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Gradual typing
I’m last in the session, so I’ll keep this brief.

Traditionally, gradual typing is about

I migrating incrementally (gradually)
from dynamically typed code
to statically typed code.

Joshua is from CMU. . .

. . . I lost him at “dynamically typed”.
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Gradual typing

Traditionally, gradual typing is about

I migrating incrementally (gradually)
from less precisely statically typed code

(like SML)

to more precisely statically typed code
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Gradual typing runs rampant

Traditionally, gradual typing is about

I migrating incrementally (gradually)
from less precisely statically typed code (like SML)
to more precisely statically typed code (like refined SML)

Wait, isn’t that the same as gradual refinement types?

No, that paper has what are now called refinement types, which
we used to call index refinements.

Our paper has (a simplified form of) what were once called
refinement types, which we now call datasort refinements.
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Standard ML: dynamically typed?
datatype nat = Zero | Succ of nat

case x : nat of
Zero ⇒ . . .

| Succ y⇒ . . .

But the Definition requires compilers to accept
nonexhaustive matches:

case x : nat of
Succ y⇒ . . .

If x = Zero, then the exception Match is raised.

This nonexhaustive match is fine,
if we know that x will never be Zero.
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Refined Standard ML
Datasort refinements [Freeman & Pfenning 1991, Davies 2005, . . . ]
push the knowledge that x is not Zero into the type system.

case x : nonzero of
Succ y⇒ . . .

This is exhaustive, because x has datasort nonzero.
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Datasorts
Datasorts refine ML datatypes

datatype nat = Zero | Succ of nat

I sum type : Succ or Zero
I recursive type: datatype nat = Zero | Succ of nat

datasort zero = Zero
datasort nonzero = Succ of nat

nat

zero nonzero

This paper: gradual, refined sum types.
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Static sums
The usual type-theoretic sum type:

datatype A1 +A2 =
inj1 of A1 | inj2 of A2

Elimination form: two-armed case(e, inj1 x1.e1, inj2 x2.e2)

Subscript sums A1 +1 A2 and A1 +2 A2,
corresponding to datasort refinements:

datasort A1 +1 A2 = inj1 of A1

datasort A1 +2 A2 = inj2 of A2

Elimination form: one-armed case(e, injk xk.ek).
x : (Int +1 Bool) ` case(x, inj1 x1.x1) : Int

Case expressions over +, +1, +2 never raise Match exceptions.
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Dynamic sum
The dynamic sum type, corresponding to Standard ML:

datatype A1 +? A2 =
inj1 of A1 | inj2 of A2

+? allows two-armed case(e, inj1 x1.e1, inj2 x2.e2).

But +? also allows one-armed case(e, injk xk.ek),
which may raise a Match exception.
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Gradual sums
match failures are. . .

Standard ML +? possible

+

refined SML + +1 +2 impossible

= Gradual sums + +1 +2 +? possible iff +? used
in annotations
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Road map

e⇒⇐A

varying
precision

Source
bidirectional
type system

e : A M : T
type-directed
translation

Source
type assignment

system

M ′ : T
steps to

Target type system
with run-time casts

eS ⇒⇐AS

static sublanguage
(no +?)

M : T

matchfail-free

M ′ : T

matchfail-free
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Source type assignment
Design introduction and elimination rules:

I How are the static sums +, +1, +2 introduced and
eliminated?

I How is the dynamic sum +? introduced and eliminated?
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Static sums
Design introduction and elimination rules for +1, +2:

Γ ` e : Ak
Γ ` (injk e) : (A1 +k A2)

+kIntro

Γ ` e : (A1 +k A2) Γ, xk : Ak ` ek : B
Γ ` case(e, injk xk.ek) : B

+kElim

Introduction rule for + via subtyping:
(injk e) : (A1 +A2) because (A1 +k A2) ≤ (A1 +A2).

Γ ` e : (A1 +A2)
Γ, x1 : A1 ` e1 : B
Γ, x2 : A2 ` e2 : B

Γ ` case(e, inj1 x1.e1, inj2 x2.e2) : B
+Elim

(two-armed elimination for +k possible via subtyping)
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Dynamic sum
Design introduction and elimination rules for +?:
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Varying precision
Given a typing derivation, we want to

I Replace more precise types, like A+1 B,
with the less precise type A+? B

I Replace less precise types A+? B

with more precise types A+ B or A+k B

Replacing an annotation A+1 B with A+? B preserves typing
(varying precision—gradual guarantee)

Replacing an annotation A+? B with a more precise annotation
does not always preserve typing.
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Defining precision
First, v on sum constructors
+?, +, +1, +2:

dynamic

v

static

+?

++1 +2

Extend v pointwise:
if A ′ v A and B ′ v B then. . .

A+? B

A ′ + B ′A ′ +1 B
′ A ′ +2 B

′

Other constructors covariant (similar to @ in refinement types):

dynamic

v

static

+?→+?

+?→+1 +→+?

+→+1
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Subsumption
I The usual subsumption rule:

Γ ` e : A A ≤ B
Γ ` e : B

I In a land of imprecision: “kinda A”, “kinda B”

Γ ` e : A ′ A v A ′ A ≤ B B v B ′

Γ ` e : B ′

I These 3 premises = directed consistency A ′  B ′

A ′

A ≤ B

B ′

v v

I Is directed consistency transitive?
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Bidirectional typing: why?
Some past answers:

I to handle features beyond Damas–Milner
(Pierce & Turner 2000;
Dunfield & Pfenning 2004;
Dunfield & Krishnaswami 2013; . . . )

I for better (earlier) type error messages

Here:

I to make typing more predictable,
by avoiding unnecessary imprecision.
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Bidirectional typing in one slide
I Organize the flow of information from type annotations:

I Given Γ , e, and a known type A,
check e:

Γ ` e⇐ A

I Given Γ and e,
synthesize a type for e:

Γ ` e⇒ A

I The type A in the checking judgment e⇐ A is a goal.
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Bidirectional typing
Frank Pfenning’s recipe:
intro rules check, elim rules synthesize.

Γ, x : A1 ` e⇐ A2

Γ ` λx. e⇐ A1 → A2
Chk→Intro

Γ ` e1 ⇒ (A→ B) Γ ` e2 ⇐ A

Γ ` e1 e2 ⇒ B
Syn→Elim

I Chk→Intro:
The type A1 → A2 must flow from an annotation.

I Syn→Elim: The type A→ B must flow from an annotation,
perhaps via Γ .

23
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Bidirectional typing
The subsumption rule:

Γ ` e⇒ A ′ A ′  B ′

Γ ` e⇐ B ′
A ′

A ≤ B

B ′

v v

 

I Subformula property:
Every type synthesized or checked flows from a type
annotation.

24
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Target language

I Target sum types include only static sums: +, +1, +2

I Casts between sums:

〈+1 ⇐ +〉(inj1 v) will step to inj1 v

〈+2 ⇐ +〉(inj1 v) will step to matchfail

26



Type-directed translation: add casts
Where directed consistency is used,
translation adds a cast from A ′ to B ′

Γ ` e : A ′ ↪→M A ′  B ′ ↪→ C
Γ ` e : B ′ ↪→ C[M]

A ′

A ≤ B

B ′

v v

 

Γ ` x : (Unit +? Unit) ↪→ x

(Unit +? Unit) (Unit +2 Unit)
↪→ 〈+2 ⇐ +〉[ ]

Γ ` x : B ′ ↪→ 〈+2 ⇐ +〉x

Unit +? Unit

Unit +2 Unit

Unit +2 Unit

≤ Unit +2 Unit

v v
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Metatheory
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Metatheory
Gradual guarantee (Siek et al. 2015)

I Thm. 4: Varying precision
I Thm. 5: Static soundness and completeness
I Thm. 15: Dynamic soundness and completeness
I Thm. 11: Translation preserves precision
I Thm. 12: Stepping preserves precision
I Thm. 13: Precision respects convergence
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Related work
Refinements:

I Datasort refinements:
Freeman & Pfenning 1991, Davies 2005, . . .

A @ τ says refinement (sort) A refines type τ.
Kind of like A ′ v A—but sorts and types cannot be mixed:
varying precision cannot even be stated.

I Bidirectionality makes type-checking practical

Gradual typing:

I Consistency (Siek and Taha 2006, . . . )
I Consistent subtyping (Siek and Taha 2007, . . . )
I Blame (Wadler & Findler 2009, . . . )
I Subformula property (Garcia & Cimini 2015)
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What’s next?
I Implement the bidirectional system and translation
I Add more types (intersection, µ, ∀)
I Evaluate run-time efficiency

I Unify and generalize

(1) classic gradual typing, and
(2) gradual sums

through a new type constructor, guided by ideas from
abstracting gradual typing (Garcia et al. 2016)
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Conclusion
I Guided by type-theoretic intuition,

we combined static sums and dynamic sums
into a gradual type system

I The subformula property of bidirectional typing
controls imprecision

I The system enjoys the gradual guarantee

Paper and proofs: arxiv.org/abs/1611.02392
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