}

(Let)
Axiom

22

let x = e1 in e2

let x = e1 in e2 {x = e1}

(LetEq)
Derived from (Let): write _ = e1 for P

if e then e1 {X} else e2 {Y} end

if e then e1 else e2 end
{(e => X) and (not e => Y)}

(If)
Axiom

if e then e1 else e2 end

if e then e1 {e} else e2 end

(IfThen)
Axiom

if e then e1 else e2 end

if e then e1 else e2 {not e} end

(IfElse)
Axiom

if e then e1 {P} else e2 {P} end

(if e then e1 else e2 end) {P}

(IfJoin)
Derived from (If)

case e of nil => e1 {P}
 | h::t => e2 {Q} end

case u end
{((e = nil) => P) and ((e <> nil) => Q)}

(Case)

where Q contains neither h nor t
Axiom

case e of nil => e1
 | h::t => e2 end

�������case e of nil => e1 {e = nil}
 �������� | h::t => e2 end

(CaseNil)
Axiom

case e of nil => e1
 | h::t => e2 end

case e of nil => e1
 | h::t => e2 {e = h::t}

end

(CaseCons)
Axiom

case e of nil => e1 {P}
 | h::t => e2 {P} end

case u end {P}

(CaseJoin)
Derived from Case

case e of nil => e1 {P}
 | h::t => e2 end {e = nil}

case u end {P}

(CaseNilArm)
Derived from Case

case e of nil => e1��������������������
 | h::t => e2 {P} end {e <> nil}�

case u end {P}

(CaseConsArm)
Derived from Case

23

4.4.1. Induction

Reasoning about recursive functions requires a rule based on well-founded induction:

fun f x : tx -> te = {assume y : tx . m(y) < m(x) => P[y/x]}
e {P[_/f x]}�����������������

in e2 {z: tx . m(z) >= 0}���������
fun f x = e in e2 {x . P}

(Induction)

where m has type tx -> int

The function m is an induction measure of the argument; its result type is int, but must

always be nonnegative: {z�:�tx�.�m(z)�>=�0}. m yields a well-founded relation R on tx: x R y iff m(x)

< m(y).

For a function f taking a list as its argument, a common induction measure is the length of the

list. In that case, the inductive assumption is {assume y . length(y) < length(x) => P[y/x]}, and the

rule says that ifYusing the inductive assumption that P holds for all lists shorter than xYwe can

show that P holds for x, we can conclude that P holds for all x.

The base case, m(x) = k (where m(x) is always at least k), is implicit. When m(x) = k, there is

no y such that m(y) < m(x) (recall that mZs result is always nonnegative). So the induction

assumption canZt be used for the base case.

Note: A base case is guaranteed to exist: Since m(x) � 0 for all x, the image of m has a

lower bound. FrequentlyYin the case of length, for exampleYthe lower bound is 0,

but it may be any nonnegative integer.

The choice of m depends on the function f, but there are often \standard] mZs for particular

types. (If f has multiple arguments, think of them as constituting a single tuple argument.) For lists

of any kind, length is a good candidate; for tuples, the sum of the standard mZs for each component

(so a function taking two lists could have as its induction measure the sum of the lengths).

5. Related Work

A significant precursor is an unpublished proposal by Mark Jones and colleagues at the

Oregon Graduate Institute. They propose extending the Haskell language with a method for stating

top-level properties. A programming environment would be extended with tools for keeping track

of dependencies among properties, with the ability to attach \certificates] to the properties. One

form of certificate would be a verification by an external theorem prover. They do not propose

verifications with properties (assertions) inside functions, as we do.

The idea of assertions inside functions seemed very natural, but was probably inspired by a

traditional method of proving imperative programs, in which assertions are placed between program

statements [4]. Igarishi et al. [5] described a verifier for a subset of Pascal augmented with an

assertion language; their system produced \verification conditions] which were to be given to a

theorem prover. The conditions generated are very involved; it is not clear if they could be

24

simplified to the point where a human could provide useful assistance to the theorem prover, or

whether using a pure functional language instead of Pascal would have a substantially positive

effect.

Functional programsZ similarity to the languages of theorem provers like HOL [3] has led to

efforts to verify them within the theorem prover [9]. However, itZs not especially easy to embed

recursive functions in the theorem proverZs language.

De Millo et al. take a skeptical view of the prospects for verification [2]. Among their many

objections is the enormous length of verifications (not verification conditions, but they would

doubtless object to the length of those as well), rendering them impossible for a human to check.

We canZt claim innocence on this score; our intended \back end], SVC, just reports \VALID] if

it thinks a proposition is valid. We may only be making a virtue out of necessity, but if the system

has only limited ability to figure things out for itself, so to speak, the propositions proven by the

back end should remain fairly simpleYsimple enough to re-prove them by hand, if we wish.

RepsZ dissertation [8] on language-based programming environments briefly mentioned the

possibility of environment support for verification.

MeyerZs object-oriented, non-functional Eiffel language [6, 7] includes assertion support. The

assertions document the program, and can be written as uninterpreted comments or interpreted

expressions. The latter have the same form (with two minor extensions, old and strip) as any

Boolean-valued Eiffel expression. So they can be (quite helpfully) checked at runtime.

6. Conclusion

We believe an approach to verification which is integrated with the language and the

environment will result in a highly usable, effective system. We have sketched a rather convenient

user interface. The degree of automation described is quite low, but may already be adequate; more

automation could be achieved through the addition of a simple \tactic], an algorithm for choosing

and applying inference rules. For example, figuring out that {sorted nil} can be proved with the

(CaseNilArm) rule is straightforward: notice that the body of sorted is a case, ask the back end to

prove {L = nil}, get a \VALID] result, and apply (CaseNilArm).

The back endZs inability to accept nested quantifiers is perhaps its most significant impact on

the rest of the system. From a user interface standpoint, instantiating by hand appears somewhat

inconvenient (to what degree remains to be seen); perhaps automatic instantiation would be feasible

in certain cases.

Scalability can be considered along two dimensions: program size and language sophistication.

In large programs, assertions could be part of module interfaces; ideally, the assertions would

completely specify the module behavior, so one could prove client code correct without ever going

inside the called module. To extend the system to a \realistic] pure language, such as the currently

popular Haskell, appropriate treatment would have to be found for language features such as

polymorphic types, higher-order functions, mutual recursion, and lazy evaluation. (Wadler [10]

25

popularized the fact that certain theorems about polymorphic and higher-order functions can be

deduced \for free] from the types of the functions. One of these would simplify a part of the

mergesort verification not included in the example.) Defining a formal semantics for the small

language of this paper, and proving the inference rules sound, would not be unreasonable; for a

realistic language, defining a formal semantics would be a major project in itself.

There are, no doubt, user interface issues and points of design we have not discovered, and that

will be found only through experience with an actual system.

References

[1] Barrett, Clark, et al. Stanford Validity Checker home page.

http://verify.stanford.edu/SVC/

[2] De Millo, Richard A., Richard J. Lipton, and Alan J. Perlis. Social processes and proofs

of theorems and programs. Comm. ACM 22(5), 1979.

[3] Gordon, M.J.C., and T.F. Melham, eds. Introduction to HOL: a theorem-proving

environment for higher-order logic. Cambridge Univ. Press, 1993.

[4] Gries, David. The science of programming. Springer-Verlag, 1981.

[5] Igarishi, S., R.L. London, and D.C. Luckham. Automatic program verification I: A

logical basis and its implementation. Acta Inf. 4 145-182, 1975.

[6] Meyer, Bertrand. Eiffel: the language. Prentice Hall, 1992.

[7] Meyer, Bertrand. Object-oriented software construction (2nd ed.). Prentice Hall, 1997.

[8] Reps, Thomas W. Generating language-based environments. MIT Press, 1984.

[9] Slind, Konrad. Function definition in higher-order logic. In Proc. 9th Intl. Conf. on
Theorem Proving in Higher Order Logics, LNCS v. 1125. Springer-Verlag, 1996.

[10] Wadler, Philip. Theorems for free! In Proc. 4th Int>l Symposium on Functional Prog.
Lang. and Comp. Arch., 1989.

