Tridirectional Typechecking

Joshua Dunfield
joshuad@cs.cmu.edu

Frank Pfenning
fp@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA

ABSTRACT

In prior work we introduced a pure type assignment systerh tha

encompasses a rich set of property types, including inteoses,
unions, and universally and existentially quantified deleern types.
This system was shown sound with respect to a call-by-vabee-o
ational semantics with effects, yet is inherently undeiea

In this paper we provide a decidable formulation for this-sys
tem based on bidirectional checking, combining type sysithend
analysis following logical principles. The presence ofans and
existential quantification requires the additional apild visit sub-
terms in evaluation position before the context in whiclytbecur,
leading to atridirectional type system. While soundness with re-
spect to the type assignment system is immediate, completen
requires the novel concept abntextual type annotationsntro-
ducing a notion from the study of principal typings into theisce
program.

Categories and Subject Descriptors:F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Construct§#pe structurg
D.3.1 [Programming Languages]: Formal Definitions and Theo

General Terms: Languages, Theory

compilation), it has been less successful in making theesgive
type systems directly available to the programmer. Oneorefs
this is the difficulty of finding the right balance between bnevity
of the additional required type declarations and the fdligibf the

typechecking problem. Another is the difficulty of givingegise
and useful feedback to the programmer on ill-typed programs

In prior work [9] we developed a system of pure type assign-
ment designed for call-by-value languages with effectsposied
progress and type preservation. The intended atomic prograp-
erties are data structure refinements [11, 10, 28], but coumoagh
does not depend essentially on this choice. Atomic pragedan
be combined into more complex ones through intersectiariensg,
and universal and existential quantification over index dios As
a pure type assignment system, where terms do not contain any
types at all, it is inherently undecidable [4].

In this paper we develop an annotation discipline and typelch
ing algorithm for our earlier type assignment system. Thgpoma
contribution is the type system itself which contains savapvel
ideas, including an extension of the paradigm of bidirewtldype-
checking to union and existential types, leading tattiérectional
system While type soundness follows immediately by erasure of
annotations, completeness requires that we imsertextual typing

Keywords: Type refinements, intersection types, union types, de- annotationsreminiscent of principal typings [13, 25]. Decidability

pendent types

1. INTRODUCTION

Over the last two decades, there has been a steady incrahse in

use of type systems to capture program properties such aslcon
flow [15], memory management [22], aliasing [20], data tites
invariants [11, 7, 28] and effects [21, 14], to mention judewa.
Ideally, such type systems specify rigorously, yet at a tégkl of
abstraction, how to reason about a certain class of prograpep
ties. This specification usually serves a dual purpose:usé to
relate the properties of interest to the operational seicgof the
programming language (for example, proving type presemat
and it is the basis for concrete algorithms for program asislffor
example, via constraint-based type inference).

While the type-based approach has been successful for use i

automatic program analysis (for example, for optimizatioming

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

POPL'04,January 14-16, 2004, Venice, Italy.

Copyright 2004 ACM 1-58113-729-X/04/0001%5.00.

is not obvious; we prove it by showing that a slightly altetefd
tridirectional systenis decidable (and sound and complete with re-
spect to the tridirectional system).

The basic underlying idea Hidirectional checking18] of pro-
grams containing some type annotations, combitypg synthesis
with type analysisfirst adapted to property types by Davies and
Pfenning [7]. Synthesis generates a type for a term frommits i
mediate subterms. Logically, this is appropriate for degors (or
elimination form$ of a type. For example, the first product elimina-
tion passes from : A xBtofst(e) : A. Therefore, if we can gener-
ateA « B we can extracA. Dually, analysis verifies that a term has
a given type by verifying appropriate types for its immeeiatb-
terms. Logically, this is appropriate for constructors if@roduc-
tion formg of a type. For example, to verify thak.e : A — B we

pssumex : A and then verifye : B. Bidirectional checking works

for both the native types of the underlying programming laage
and the layer of property types we construct over it.

However, the simple bidirectional model is not sufficieridnat
we callindefinite property typesinions and existential quantifica-
tion. This is because the program lacks the prerequisitetsire.
For example, if we synthesiz& V B, the union ofA andB, for
an expressiore, we now need to distinguish the cases: the value
of e might have typeA or it might have typeB. Determining the
proper scope of this case distinction depends on biawsed, that
is, the position in whicte occurs. This means we need a “third di-

rection” (whence the nantedirectional): we might need to move
to a subexpression, synthesize its type, and only then zadhe
expression surrounding it.

Since the tridirectional type system (like the bidirectibnne)
requires annotations, we want to know that any program weéd
in the type assignment system can be annotated so that &ds al
well typed in the tridirectional system. But with intersecttypes,
such a completeness property does not hold for the usuamoti
type annotatior{e : A) (as previously noted [16, 6, 23]), a prob-
lem exacerbated by scoping issues arising from quantifipesty
We therefore extend the notion of type annotatiorcomtextual
typing annotation(e : 1 = Ay,...,Tn F Ay), in which the
programmer can write several context/type pairs. The iddhat
an annotatiory, + Ay may be used wheais checked in a context
matchingl.. This idea might also be applicable to arbitrary rank
polymorphism, a possibility we plan to explore in future wor

Unlike the bidirectional system, the indefinite propertyedy that
necessitate the third direction make decidability of typaking
nontrivial. Two ideas come to the rescue. First, to presgype
safety in a call-by-value language with effects, the typa club-
terme can only be brought out if the term containing it has the form
Ele] for someevaluation contexEk, reducing the nondeterminism;
this was a key observation in our earlier paper [9]. Seconé, o
never needs to visit a subterm more than once in the samederiv
tion: the system which enforces this is sound and complete.

The remainder of the paper is organized as follows. Section 2
presents a simple bidirectional type system. Section 3 eefitte-
ments and a rich set of types including intersections andnai
using tridirectional rules; this is theimple tridirectional system
In Section 4, we explain our form of typing annotation andvero
that the simple tridirectional system is complete with esgpo the
type assignment system. Section 5 restricts the tridoeatirules
and compensates by introduciteft rulesto yield aleft tridirec-

tional systemWe prove soundness and completeness with respectl" - Ax.e | A — B

to the simple tridirectional system, prove decidabilitydaise the
results in [9] to prove type safety. Finally, we discuss tedlavork
(Section 6) and conclude (Section 7).

2. THE CORE LANGUAGE

In a pure type assignment system, the typing judgmeat id,,
wheree contains no types (eliding contexts for the moment). In a
bidirectional type system, we have two typing judgments: A,
reade synthesized\, ande | A, reade checks againsi. The
most straightforward implementation of such a system ctssif
two mutually recursive functions: the first, correspondiog T A,
takes the terne and either returné\ or fails; the second, corre-
sponding toe | A, takes the terne and a type A and succeeds
(returning nothing) or fails. This raises a question: Whdwethe
types in the judgments | A come from? More generally: what
are the design principles behind a bidirectional type sy8te

Avoiding unification or similar techniques associated with
type inference is fundamental to the design of the bidioeet sys-
tem we propose here. The motivation for this is twofold. frirs
for highly expressive systems such as the ones under coasaie
here, full type inference is often undecidable, so we nessl del-
tomatic and more robust methods. Second, since unificataii g
ally propagates type information, it is often difficult tapbint the
source of type errors.

We think of the process of bidirectional typechecking asttono-
up construction of a typing derivation, eitheroff A ore | A.
Given that we want to avoid unification and similar techngjuee
need each inference rule to de correctterminology borrowed
from logic programming. That is, for any rule with conclusio

e T A we must be able to determin® from the information in
the premises. Conversely, if we have a rule with preraiseA, we
must be able to determin® before traversing.

However, mode correctness by itself is only a consisteney re
quirement, not a design principle. We find such a principléhi
realm of logic, and transfer it to our setting. In natural alettbn,
we distinguishintroduction rulesandelimination rules An intro-
duction rule specifies how to infer a proposition from its @am
nents; when read bottom-up, it decomposes the proposifan.
example, the introduction rule for the conjunctidn« B decom-
poses it to the goals of proving andB. Therefore, a rule that
checks atermgainstA « B using an introduction rule will be mode
correct.

N-e; | Aq e | Az I
F}—(e1,e2)lA1*A2 (*)

Conversely, an elimination rule specifies how to use thetfaatt
a certain proposition holds; when read top-down, it decasap@
proposition. For example, the two elimination rules for tom-
junction A « B decompose it té\ andB, respectively. Therefore,
a rule that infers a type for a term using an elimination ruiklve
mode correct.

FrefA«B gy 1EeTA*B b
I'-fstle) TA I'sndle) TB

If we employ this design principle throughout, the consioue
(corresponding to the introduction rules) for the elemeifis type
arechecked agains given type, while the destructors (correspond-
ing to the elimination rules) for the elements of a tygpmthesize
their type. This leads to the following rules for functiomswhich
rule (—I) checks againsh — B and rule (-E) synthesizes the
typeA — B of its subjecte; .

[xAfelB o TreTASB TrelA .
- FFee 1B

What do we do when the different judgment directions meet? If
we are trying to check | A then it is sufficient to synthesize a
typee T A’ and check thaA’ = A. More generally, in a system
with subtyping, it is sufficient to know that every value opgyA’
also has typé\, that is,A’ < A.

FFeTA’ THA'<A
TFel A

In the opposite direction, if we want to synthesize a typefout
can only checle against a given type, then we do not have enough
information. In the realm of logic, such a step would cormsp
to a proof that is not in normal form (and might not have the-sub
formula property). The straightforward solution would beatlow
source expressionig : A) via arule

el A
F-(e:A)TA

Unfortunately, this is not general enough due to the presefc
intersections and universally and existentially quardifieoperty
types. We discuss the issues and our solution in detail itic3et.
For now, only normal terms will typecheck in our system. Thes
correspond exactly to normal proofs in natural deductior dah
therefore already pinpoint where annotations will be resgliin
the full system: exactly where the term is not normal. Thik e
the case where destructors are applied to constructorsigthas
redexes) and at certaiet forms.

In addition we permit datatype$ with constructorsc(e) and
corresponding case expressiamasee of ms, where the match ex-
pressionsns have the fornt; (x1) = e1l...cn(xn) = en. The
constantg are the constructors amdsethe destructor of elements

(sub)

TypesA,B,C:=1|A —>B|AxB|[d

Termse:z=x|u|Ax.elejez|fixu. e
[Ol (er,ez)|fst(e) | snd(e)
| c(e) | casee of ms

Matchesms =" | ¢(x) = elms
Valuesv:=x|Ax.e| O | (v1,Vv2)
Eval. contextsE :=[] | E(e) | v(E)
[(E,e) | (v,E) |fst(E) | snd(E)
| c(E) | caseE of ms
e’ g e”
Ele’] — Ele”]
(Ax.e)v —=gr [v/x]e fst(vy,v2) —r Vi

fixu.e —r [fixu.e/ule snd(vi,v2) =R V2
casec(v) of ...c(x) = e... —r [v/x]e

Figure 1: Syntax and semantics of the core language
of type 6. This means expressionée) are checked against a type,

while the subject of @aasemust synthesize its type. Assuming con-
structors have typd — 6, this yields the following rules.

A6 Tk A [F
[— el 1) N'FeTd ThHmMms|sB (5E)
Ncle) | d ' casee of ms | B
c:A—>d TIxAkelB TFms|sB
'-1sB Nbc(x) = elms |5 B

We have elided here a syntactic condition that the left-tsiaes
of a caseexpression with subjeétcover all constructors for a type
5. Note that in the elimination ruleSt), we move frome T 6 to
x:A (which may be readTA), checking each branch agairist

In addition we have fixed points, which involve both direoto
to checkfix u.e | A, we assumeu:A (which should be readTA)
and checke againstA. Here we have a new form of variable
that does not stand for a value, but for an arbitrary termabse
the reduction form for fixed point expressions redufieat. e to
[fix u. e / u] e (the substitution ofix u. e for w in e). We do
not exploit this generality here, but our design is cleadpsistent
with common syntactic restriction on the formation of fixeargs
in call-by-value languages.

The syntax and semantics of our core language is given in&igu
1. A capitalE denotes an evaluation context—a term with a hole
[] representing the part of the term where a reduction may occur
The semantics is a straightforward call-by-value smapgormu-
lation. [e’/x] e denotes the substitution ef for x in e.

Figure 2 shows the subtyping and typing rules for the initiat
guage. The subtyping rules are standard except for therese
of the context”, used by the subtyping rules for index refinements
and index quantifiers, which we add in the next section. #em
must appear i, so {var) is a synthesis rule deriving T A. The
subsumption rulesgib) is an analysis rule deriving | B, but its
first premise is a synthesis rukeT A. This means botlA andB
are available when the subtyping judgmént< B is invoked; no
complex constraint management is necessary. For intrimughd
elimination rules, we follow the principles outlined aboviote
that in practice, in applications; ez, the functione; will usually
be a variable or, in a curried style, another applicatiomesiwe
synthesize types for these, e, itself needs no annotation.

Ours is not the only plausible formulation of bidirectioibal
Xi[26] used a contrasting style, in which several introdoicforms
have synthesis rules as well as checking rules, for example:

Fl—e1TA1 r}—EZTAz
I'-(er,e2) TA7 x Az

Xi's formulation reduces the number of annotations to Sortert;
for example, incase(x, y) of ... the pair(x,y) must synthesize,
but under our formulatiofix, y) never synthesizes and so requires
an annotation. However, ours seems to besdineplestplausible
formulation and has a clear logical foundation in the notéin-
troduction and elimination forms corresponding to corcttits and
destructors for elements of a type under the Curry-Howamshas-
phism. Consequently, a systematic extension should sudfiadd
further language constructs. Furthermore, any term in abfonm
will need no annotation except at the outermost level, scheels
need annotations in few places besides function definitionany
case, if a system based on our formulation turns out to bergzo
nient, adding rules such as the one above should not be tfifficu

3. PROPERTY TYPES

The types present in the language so far are tied to constsuct
and destructors of terms. For example, the tfpe» B is realized
by constructoAx. e and destructoe; ez, related to the introduction
and elimination forms of> by a Curry-Howard correspondence.

In this section we are concerned with expressing richergrop
ties of terms already present in the language. The only ehémg
the term language is to add typing annotations, discussgédation
4; otherwise, only the language of types is enriched:

Types A,B,C:=... |[6(1) |AAB|T|May.A
[AVB|L|Zay.A

The basic properties are data structure invariants, thaptéper-
ties of terms of the forna(e). All other properties are independent
of the term language and provide general mechanisms to cembi
simpler properties into more complex ones, yielding a venyegal
type system. In this paper we do not formally distinguishieen
ordinary types and property types, though such a distindtias
been useful in the study of refinement types [11, 10].

Our formulation of property types is fully explained andtjus
fied in [9] for a pure type assignment system; here, we focus on
the bidirectionality of the rules. We do not extend the opereal
semantics: it is easiest to erase annotations before éxgdbe
program. Hence, type safety follows directly from the refaithe
type assignment system [9].

3.1 Intersections

A valuev has typeA A B if it has typeA and typeB. Because
this is an introduction form, we proceed biieckingv againstA
andB. Conversely, ife has typeA A B then it must have both type
A and typeB, proceeding in the direction of synthesis.

r-viA Tkv|B
r-vIAAB

F-eTAAB F-eTAAB
TFel A T-elB

While these rules combine properties of the same term (aand ar
therefore not an example of a Curry-Howard correspondetice)
erasure of the terms still yields the ordinary logical rui@scon-
junction. Therefore, by the same reasoning as for ordingrgs,
the directionality of the rules follows from logical priqdes.

Usually, the elimination rules are a consequence of theypubt
ing rules (via the qub) typing rule), but once bidirectionality is
enforced, this is not the case and the rules must be takerinas pr
itive. Note that the introduction formyI) is restricted to values
because its general form for arbitrary expressiemns unsound in
the presence of mutable references in call-by-value lagegif7].

(A

(A1) (AE2)

FBicAi TEA:<By @ FFAISB TrA <Bs)
r}—A1HA2§B]*}BZ r|—1§1 r}—A1*A2§B1*Bz r}—5§5
F(x):A() xAkelB) 'e1 TA— B FFeZJ,A(B
TExTA Y TExxelAB " FFeies]B -
FeTA THA<B Mu) =A NwAblelA
TFelB (sub) 7 A (fixvan) e A ()
kel LAT The | A el AxB FFelAxB
I B) —— T Ry —
TFea e lAem PV Trmtora 5 Trsnde1s 2 Fropz @
ciAo8 ThelA o Thefs TrmslB o C:A =8 TxAklelB TFmslsB
NFc(e) |6 ' caseeof ms | B (5F) '--1sB NFc(x) = elms s B

Figure 2: Subtyping and typing in the core language

The subtyping rules for our system are designed followirey th
well-known principle tha’A < B only if any (closed) value of type
A also has typ®. Thus, whenever we must check if an expression
e has typeB we are safe if we can synthesize a typandA < B.
The subtyping rules then naturally decompose the strucifire
andB by so-calledeft andright rules that closely mirror the rules
of a sequent calculus. In fact, ignorifgfor now, we can think
of subtyping as a single-antecedent, single-succedent édrthe
sequent calculus.

r'rA<B; THA<B;
''-A<Bi AB;
r-A; <B '-A; <B
r'-A; ANA, <B r'-A; ANA, <B
We omit the common distributivity rule relating intersectiand

function types, which is unsound with mutable referencésfid
does not directly fit into the logical pattern of our rules.

(AR)

(ALy) (AL2)

3.2 Greatest Type

A greatest typel can be thought of as the 0-ary form of inter-
section {\). The rules are simply
vt D ezt (TR
There is no elimination or left subtyping rule far. Its typing
rule is a 0-ary version of/I), and the value restriction is also re-
quired [9].

3.3 Refined Datatypes

In our system, each datatype is refined as in [6, 8, 9] by an
atomic subtypingelation < overdatasortsd. Each datasort iden-
tifies a subset of values of the forafv). For example, datasorts
true andfalse identify singleton subsets of values of the tyel.

We further refine datatypes by indices drawn from some caimstr
domain, exactly as in [9] which closely followed Xi and Pfen-
ning [28], Xi [26, 27], and Dunfield [8]. The typ&(i) is the type
of values having datasostand indexi.

To accommodate index refinements, we exterd allow index
variablesa, b and proposition® as well as program variables. Be-
cause the program variables are irrelevant to the index ohonwa
can define @estriction functior” that yields its argumerit without
program variable typings (Figure 3). No variable may be atex
twice inT', but ordering is now significant because of dependencies.

Our formulation, like Xi's, requires only a few propertiebtbe
constraint domain: There must be a way to decide a conseguenc
relationT = P whose interpretation is that given the index variable
typings and propositions Ii, the propositior? must hold. Because

Pou= Lli=jl... xA =T
= . |xA|Tay|TP Tay =T, ay
TP =T,P

Figure 3: Propositions P, contextsI", and the restriction func-
tion T

we have both universal and existential quantifiers over efgsof
the constraint domain, the constraints must remain delg@dalthe
presence of quantifiers, though we have not encounteredifiean
alternations in our examples. There must also be a relatidn
denoting index equality, and a judgmént- 1 : y whose interpre-
tation is thati hasindex sorty in T'. Note the stratification: terms
have types, indices have index sorts; terms and indicesstiea.
The proof of safety in [9] requires that be a consequence rela-
tion, that= be an equivalence relation, thd¢ |, and that= and

F have expected substitution and weakening properties [8].

Each datatype has an associated atomic subtyping relation o
datasorts, and an associated sort whose indices refinettitgma
In this paper, the only index sort is the natural numbersvith =
and the arithmetic operations, —, . ThenT = P is decidable
provided the equalities iR are linear.

We add an infinitary definite typdaxy. A, introducing an index
variable a universally quantified over indices of sart One can
also viewTT as a dependent function type on indices (instead of
arbitrary terms).

Example. Assume we define a datatype of integer lists: a list is
eitherNil () or Cons(h,t) for some integeih and listt. Refine
this type by a datasordd if the list's length is odd, by a datasort
even if itis even. We also refine the lists by their length,ibhas
typel — even(0), andCons has type(TTa:N . int x even(a) —
odd(a + 1)) A (TTa:NV.int x odd(a) — even(a + 1)). Writing
Nil () asNil, the function

fix repeat Ax.
casex of Nil = Nil | Cons(h,t) = Cons(h,Cons(h,repeaft)))

checks againdia: V. list(a) — even(2 * a).
The subtyping rule for datatypes checks the datagqrts, and
(separately) the indicesj:
83162 ThHi=j
I'E01(1) <02(3)

(®)

To maintain reflexivity and transitivity of subtyping, wequdre
=< to be reflexive and transitive.

We assume the constructarsare typed by a judgmerit - ¢ :
A — 0(i) whereA is any type and(i) is some refined type.
Now, however, the typd — &(i) need not be unique; indeed, a
constructor should often have more than one refined typerdibe
for constructor application is

TFc:A—=58(i) TrelA (6D
I'Ec(e) | 6(1)
To derivel’ - casee of ms | B, we check that all the matches in

ms check againgB, under a context appropriate to each arm; this is
how propositiond arise. The context may be contradictoryi{ =

1) if the case arm can be shown to be unreachable by virtue of the

index refinements of the constructor type and the case subjec
order to not typecheck unreachable arms, we have
TeE L

m (contra)

We also do not check case arms that are unreachable by virtue

of thedatasortrefinements. For a complete accounting of how we
type caseexpressions and constructors, see [8].
The typing rules fofT are

NaykFv]A I F'eTMay.A Thri:y

Fl—vlﬂazy.A() 'eT[i/aA

By our general assumption, the index variabl@dded to the
context must be new, which can always be achieved via remamin
The directionality of these rules follows our general sche#s for
intersections, the introduction rule is restricted to ealin order to
maintain type preservation in the presence of effects.

One potentially subtle issue with the introduction rule hatt
v cannot reference in an internal type annotation, because that
would violatex-conversion: one could not safely renamé& b in
Mary. A, which is the natural scope af We describe our solution,
contextual typing annotationg Section 4.

The subtyping rules foT are

F'Fi/a]A<B TFri:y NboyFA<B

'ETlay.A <B 'HA <Tlb:y.B

The left rule allows one to instantiate a quantified indexalze
a to an indexi of appropriate sort. The right rule states that if
A < B for an arbitraryb:y thenA is also a subtype dfib:y. B. Of
courseb cannot occur free ir.

As written, in (TL) and (TE) we must guess the indéxin prac-
tice, we would plug in a new existentially quantified indexiva
able and continue, using constraint solving to deterniinghus,
even if we had no existential typésin the system, the solver for
the constraint domain would have to allow existentially mfifeed
variables.

3.4 Indefinite Property Types

We now have a system with definite typ&s T, TT. The typing
and subtyping rules are both orthogonal and internally leggmo
rule mentions bothl and A, (T1) is a 0-ary version ofAI), and
so on. However, one cannot express the types of functiorts wit
indeterminate result type. A standard example isfilter function
on lists of integersfilter f 1 returns the elements affor which f
returnstrue. It has the ordinary typélter : (int—bool) — list —
list. Indexing lists by their length, the refined type should Itikk&

(TTE)

(L) (MR)

filter : TV (int—bool) — list(n) — list(__)

To fill in the blank, we add dependent suma:y. A, quantifying
existentially over index variables, as in [28, 26]. Then \ae ex-

press the fact thdilter returns a list of some indefinite length as
follows™:

filter : TIn:A. (int—bool) — list(n) — (Zm:N. list(m))

For similar reasons, we also occasionally would like unigmes
and the empty type, which should also be considered indefinit
We discuss unions first.

On values, the binary indefinite type is simply a union in the
ordinary sense: i : A V B then eitherv : A orv : B. The
introduction rules directly express the simple logicaémptetation,
again using checking for the introduction form.

el A el B
TFelAVB TFelAVB

No restriction to values is needed for the introductiong, tu-
ally to intersections, the elimination must be restrictédsound
formulation of the elimination rule in a type assignmentnfoj9]
without a syntactic mark@requires an evaluation contekaround
the subterm of union type.

(V1) (VI12)

x:AFE[X:C
F'-e’:AVB TyBFEy]:C
I'-Ele’]:C

This is where the “third direction” is necessary. We no lange
move from terms to their immediate subterms, but when typeich
ing e we may have to decompose it into an evaluation coriextd
subterme’. Using the analysis and synthesis judgments we have

NxAFEKX |C
'-e’TAVB TuyBFE C
e’ T 'y vl | (VE)
I'-Ele’] | C

Here, if we can synthesize a union type tdr—which is in eval-
uation position inE[e’]—and checkE[x] and E[y] againstC, as-
suming thatx andy have typeA and typeB respectively, we can
conclude that[e’] checks agains€. Note that the assumptions
x:A andy:B can be read asTA andyTB so we do indeed transi-
tionfrom_T AV Bto_T A and_ T B. While typechecking still
somehow follows the syntax, there may be many choicds arfid
e’, leading to excessive nondeterminism.
The subtyping rules are standard and dual to the intersectio
rules.
r-A; <B THA; <B
''-A; VA, <B
I'-A <Bj '-A <B,
'-A<B; VB ''-A<B; VB,
The O-ary indefinite type is the empty or void type it has no
values and therefore no introduction rules. For an elinonatule
(LE), we proceed by analogy with/E):
e’ 71 (LE)
F'FEe']]C
As before, the expression must be an evaluation coritexith e’

in evaluation position. Fof we had one right subtyping rule; for
L, following the principle of duality, we have one left rule:

(VL)

(VRy) (VR2)

1The additional constrainii < n could be expressed bysabset
sort[27, 26].

%pierce [17] used an explicit markeasee’ of x = e as the union
elimination form. This is technically straightforward baitheavy
burden on the programmer, particularly as markers would lads
needed to eliminat& types, which are especially common in code
without refinements; legacy code would have to be extensivel
“marked” to make it typecheck.

i<t

For existential dependent types, the introduction rulsgmés no
difficulties, and proceeds using the analysis judgment.
el [i/a]A Thrki:y
kel Zay.A
For the elimination rule, we follow\(E) and (LE):
e’ TZary.A Tay,xAFEKX |C
I'~Ele’]|C
Again, there is a potentially subtle issue: the index vaeiab
must be new and cannot be mentioned in an annotati@n in
The subtyping fo is dual to that of T.
NayFA<B 'FA<LA/BIB Thi:y
N-Zary.A<B '-A<Zxby.B

(D)

(ZE)

(ZL) (ZR)

3.5 Properties of Subtyping

Our subtyping rules are the same as in [9] except for the iaddit
of productsA « B. Since the premises are smaller than the con-
clusion in each rule, and we assume decidability for the tcaims
domain, we immediately obtain thit- A < B is decidable. Re-
flexivity and transitivity are admissible, which follows itgi eas-

ily [9].
3.6 The Tridirectional Rule

ConsideringLE to be the 0-ary version of th&E for the binary
indefinite type, what is the unary version? Itis:

e’ TA T xAFEKX]C
I-tele’l| C
One might expect this rule to be admissible. However, duédo t

restriction to evaluation contexts, it is not. As a simplareple,
consider

append : TTa:N.list(a) — TTb:A . list(b) — list(a + b)
filterpos : TN list(n) — Zm:N. list(m)
F filterpos|...] T TmN. list(m)
Goal: I/ append42] (filterpos]...]) | Zk:N.list(k)

where[42] is shorthand folCons(42, Nil) and|...] is some literal
list. Here we cannot derive the goal, because we cannoiinte

the k on the type checked against. To do so, we would need to
introduce the index variablew representing the length of the list
returned byfilterpos|. . .], and usem + 1 for k. Butfilterpos|.. .]

is not in evaluation position, becaus@pend[42] will need to

be evaluated first. Howeveappend[42] synthesizes only type
TTb:N . list(b) — list(1 + b), so we are stuck. However, using
rule (direct) we reduce

append[42] (filterpos|...]) | Zk:N . list(k)

(direct)

to
x : TTb: A list(b)—list(1+b) F x (filterpos|...]) | Zk:N. list(k)

Sincex is a value(filterpos|. . .]) is in evaluation position. Apply-
ing the existential elimination rule, we need to derive

x:TTb: M. list(b)—list(14+b), m:A, y:list(m) = xy | ZkN. list(k)

Now we can complete the derivation withI), using1 + m for k
and several straightforward steps.

4. CONTEXTUALTYPING ANNOTATIONS

Our tridirectional system so far has the property that oaiyns
in normal form have types. For exampl@x. x) () neither synthe-
sizes nor checks against a type. This is because the furpsitof

an application must synthesize a type, but there is no ruldxoe
to synthesize a type.

But annotations are not as straightforward as they mighhsee
In our setting, two issues arise: checking against intéiees; and
index variable scoping.

4.1 Checking Against Intersections

Consider the following function, which consé2 to its argu-
ment.

cons42= (Ax. (Ay.Cons(42,x))) : (odd — even) A (even — odd)

This does not typecheckdy. Cons(42,x) needs an annotation.
Observe that by rule/I), cons42will be checked twice: first
againstodd — even, then againséven — odd. Hence, we can-
not write (Ay. Cons(42,x)) : (1 — even)—itis correct only when
checkingcons42againsiodd — even. Moreover, we cannot write

(Ay.Cons(42,x)) : (1 — even) A (1 — odd)

We need to us& — even while checkingcons42againstodd —
even, and1l — odd while checkingcons42againsteven — odd.
Exasperatingly, union types are no help hegigy. Cons(42,x)) :
(1 — even) V (1 — odd) is a value of typel — even or of type
1 — odd, but we do not know which; followindVE), we must
suppose it has typg — even and then check its application i
and thensuppose it has typg# — odd and check its application
to 1. Only one of these checks will succeed—a different one, de-
pending on which conjunct dfodd — even) A (even — odd)
we happen to be checkirgpns42against—but according to/E)
both need to succeed.

Pierce [16] and Reynolds [19] addressed this problem bwvallo
ing a function to be annotated with a list of alternative typne
typechecker chooses the right one. Davies followed thiscamh
in his datasort refinement checker, allowing a term to be t@ted
with (e : A, B,...). Inthat notation, the above function could be
written as

cons42 = (Ax. ((Ay.Cons(42,x)) :1— even,1 — odd) ()
: (odd — even) A (even — odd)

Now the typechecker can chooke- even when checking against
1 — odd. This notation is easy to use and effective but intro-
duces additional nondeterminism, since the typechecket guess
which type to use.

4.2 Index Variable Scoping

Some functions need type annotations inside their bodied) s
as this (contorted) identity function on lists.

id = Ax. Az.x)O : TTa:N.list(a) — list(a)

In a bidirectional system, the function part of an applimatmust

synthesize a type, but we have no rule to synthesize a typeXNor
abstraction. So we need an annotatior{®dn x). We need to show
that the whole application checks agailist(a), so we might try

Az.x : 1= list(a)

But this would violate variable scopingx-convertibility dictates
thatTTa:N . list(a) — list(a) andTTb:N . list(b) — list(b) must
be indistinguishable which would be violated if we perndtte

Ax. (Az.x) : 1= list(a)) O | TTa:N. list(a) — list(a)
but not

Ax. (Az.x) : L= list(a)) O | TTb:N . list(b) — list(b)

Xi already noticed this problem and introduced a term-leel
straction over index variabled,a.e, to mirror universal index quan-
tification TTary. A [26]. But this violates the basic principle of
property types that the term should remain unchanged, dlsd fa
in the presence of intersections. For example, we wouldabtpe
reverse function on listsgv, to satisfy

rev : (TTaN.list(a) — list(a))
A ((Zb:N.list(b)) — Zc:N. list(c))

but the first component of the intersection would demand a-ter
level index abstraction, while the second would not tokemte.

4.3 Contextual Subtyping

We address these two problems by a method that extends and

improves the notation of comma-separated alternatives.€8ken-
tial idea is to allow a context to appear in the annotationgiwith
each type:

e = ...l(e:TMFA., ...,ThFAL)

where each conteXi. declares the types of some, but not necessar-
ily all, free variables ire.

In the first approximation we can think of such an annotated te
as follows: ifly Fe | AxthenT - (e: Th F Ay, ..., Th F
An) T Ax if the current assumptions invalidate the assumptions
in T. For example, the second judgment below is not derivable,
sincex:odd does not validate:even (becausedd £ even).

x:even - ((Ay. Cons(42,x)) : x:even - 1 — odd,
x:odd -1 — even) T1— odd

x:odd t/ ((Ay.Cons(42,x)) : x:even - 1 — odd,
x:odd -1 — even) T 1 — odd

In practice, this should significantly reduce the nondebeism
associated with type annotations in the presence of intiéose
However, we still need to generalize the rule in order to extiy
handle index variable scoping.

Returning to our earlier example, we would like to find an anno
tationAs allowing us to derive

FAx. ((Az.x) : As) O | TTa:N . list(a) — list(a)
The idea is to use a locally declared index variable (Heye,
Ax. (Az.x) : (b:N, x:list(b) = 1 — list(b)))

to make the typing annotation self-contained. Now, when heck
if the current assumptions farvalidate local assumption for, we
are permitted to instantiate to any index object. In this exam-
ple, we could substitute for b. As a result, we end up checking
(Az.x) | 1 — list(a), even though the annotation does not men-
tion a. Note that in an annotatioa : (Iy = Ao), As, all index
variables declared ifiy are considered bound and can be renamed
consistently ify andA,. In contrast, the free term variableslin
may actually occur i and so cannot be renamed freely.

These considerations lead te@ntextual subtypingelation <:

(ThFAp) S (THA)

which is contravariant in the contexts andT". It would be covari-
antinA, andA, except that in the way it is invokedy, Ao, and
" are known andA is generated as an instanceAf. This should
become more clear when we consider its use in the new typlag ru

(ToFAo) S (THA) l'-elA

~

I+ (e: (ro I—Ao),AS) TA

(ctx-anno)

Typings As:=TFA | TFA, As
Termse:=... | (e: As)
Valuesvi=...|(v:As)

Eval. contextst :=... | (E: As)

Figure 4: Language additions for contextual typing annotatons

(FA < (TFA) (S-empty)

THityo ([i/dToF[i/a]Ae) S (THA)
((ltyo,ro FA()) 5 (FFA)

(S-ivar)
FeP (LFA) < (MHA)
(PToFAg) S (THA)

~

(S-prop)

I'ET(x) <Bo (ToFAo) < (THA)

(XtBo,ro FA()) < (FFA)

~

(S-pvar)

Figure 5: Contextual subtyping

where we regard the annotations as unorderedi{se A, could
occur anywhere in the list). In the bidirectional styllge, Iy, Ao
andAs are known when we try this rule. While finding a derivation
of (o F Ap) < (I''+ A) we generaté, which is the synthe-
sized type of the original annotated expressipif in fact e checks
againstA. Itis also possible thatly - Ap) < (I' F A) fails to
have a derivation (whef, andT™ have incompatible declarations
for the term variables occurring in them), in which case wedi®
try another annotatiofi’c - Ay).

The formal rules for contextual subtyping are given in Fegar
Besides the considerations above, we also must make stigantha
possible assumptior® about the index variables iy are indeed
entailed by the current context, after any possible sultiit has
been applied (this is why we travergefrom left to right).

While the examples above are artificial, similar situatianise
in ordinary programs in the common situation when local fiamc
definitions reference free variables. Two small examplethisf
kind are given in Figure 6 presented in the style of ML; we have
omitted the evident constructor types and, following tlaglition of
implementations such as Davies’, written typing annotetimside
bracketed comments.

The essence of the completeness result we prove in Secfon 4.
is that annotations can be added to any term that is well typed
in the type assignment system to yield a well typed term in the
tridirectional system. For this result to holg; must be reflexive,
(THA) < (' A). Furthermore, in a judgment

F}—(e:(l"l |‘A1,...,rn|_An))TA

we must be able to consistently rename index variablds, iall
I, ande. This different treatment of index variables and term
variables arises from the fact that index variables are ciesisul
with property types and so do not appear in expressions, ianly
types.
Reflexivity (together with propes-conversion) issufficientfor
completeness: in the proof of completeness, where wé see :
A we can simply add an annotatidfi - A). But it would be
absurd to make programmers type in entire contexts—not isnly
the length impractical, but whenever a declaration is adeledy
contextual annotation in its scope would have to be changed!
Reflexivity of < follows easily from the following lemma.

LEmMMA 1. (I FA) < (IM, T2 FA).

true < bool, false <bool even =X nat, odd =< nat

evenlist < list, oddlist <list, emptylist < evenlist

eq: (even x odd — false)
A (odd * even — false)
A (nat x nat — bool)

(x[member. (even x oddlist — false)
A (odd x evenlist — false)
A (nat x list — bool) %)
fun member(x, xs) =
(x[mem: x:even I (evenlist — bool) A (oddlist — false),
x:odd F (evenlist — false) A (oddlist — bool),
x:nat F natlist — bool]x)
let fun memxs =
casexs of Nil = False
| Cons(y,ys) = eqx,y) orelsememys
in memxs end

(+[append: TTa:N . TTb:N. list(a) * list(b) — list(a + b) 1)
fun append(xs,ys) =
(x[app: c:NV,ysilist(c) F TTa:N. list(a) — list(a +c)]x)
let fun appxs = casexs of Nil = ys
| Cons(x,xs) = Cons(x, appxs)
in appxs end

Figure 6: Example of contextual annotations

PrROOF By induction onl. [

COROLLARY 2 (REFLEXIVITY). (THA) < (THA).

4.4 Soundness
Let|e| denote the erasure of all typing annotations fram

THEOREM3 (SOUNDNESS TRIDIRECTIONAL). If T'F e T
AorTke | Athenl|e|: A.

PROOF By straightforward induction on the derivation[]

4.5 Completeness

We cannot just take a derivatidh- e : A in the type assignment
system and obtain a derivatidh - e T A in the tridirectional
system. For examplé; Ax.x : A — A for any typeA, but in the
tridirectional systenix. x does not synthesize a type. However, if
we add a typing annotation, we can derive

FMxx:(FA—SA)TA-A

Clearly, the completeness result must be along the lineff ¢f i

e : A, then there is an annotated versiehof e such thatl" +

e’ T A” To formulate this result (Corollary 12, a special case of
Theorem 11) we need a few definitions and lemmas.

DEFINITION 4. A term is insynthesizing fornif it has any of
the formsx, ejez, u, (e: As), fst(e), snd(e).

DEFINITION 5. e’ extendsa terme, writtene’ J eiffe’ ise
with zero or more additional typing annotations aadcontains no
type annotations on the roots of terms in synthesizing form.

DEFINITION 6. e’ lightly extendsa terme, writtene’ J, e iff
e’ is e with zero or more typing annotations added to lists of typing
annotationsalready preserin e. That is, we can replacge : As)
with (e : As, A’), but cannot replace with (e : A’).

PropPoOSsITION 7. J andJ, are reflexive and transitive.

PrRooF Obvious from the definitions. [J

LEMMA 8. If e value ande’ 1 e thene’ value.

PROOF. By a straightforward induction oa’ (in the base case,
making use ofv : As) value). [

LEMMA 9 (LIGHT EXTENSION). Ife’ Jyethen(1)F Fe T
AimpliesT e’ TA, (2T e | AimpliesT e’ | A.

PROOF By induction on the derivation of the typing judgment.
All cases are straightforward: eitheande’ must be identical (for
instance, for 1I)), or we apply the IH to all premises, which leads
directly to the result. (I

Recall that the rule/AI) led to the need for more than one typ-
ing annotation on a term. It should be no surprise, then, ttreat
(AI) case in the completeness proof is interesting. Applyirgg th
induction hypothesis to each premise A, v : B yields two pos-
sibly differentannotated terms) andvg such thatvy | A and
vg | B. But given a notion ofmonotonicityunder annotation, we
can incorporate both annotations into a singlesuch that’ | A
andv’ | B. However, the obvious formulation of monotonicity

If e | Aande’ Jethene’ | A

does not hold: given a list of annotatioAs the type system must
use at least one of them—it cannot ignore them all. Thusg) :
(F T)) | 1is not derivable, even though () | 1is derivable and
(O :(F T)) I O. However, further annotating() : (- T)) to
(O : (F T),(F 1) yields a term that checks against bdthand
1. Note that this further annotation was light—we added angpi
to an existing annotation. This observation leads to Lemfna 1

LEMMA 10 (MONOTONICITY UNDER ANNOTATION).

(1) fr-e| Aande’ 3
re” | A.

e then there exists” J; e’ such that

(2) IfT e T Aande’ O e then there exists” J; e’ such that

Te” TA.

PrROOF By induction on the typing derivation.]

THEOREM11 (COMPLETENESS TRIDIRECTIONAL). IfT"
e:Aande’ Jethen

(i) there existe; suchthate; J e’ andlN-ey | A

(i) there existee) such thatey Je’ andl'-ef TA

PrROOF By induction on the derivationdf-e: A. O

COROLLARY 12. If T - e : A then there existg’ 1 e such
thatT - e’ | A and there exists’”” J e suchthat" - e’ T A.

5. THELEFTTRIDIRECTIONALSYSTEM

In the simple tridirectional system, the contextual rulestaghly
nondeterministic. Not only must we choose which contextuls
to apply, but each rule can be applied repeatedly with theesam
contextk; for (direct), which does not even break down the type of
e’, this repeated application is quite pointless. The systethis

Subtyping THA <B Simple tridirectional checking T'He | A
Contextual subtyping (To-Ay) < (THA) Simple tridirectional synthesisT" e T A

Constraint satisfaction T = P Left tridirectional checking T;A e [A

Index expression sort.ing Thi:y Left tridirectional synthesis T;A e T A
Data constructor typing T'c: A — §(1) A appear linearly i Al-e

—and in evaluation positionia Al e

Figure 7: Judgment forms appearing in the paper

Rules of the simple tridirectional system absent iRules new or substantially altered in the left tri-
the left tridirectional system: directional system:

FXATXTL A o)

e’ not a linear var

Fr'-e’TA T xAFEX |C AT e TLA T;A2,%AFERX | C)
- (direct) y (directlL)
F'FE[']]C AL, A FE] L C
ke’ 71 AXLIFe
— — (p) | _AXxllFe
F'~Ele'l] C (LE) AXLEe | C (L)
NxAFEKX |C
F}—e’TA\/B F,y:BI—E[y]iC A XA - C 'A.XB F C
- (\/E) WA e %]L AL X e l]L (\/]L)
I'-Ele]l] C MAXAVBERe L C
FFe' TZay.A Tavy,xAFEKX |C () Nay;A%xA e | C L
I'-Ele’l| C MAXZay.AkFelLC (21)
HAXARe L C HMAXBEe [C

T;AXAABFelL C (AL1) T;AXAABFe L C (AL2)

THi:y TAXG/aAFe|LC
A XIMay.Ate | C

(L)

Rules of the left tridirectional system identical to the pletridirectional system, except for the linear contexts

I'x)=A (var) xA;-FelB) NAikFer TA—B F;AzFezlA(B)
FxTAY T AxelA—B " TiA1, A Feres B -
MAFeTA FFASB(b) MNu)=A (f) MwA;-Fel A (fix)

rAFelB S T UTA Y fixw e LA WS
A F A A F A A AxB A AxB
an DA er | A s Axep | 2y B el Ax (+E1) ; el Ax (+E2)
rn-F0O11 A, Ax b (er,e2) L A x Az AR fstie) TA At sndle) TB
Thc:A = 62(1) NE62(1) <61(3) MAFe | A TEL Ale
- (1) (contra)
TAFcle) 1610) TAFelA
MMAFeTO8(1) T;-Fms[s54) B SE
'y A+ casee of ms | B (3E)

AlFv MAFEV A MAFvV|B MAFeTAAB MAFeTAAB
F;AI—VLT(I) TAFv]AAB (AD) TAFeT A (AE1) MAFeTB (AE2)
Navy,AFv | A A eTTTay. A FFi:y(ﬂE) MAFelli/aJA Tri:y 51
F;Al—vlﬂa:y.A() MAFeT[i/alA MNAte| Zay. A (1)

A A A B oA S(THA -el A
ArelA ArelB (T F Ao) 5 (TFA) LA ctxeanno)

NAFe AV B NAFe | AV B Tt (e:(To F Ao),As) T A

Figure 8: The left tridirectional system, with the part of th e simple tridirectional system (upper left corner) from which it substan-
tially differs. The figure also summarizes the simple tridirectional system: The complete typing rules for the simple idirectional
system can be obtained by removing the second contet, including premises of the formA I+ e, from the lower rules, along with
the rules in the upper left corner. Hence the subscriptgy, |1 are elided.

/" Thm.11 \ /" Thm. 20 \

| v | Y
I'kElel: A '-eTA NMAFeTL A
kel A MAFe L A
Type Simple Left
assignment tridirectional tridirectional
system [9] system system

_Thm.3 / _Thm. 18 /

Figure 9: Connections between our type systems

section has only one contextual rule and disallows repeset-
cation. Inspired by the sequent calculus formulation oftfBaera
et al. [2], it replaces the contextual rules with one contaktule
(directlL), closely corresponding talirect), and severaleft rules
shown in the upper right hand corner of Figure 8. In combamati
these rules subsume the contextual rules of the simpleeciitbnal
system.
The typing judgments in the left tridirectional system are

MAFeTL A MAFe LA

whereA is alinear contextwhose domain is a hew syntactic cate-
gory, thelinear variablesX,y and so forth. These linear variables
correspond to the variables introduced in evaluation fosih the
(direct) rule, and appear exactly once in the tegrin evaluation
position. We consider these linear variables to be valiles okdi-
nary variables.

The rule @irectlL) is the only rule that adds to the linear context,
and is the true source of linearity.appears exactly once in evalu-
ation position inE[X]. It requires that the subterai being brought
out cannot itself be a linear variable, so one cannot bringderm
more than once, unlike withd{rect).

To maintain linearity, the linear context is split among tsuins.
For example, in£I) (Figure 8), the contexfA = Ay, A, is split
betweene; ande,. To maintain the property that linear variables
appear in evaluation position, in rules such-ad] that type terms
that cannot contain a variable, the linear context is empty.

After some preliminary definitions and lemmas, we prove that
this newleft tridirectional systems sound and complete with re-
spect to the simple tridirectional system from Section &¢e(8lso
Figure 9).

DEFINITION 13. Let FLV(e) denote the set of linear variables
appearing free ire. Furthermore, letA I+ e if and only if (1) for
everyX e dom(A), X appears exactly once iy and (2) FLMe) C
dom(A). (Similarly define FLVms) andA I- ms.)

PROPOSITION14 (LINEARITY). If T5A e Tp Cor A -
e lr CthenA IF e. Similarly, if;A - ms |5 C thenA |- ms.

PROOF By induction on the derivation. Fotkdntra), (T1),
(LLL), use the appropriate premise]

DEFINITION 15. Let A I+ e if and only if (1) for everyx «
dom(A), there exists aft such thate = E[X] andX ¢ FLV(E), and
(2) FLV(e) € dom(A). (It is clear thatA II- e impliesA I+ e.)

LEMMA 16. If D deriveslT;A+ e T, CorT;A e |1, Cby
arule RandA II- e, then for each premisB’; A’ e’ Ty, C' or
I'A"Fe’ |L C'ofR,itisthe case that’ Il e’.

PrROOF Straightforward. [

10

5.1 Soundness

DEFINITION 17. Arenamingp is a variable-for-variable sub-
stitution from one set of variableddm(p)) to another, disjoint set.

When a renaming is applied to a teriple, it behaves as a substi-
tution, and can substitute the same variable for multiphéatdes.
Unlike a substitution, however, it can also be applied totexts.
A renaming from linear variables to ordinary program vaesab
p = x/X,..., may be applied to a linear conteAt [p]A yields
an ordinary context by renaming all variables in dom). In the
other direction, a renaming from ordinary program variables to
linear variables may be applied to an ordinary confexp]T" yields
a zoned context’; A, where donil’’) = dom(T") — dom(p) and
dom(A) is the image op onT restricted to dorfp).

THEOREM18 (SOUNDNESS LEFTRULE SYSTEM). If pre-
names linear variables to ordinary program variables and\ +
e T C(resp.T;A e | C)andA IIF e anddom(p) D dom(A),
thenT, [p]A [ple T C (resp.T, [p]A [ple | C).

The conditionA II- e is trivially satisfied ifA = - ande contains
no linear variables, which is precisely the situation fog thhole
program.

PROOF. By induction on the typing derivation. We use Lemma
16 to satisfy the linearity condition whenever we apply the |
Most cases are completely straightforward, except forthesmot
present in the simple tridirectional system.

For (var), it is given that donip) © dom(A), so we can apply
(var). For (irectL), use the IH on the first premise, ketbe new,
and use the IH on the second premise with the renamjirgXx; ap-
ply properties of substitution and weakening to yield datitns to
which (direct) can be applied. For the left rules, use a different re-
namingp, x’ /X wherex’ is new for each premise, then apply the IH
to yield derivation(s) typindp, x’/X] E[X] (by A IIF e, e = E[X]).
Use {sar) to obtain a typing ofp]X. Finally, apply the correspond-
ing tridirectional rule, such asAEt) for the (VL) case. [

5.2 Completeness

We now show completeness: If a term can be typed in the sim-
ple tridirectional system, it can be typed in the left tragditional
system. First, a small lemma:

LEMMA 19. If ;XA + X T, B andT;AX:B e |1, C then
MAXAFe |1 C.
PrROOF By induction on the first derivation.[]

THEOREM20 (COMPLETENESSLEFTRULE SYSTEM). Ifp
renames ordinary program variables to linear variables dnd-

e T C(resp.T' e | C)andA IIF [ple where[p]l = T'’; A, then
[pIT" = [ple To C (resp.[p]l" - [ple |1 C).

PrROOF By induction on the typing derivation. Most of the
cases can be handled as follows: Restwith variables appearing
in subterms ot (if any). Apply the IH to all premises. Reason that
if p’ is a restriction op to a subterne’, then the result of applying
the IH—namely[p’IT" - [p’le’ | A—implies[p]T [ple’ |1 A.
Finally, reapply the original rule.

However, this fails for the rules that are absent or modifietthé
left tridirectional system: direct), (LE), (VE), (£E). In each of
the cases for these rules, there are two subcases:

¢ If the subterme’ is not a variable renamed Ilpy then we ap-
ply the IH to the premise typing’, make a new linear vari-
ablex, apply the IH to the contextual premises as needed, ap-
ply the corresponding left rule (or do nothing in thiréct)
case) to shovk[X] |1 C, then apply directlL).

e If ¢’ isavariable in dorfp), we apply the IH to all premises,
apply the corresponding left rule (or do nothing in thiadct)
case), then use Lemma 19[]

5.3 Decidability of Typing

THEOREM 21. ;A + e |1 A is decidable.

PROOF We impose an ordet on two judgments/; = T; A
e1 [T ArandJ2 = T2;Az ez [T A2. When ordering terms, we
consider linear variables to be smaller than any other tefiongx-
ample,(X, e2) is smaller thar(y, e2)). When ordering types (that
is, type expressions), we consider all index expressiorsetof
equal size.

The order is defined as follows.

1. If e; is smaller thare; then77 < 7. If eq is the same size
ase;.

2. If the directions of the judgments differ, the synthesidg-
ment is smaller than the checking judgment. If the direction
are the same:

3. If both judgments are checking judgments d@ndis smaller
than A, thenJ; < J2. If both judgments are synthesis
judgments]y = T2, Ay = Az, Ay is as small as, or smaller
than, some type iifil’1; A1), andA; is larger thanA,, then
J1 < J2. Otherwise:

4. If the number of times any of the type constructets:, 1,
A, TI, T appear inA; is less than the number of times they
appear ilA; thenJ; < J>.

Now we show that for every rule, each premise is smaller than t
conclusion. For most premises, the first criterion aloneesake
premise smaller. The second criterion is fark). The third crite-
rion is needed for rules such ds1) and (TE). Note that a synthe-
sis judgment whose type expression becomes larger is @esid
smaller! Synthesis judgments eventually “bottom out” asuike
(ctx-anno) and &E;), in which the term becomes smaller, or at
rules {ar), (fixvar) or (var), where the type synthesized is taken
from " or A. Since all the type expressionsiinandA are finite,
there is no problem. The fourth criterion is for the left sylevhere
the term, direction, and type do not change.

The second premise oflifectlL) is smaller than its conclusion
because we consider linear variables to be the smalless tench
(directlL) does not permi¢’ to be a linear variable.]

5.4 Type Safety

If 5. F e | A inthe left tridirectional system, from Theorem
18 we know- + e | A. Then by Theorem 3, + |e| : A in our
type assignment system [9]. That is, type erasure sufficgstta
typing derivation in the type assignment system. It folldwsn
[9]'s Theorem 3, Type Preservation and Progress, fijagither
diverges or evaluates to a value of type

6. RELATED WORK

Refinements, intersections, unionsThe notion of datasort refine-
ment combined with intersection types was introduced b fhan
and Pfenning [11]. They showed that full type inference was d
cidable under the so-called refinement restriction by uséui-
nigues from abstract interpretation. Interaction witheef§ in a
call-by-value language was first addressed conclusivelpdyies
and Pfenning [7] who introduced the value restriction orrisg¢c-
tion introduction, pointed out the unsoundness of distiviity, and
proposed a practical bidirectional checking algorithm.

11

Index refinements were proposed by Xi and Pfenning [28]. As
mentioned earlier, the necessary existential quanfifikd to dif-
ficulties [26] because elaboration must determine the sobge
which is not syntactically apparent in the source prograrmacdk
dressed this by translating programs into a let-normal foefore
checking index refinements, which is akin to typecheckimgattig-
inal term in evaluation order. Because of the specific fornxitf
translation, our tridirectional system admits more praggaeven
when restricted to just index refinements and quantifiersielitee-
less, we conjecture that Xi's idea of traversing the entiegpmam
strictly in evaluation order is applicable in our signifitignmore
complex setting to eliminate the nondeterminism inheranthie
(directlL) rule; we plan to pursue this in further research.

Intersection types [4] were first incorporated into a pitian-
guage by Reynolds [19]. Pierce [17] gave examples of program
ming with intersection and union types in a pirealculus using
a typechecking mechanism that relied on syntactic markéhe
first systematic study of unions in a type assignment framiey&)
identified several issues, including the failure of typesprgation
even for the pur@-calculus when the union elimination rule is too
unrestricted. It also provided a framework for our more sgieed
study of a call-by-value language with possible effects.

Some work on program analysis in compilation uses intei@®ct
and union types to infer control flow properties [24, 15]. Bese
of the goals of these systems for program analysis and ddluwo
information, the specific forms of intersection and uniopey are
quite different from oursSoft typingsystems designed for type in-
ference under dynamic typing [3] are somewhat similar,vahg
intersection, union, and even conditional types [1]. Agdiue to
the different setting and goal, the technical realizatidfes sub-
stantially from our work.

Partial inference systems. Our system shares several properties
with Pierce and Turner®cal type inferencgl8]. Their language
has subtyping and impredicative polymorphism, making tigie
inference undecidable. Their partial inference strategformu-
lated as a bidirectional system with synthesis and checkidg-
ments, in a style not too far removed from ours. However, in
order to handle parametric polymorphism without using acal
methods such as unification, they infer type arguments ymnpail-
phic functions, which seems to substantially complicatétens.
Hosoya and Pierce [12] further discuss this style, pasitylits
effectiveness in achieving a reasonable number of anpaotati

Our system does not yet have parametric polymorphism. Prior
research, either with (in [26]) or without (in [7]) a synteadistinc-
tion between ordinary and property types, is not conclusi@w-
ever, the work on local type inference suggests that, at, Ipeefix
polymorphism in the style of ML should be amenable to a censis
tent treatment with bidirectional rules.

Principal typings. A principal typeof e is a type that represents
all types ofe—in some particular context A principal typing[13]

of e is a pair(I, A) of a context and a type, such thaj A) rep-
resents all pair§l’’, A’) such thatl'” e : A’. These defini-
tions depend on some idea of representation, which varies fr
type system to type system, making comparisons betweearnsgst
difficult. Wells [25] improved the situation by introducirggen-
eral notion of representation. Since full type inferencnsgin any
case unattainable, we have not investigated whether pehtip-
ings might exist for our language. However, the idea of assip

a typing (rather than just a type) to a term appears in our system
in the form of contextual typing annotations, enabling usdtve
some otherwise very unpleasant problems regarding theeszop
quantified index variables.

7. CONCLUSION

In [9], we developed a type assignment system with a richfset o
property type constructors. That system is sound in a stelroddi-
by-value semantics, but is inherently undecidable. Inghjser, by
taking a tridirectional version of the type assignment eystwe
have obtained a rich yet decidable type system. Every pnogra
well-typed under the type assignment system has an armmotati
with contextual typingshat checks under the tridirectional rules.
Contextual typing annotations should be useful in othetirgg,
such as systems of parametric polymorphism in which subtyisi
decidable.

In order to show decidability, and as a first important step to
wards a practical implementation, we also presented a Esden
terministicleft tridirectional systenand proved it to be decidable
and sound and complete with respect to the tridirectionstiesy.

We are in the process of formulating a let-normal versiorhef t
left tridirectional system. Such a system would drastjcegiduce
the nondeterminism ind{rectlL) by forcing the typechecker to tra-
verse subterms in evaluation order, while being sound angbtzie
with respect to the left tridirectional system.

Once this is done, we plan to develop a prototype implementa-
tion of the let-normal system that should help us answertopres
regarding the practicality of our design on realistic peogs. The
main questions will be (1) if the required annotations assomable
in size, (2) if type checking is efficient enough for intenegtpro-
gram properties, and (3) if the typing discipline is accemough
to track properties in complex programs. The preliminarpesi
ence with refinement types, including both datasort refimss®]
and index refinements [28], gives reason for optimism, butemo
research and experimentation is needed.

Acknowledgments. This work supported in part by the National
Science Foundation under grant CCR-0204248; the first auth®
also supported in part by an NSF Graduate Research Fellpwshi

We thank Jonathan Moody, Sungwoo Park, and the anonymous re-

viewers for their useful comments. We also thank Rowan Bavie
for many fruitful discussions regarding the subject of taper.

8. REFERENCES

[1] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman.

Soft typing with conditional types. IACM Symp. Principles

of Programming Languagepages 163-173, 1994.

Franco Barbanera, Mariangiola Dezani-Ciancagling &lgo

de’Liguoro. Intersection and union types: syntax and

semanticsinf. and Comp.119:202—-230, 1995.

R. Cartwright and M. Fagan. Soft typing. 8iIGPLAN Conf.

Programming Language Design and Impl. (PLDI)

volume 26, pages 278-292, 1991.

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri.

Functional characters of solvable terrgeitschrift f. math.

Logik und Grundlagen d. Math27:45-58, 1981.

Rowan Davies. A practical refinement-type checker for

Standard ML. InAlgebraic Methodology and Software Tech.

(AMAST’'97) pages 565-566. Springer LNCS 1349, 1997.

Rowan Davies. Practical refinement-type checking. PhD

thesis proposal, Carnegie Mellon University, 1997.

Rowan Davies and Frank Pfenning. Intersection types and

computational effects. Imt’'l Conf. Functional

Programming (ICFP '00) pages 198-208, 2000.

[8] Joshua Dunfield. Combining two forms of type refinements.
Technical Report CMU-CS-02-182, Carnegie Mellon
University, September 2002.

(2]

(3]

[4]

[5]

[6]
[7]

12

[9] Joshua Dunfield and Frank Pfenning. Type assignment for
intersections and unions in call-by-value languages. In
Found. Software Science and Computational Structures
(FOSSACS '03)pages 250-266, Warsaw, Poland, April
2003. Springer LNCS 2620.

Tim FreemanRefinement types for MPhD thesis,

Carnegie Mellon University, 1994. CMU-CS-94-110.

Tim Freeman and Frank Pfenning. Refinement types for ML.

In SIGPLAN Conf. Programming Language Design and

Impl. (PLDI), volume 26, pages 268—277. ACM Press, 1991.

Haruo Hosoya and Benjamin C. Pierce. How good is local

type inference? Technical Report MS-CIS-99-17, Univgrsit

of Pennsylvania, June 1999.

[13] Trevor Jim. What are principal typings and what are they
good for? Technical memorandum MIT/LCS/TM-532, MIT,
November 1995.

[14] Yitzhak Mandelbaum, David Walker, and Robert Harper. A
effective theory of type refinements. Technical Report
TR-656-02, Princeton, December 2002.

[15] Jens Palsberg and Christina Pavlopoulou. From poigrar

flow information to intersection and union typdsFunc.

Prog, 11(3):263-317, 2001.

Benjamin C. PierceProgramming with intersection types

and bounded polymorphis®hD thesis, Carnegie Mellon

University, 1991. Technical Report CMU-CS-91-205.

Benjamin C. Pierce. Programming with intersectioretyp

union types, and polymorphism. Technical Report

CMU-CS-91-106, Carnegie Mellon University, 1991.

Benjamin C. Pierce and David N. Turner. Local type

inference. IPACM Symp. Principles of Programming

Languagespages 252—265, 1998. Full versionAGM

Trans. Prog. Lang. Sys22(1):1-44, 2000.

John C. Reynolds. Design of the programming language

Forsythe. Technical Report CMU-CS-96-146, Carnegie

Mellon University, 1996.

Fred Smith, David Walker, and Greg Morrisett. Alias égp

In European Symp. on Programming (ESOP;Qfgges

366-381, Berlin, Germany, March 2000.

[21] Jean-Pierre Talpin and Pierre Jouvelot. The type afetief
discipline.Inf. and Comp.111(2):245-296, 1994.

[22] Mads Tofte and Jean-Pierre Talpin. Region-based mgmor
managemeninf. and Comp.132(2):109-176, 1997.

[23] J. B. Wells and Christian Haack. Branching types. In
European Symp. on Programming (ESOP’Q#ges
115-132, 2002.

[24] J.B. Wells, Allyn Dimock, Robert Muller, and Franklyn
Turbak. A calculus with polymorphic and polyvariant flow
types.J. Func. Prog. 12(3):183-317, May 2002.

[25] Joe Wells. The essence of principal typingslriti Coll.
Automata, Languages, and Programmirglume 2380 of
LNCS pages 913-925. Springer, 2002.

[26] Hongwei Xi.Dependent types in practical programming
PhD thesis, Carnegie Mellon University, 1998.

[27] Hongwei Xi. Dependently typed data structures. Rewisi
superseding WAAAPL '99, February 2000.

[28] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. IACM Symp. Principles of
Programming Languagepages 214-227, 1999.

[10]

[11]

[12]

[16]

[17]

[18]

[19]

[20]

