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ABSTRACT
In prior work we introduced a pure type assignment system that
encompasses a rich set of property types, including intersections,
unions, and universally and existentially quantified dependent types.
This system was shown sound with respect to a call-by-value oper-
ational semantics with effects, yet is inherently undecidable.

In this paper we provide a decidable formulation for this sys-
tem based on bidirectional checking, combining type synthesis and
analysis following logical principles. The presence of unions and
existential quantification requires the additional ability to visit sub-
terms in evaluation position before the context in which they occur,
leading to atridirectional type system. While soundness with re-
spect to the type assignment system is immediate, completeness
requires the novel concept ofcontextual type annotations, intro-
ducing a notion from the study of principal typings into the source
program.

Categories and Subject Descriptors:F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure;
D.3.1 [Programming Languages]: Formal Definitions and Theory

General Terms: Languages, Theory

Keywords: Type refinements, intersection types, union types, de-
pendent types

1. INTRODUCTION
Over the last two decades, there has been a steady increase inthe

use of type systems to capture program properties such as control
flow [15], memory management [22], aliasing [20], data structure
invariants [11, 7, 28] and effects [21, 14], to mention just afew.
Ideally, such type systems specify rigorously, yet at a highlevel of
abstraction, how to reason about a certain class of program proper-
ties. This specification usually serves a dual purpose: it isused to
relate the properties of interest to the operational semantics of the
programming language (for example, proving type preservation),
and it is the basis for concrete algorithms for program analysis (for
example, via constraint-based type inference).

While the type-based approach has been successful for use in
automatic program analysis (for example, for optimizationduring
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compilation), it has been less successful in making the expressive
type systems directly available to the programmer. One reason for
this is the difficulty of finding the right balance between thebrevity
of the additional required type declarations and the feasibility of the
typechecking problem. Another is the difficulty of giving precise
and useful feedback to the programmer on ill-typed programs.

In prior work [9] we developed a system of pure type assign-
ment designed for call-by-value languages with effects andproved
progress and type preservation. The intended atomic program prop-
erties are data structure refinements [11, 10, 28], but our approach
does not depend essentially on this choice. Atomic properties can
be combined into more complex ones through intersections, unions,
and universal and existential quantification over index domains. As
a pure type assignment system, where terms do not contain any
types at all, it is inherently undecidable [4].

In this paper we develop an annotation discipline and typecheck-
ing algorithm for our earlier type assignment system. The major
contribution is the type system itself which contains several novel
ideas, including an extension of the paradigm of bidirectional type-
checking to union and existential types, leading to thetridirectional
system. While type soundness follows immediately by erasure of
annotations, completeness requires that we insertcontextual typing
annotationsreminiscent of principal typings [13, 25]. Decidability
is not obvious; we prove it by showing that a slightly alteredleft
tridirectional systemis decidable (and sound and complete with re-
spect to the tridirectional system).

The basic underlying idea isbidirectional checking[18] of pro-
grams containing some type annotations, combiningtype synthesis
with type analysis, first adapted to property types by Davies and
Pfenning [7]. Synthesis generates a type for a term from its im-
mediate subterms. Logically, this is appropriate for destructors (or
elimination forms) of a type. For example, the first product elimina-
tion passes frome : A∗B to fst(e) : A. Therefore, if we can gener-
ateA∗B we can extractA. Dually, analysis verifies that a term has
a given type by verifying appropriate types for its immediate sub-
terms. Logically, this is appropriate for constructors (orintroduc-
tion forms) of a type. For example, to verify thatλx. e : A → B we
assumex : A and then verifye : B. Bidirectional checking works
for both the native types of the underlying programming language
and the layer of property types we construct over it.

However, the simple bidirectional model is not sufficient for what
we call indefinite property types: unions and existential quantifica-
tion. This is because the program lacks the prerequisite structure.
For example, if we synthesizeA ∨ B, the union ofA andB, for
an expressione, we now need to distinguish the cases: the value
of e might have typeA or it might have typeB. Determining the
proper scope of this case distinction depends on howe is used, that
is, the position in whiche occurs. This means we need a “third di-
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rection” (whence the nametridirectional): we might need to move
to a subexpression, synthesize its type, and only then analyze the
expression surrounding it.

Since the tridirectional type system (like the bidirectional one)
requires annotations, we want to know that any program well typed
in the type assignment system can be annotated so that it is also
well typed in the tridirectional system. But with intersection types,
such a completeness property does not hold for the usual notion of
type annotation(e : A) (as previously noted [16, 6, 23]), a prob-
lem exacerbated by scoping issues arising from quantified types.
We therefore extend the notion of type annotation tocontextual
typing annotation, (e : Γ1 ` A1 , . . . , Γn ` An), in which the
programmer can write several context/type pairs. The idea is that
an annotationΓk ` Ak may be used whene is checked in a context
matchingΓk . This idea might also be applicable to arbitrary rank
polymorphism, a possibility we plan to explore in future work.

Unlike the bidirectional system, the indefinite property types that
necessitate the third direction make decidability of typechecking
nontrivial. Two ideas come to the rescue. First, to preservetype
safety in a call-by-value language with effects, the type ofa sub-
terme can only be brought out if the term containing it has the form
E[e] for someevaluation contextE, reducing the nondeterminism;
this was a key observation in our earlier paper [9]. Second, one
never needs to visit a subterm more than once in the same deriva-
tion: the system which enforces this is sound and complete.

The remainder of the paper is organized as follows. Section 2
presents a simple bidirectional type system. Section 3 addsrefine-
ments and a rich set of types including intersections and unions,
using tridirectional rules; this is thesimple tridirectional system.
In Section 4, we explain our form of typing annotation and prove
that the simple tridirectional system is complete with respect to the
type assignment system. Section 5 restricts the tridirectional rules
and compensates by introducingleft rules to yield a left tridirec-
tional system. We prove soundness and completeness with respect
to the simple tridirectional system, prove decidability, and use the
results in [9] to prove type safety. Finally, we discuss related work
(Section 6) and conclude (Section 7).

2. THE CORE LANGUAGE
In a pure type assignment system, the typing judgment ise : A,

wheree contains no types (eliding contexts for the moment). In a
bidirectional type system, we have two typing judgments:e ↑ A,
reade synthesizesA, ande ↓ A, reade checks againstA. The
most straightforward implementation of such a system consists of
two mutually recursive functions: the first, correspondingto e ↑ A,
takes the terme and either returnsA or fails; the second, corre-
sponding toe ↓ A, takes the terme and a typeA and succeeds
(returning nothing) or fails. This raises a question: Wheredo the
types in the judgmentse ↓ A come from? More generally: what
are the design principles behind a bidirectional type system?

Avoiding unification or similar techniques associated withfull
type inference is fundamental to the design of the bidirectional sys-
tem we propose here. The motivation for this is twofold. First,
for highly expressive systems such as the ones under consideration
here, full type inference is often undecidable, so we need less au-
tomatic and more robust methods. Second, since unification glob-
ally propagates type information, it is often difficult to pinpoint the
source of type errors.

We think of the process of bidirectional typechecking as a bottom-
up construction of a typing derivation, either ofe ↑ A or e ↓ A.
Given that we want to avoid unification and similar techniques, we
need each inference rule to bemode correct, terminology borrowed
from logic programming. That is, for any rule with conclusion

e ↑ A we must be able to determineA from the information in
the premises. Conversely, if we have a rule with premisee ↓ A, we
must be able to determineA before traversinge.

However, mode correctness by itself is only a consistency re-
quirement, not a design principle. We find such a principle inthe
realm of logic, and transfer it to our setting. In natural deduction,
we distinguishintroduction rulesandelimination rules. An intro-
duction rule specifies how to infer a proposition from its compo-
nents; when read bottom-up, it decomposes the proposition.For
example, the introduction rule for the conjunctionA ∗ B decom-
poses it to the goals of provingA andB. Therefore, a rule that
checks a termagainstA∗B using an introduction rule will be mode
correct.

Γ ` e1 ↓ A1 Γ ` e2 ↓ A2

Γ ` (e1 , e2) ↓ A1 ∗ A2

(∗I)

Conversely, an elimination rule specifies how to use the factthat
a certain proposition holds; when read top-down, it decomposes a
proposition. For example, the two elimination rules for thecon-
junctionA ∗ B decompose it toA andB, respectively. Therefore,
a rule that infers a type for a term using an elimination rule will be
mode correct.

Γ ` e ↑ A ∗ B

Γ ` fst(e) ↑ A
(∗E1)

Γ ` e ↑ A ∗ B

Γ ` snd(e) ↑ B
(∗E2)

If we employ this design principle throughout, the constructors
(corresponding to the introduction rules) for the elementsof a type
arechecked againsta given type, while the destructors (correspond-
ing to the elimination rules) for the elements of a typesynthesize
their type. This leads to the following rules for functions,in which
rule (→I) checks againstA → B and rule (→E) synthesizes the
typeA → B of its subjecte1 .

Γ, x:A ` e ↓ B

Γ ` λx. e ↓ A → B
(→I)

Γ ` e1 ↑ A → B Γ ` e2 ↓ A

Γ ` e1e2 ↑ B
(→E)

What do we do when the different judgment directions meet? If
we are trying to checke ↓ A then it is sufficient to synthesize a
typee ↑ A ′ and check thatA ′ = A. More generally, in a system
with subtyping, it is sufficient to know that every value of typeA ′

also has typeA, that is,A ′ ≤ A.

Γ ` e ↑ A ′ Γ ` A ′ ≤ A

Γ ` e ↓ A
(sub)

In the opposite direction, if we want to synthesize a type fore but
can only checke against a given type, then we do not have enough
information. In the realm of logic, such a step would correspond
to a proof that is not in normal form (and might not have the sub-
formula property). The straightforward solution would be to allow
source expressions(e : A) via a rule

Γ ` e ↓ A

Γ ` (e : A) ↑ A

Unfortunately, this is not general enough due to the presence of
intersections and universally and existentially quantified property
types. We discuss the issues and our solution in detail in Section 4.
For now, only normal terms will typecheck in our system. These
correspond exactly to normal proofs in natural deduction. We can
therefore already pinpoint where annotations will be required in
the full system: exactly where the term is not normal. This will be
the case where destructors are applied to constructors (that is, as
redexes) and at certainlet forms.

In addition we permit datatypesδ with constructorsc(e) and
corresponding case expressionscasee of ms, where the match ex-
pressionsms have the formc1(x1) ⇒ e1| . . . cn(xn) ⇒ en . The
constantsc are the constructors andcasethe destructor of elements
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Types A, B, C ::= 1 | A → B | A ∗ B | δ

Terms e ::= x | u | λx. e | e1 e2 | fix u. e

| () | (e1 , e2) | fst(e) | snd(e)

| c(e) | casee of ms

Matchesms ::= · | c(x) ⇒ e|ms

Values v ::= x | λx. e | () | (v1, v2)

Eval. contextsE ::= [ ] | E(e) | v(E)

| (E, e) | (v, E) | fst(E) | snd(E)

| c(E) | caseE of ms

e ′ 7→R e ′′

E[e ′] 7→ E[e ′′]

(λx. e) v 7→R [v/x] e fst(v1, v2) 7→R v1

fix u. e 7→R [fix u. e / u] e snd(v1, v2) 7→R v2

casec(v) of . . . c(x) ⇒ e . . . 7→R [v/x] e

Figure 1: Syntax and semantics of the core language

of typeδ. This means expressionsc(e) are checked against a type,
while the subject of acasemust synthesize its type. Assuming con-
structors have typeA → δ, this yields the following rules.

c : A → δ Γ ` e ↓ A

Γ ` c(e) ↓ δ
(δI)

Γ ` e ↑ δ Γ ` ms ↓δ B

Γ ` casee of ms ↓ B
(δE)

Γ ` · ↓δ B

c : A → δ Γ, x:A ` e ↓ B Γ ` ms ↓δ B

Γ ` c(x) ⇒ e |ms ↓δ B

We have elided here a syntactic condition that the left-handsides
of acaseexpression with subjectδ cover all constructors for a type
δ. Note that in the elimination rule (δE), we move frome ↑ δ to
x:A (which may be readx↑A), checking each branch againstB.

In addition we have fixed points, which involve both directions:
to checkfix u. e ↓ A, we assumeu:A (which should be readu↑A)
and checke againstA. Here we have a new form of variableu
that does not stand for a value, but for an arbitrary term, because
the reduction form for fixed point expressions reducesfix u. e to
[fix u. e / u] e (the substitution offix u. e for u in e). We do
not exploit this generality here, but our design is clearly consistent
with common syntactic restriction on the formation of fixed points
in call-by-value languages.

The syntax and semantics of our core language is given in Figure
1. A capitalE denotes an evaluation context—a term with a hole
[ ] representing the part of the term where a reduction may occur.
The semantics is a straightforward call-by-value small-step formu-
lation. [e ′/x] e denotes the substitution ofe ′ for x in e.

Figure 2 shows the subtyping and typing rules for the initiallan-
guage. The subtyping rules are standard except for the presence
of the contextΓ , used by the subtyping rules for index refinements
and index quantifiers, which we add in the next section. Variables
must appear inΓ , so (var) is a synthesis rule derivingx ↑ A. The
subsumption rule (sub) is an analysis rule derivinge ↓ B, but its
first premise is a synthesis rulee ↑ A. This means bothA andB

are available when the subtyping judgmentA ≤ B is invoked; no
complex constraint management is necessary. For introduction and
elimination rules, we follow the principles outlined above. Note
that in practice, in applicationse1e2 , the functione1 will usually
be a variable or, in a curried style, another application—since we
synthesize types for these,e1e2 itself needs no annotation.

Ours is not the only plausible formulation of bidirectionality.
Xi [26] used a contrasting style, in which several introduction forms
have synthesis rules as well as checking rules, for example:

Γ ` e1 ↑ A1 Γ ` e2 ↑ A2

Γ ` (e1 , e2) ↑ A1 ∗ A2

Xi’s formulation reduces the number of annotations to some extent;
for example, incase(x, y) of . . . the pair(x, y) must synthesize,
but under our formulation(x, y) never synthesizes and so requires
an annotation. However, ours seems to be thesimplestplausible
formulation and has a clear logical foundation in the notionof in-
troduction and elimination forms corresponding to constructors and
destructors for elements of a type under the Curry-Howard isomor-
phism. Consequently, a systematic extension should sufficeto add
further language constructs. Furthermore, any term in normal form
will need no annotation except at the outermost level, so we should
need annotations in few places besides function definitions. In any
case, if a system based on our formulation turns out to be inconve-
nient, adding rules such as the one above should not be difficult.

3. PROPERTY TYPES
The types present in the language so far are tied to constructors

and destructors of terms. For example, the typeA → B is realized
by constructorλx. e and destructore1e2 , related to the introduction
and elimination forms of→ by a Curry-Howard correspondence.

In this section we are concerned with expressing richer proper-
ties of terms already present in the language. The only change to
the term language is to add typing annotations, discussed inSection
4; otherwise, only the language of types is enriched:

Types A, B, C ::= . . . | δ(i) | A ∧ B | > | Πa:γ. A

| A ∨ B | ⊥ | Σa:γ. A

The basic properties are data structure invariants, that is, proper-
ties of terms of the formc(e). All other properties are independent
of the term language and provide general mechanisms to combine
simpler properties into more complex ones, yielding a very general
type system. In this paper we do not formally distinguish between
ordinary types and property types, though such a distinction has
been useful in the study of refinement types [11, 10].

Our formulation of property types is fully explained and justi-
fied in [9] for a pure type assignment system; here, we focus on
the bidirectionality of the rules. We do not extend the operational
semantics: it is easiest to erase annotations before executing the
program. Hence, type safety follows directly from the result for the
type assignment system [9].

3.1 Intersections
A valuev has typeA ∧ B if it has typeA and typeB. Because

this is an introduction form, we proceed bycheckingv againstA
andB. Conversely, ife has typeA ∧ B then it must have both type
A and typeB, proceeding in the direction of synthesis.

Γ ` v ↓ A Γ ` v ↓ B

Γ ` v ↓ A ∧ B
(∧I)

Γ ` e ↑ A ∧ B

Γ ` e ↑ A
(∧E1)

Γ ` e ↑ A ∧ B

Γ ` e ↑ B
(∧E2)

While these rules combine properties of the same term (and are
therefore not an example of a Curry-Howard correspondence), the
erasure of the terms still yields the ordinary logical rulesfor con-
junction. Therefore, by the same reasoning as for ordinary types,
the directionality of the rules follows from logical principles.

Usually, the elimination rules are a consequence of the subtyp-
ing rules (via the (sub) typing rule), but once bidirectionality is
enforced, this is not the case and the rules must be taken as prim-
itive. Note that the introduction form (∧I) is restricted to values
because its general form for arbitrary expressionse is unsound in
the presence of mutable references in call-by-value languages [7].
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Γ ` B1 ≤ A1 Γ ` A2 ≤ B2

Γ ` A1 → A2 ≤ B1 → B2

(→)
Γ ` 1 ≤ 1

(1)
Γ ` A1 ≤ B1 Γ ` A2 ≤ B2

Γ ` A1 ∗ A2 ≤ B1 ∗ B2

(∗)
Γ ` δ ≤ δ

(δ)

Γ (x) = A

Γ ` x ↑ A
(var)

Γ, x:A ` e ↓ B

Γ ` λx. e ↓ A → B
(→I)

Γ ` e1 ↑ A → B Γ ` e2 ↓ A

Γ ` e1e2 ↑ B
(→E)

Γ ` e ↑ A Γ ` A ≤ B

Γ ` e ↓ B
(sub)

Γ (u) = A

Γ ` u ↑ A
(fixvar)

Γ, u:A ` e ↓ A

Γ ` fix u. e ↓ A
(fix)

Γ ` e1 ↓ A1 Γ ` e2 ↓ A2

Γ ` (e1 , e2) ↓ A1 ∗ A2

(∗I)
Γ ` e ↑ A ∗ B

Γ ` fst(e) ↑ A
(∗E1)

Γ ` e ↑ A ∗ B

Γ ` snd(e) ↑ B
(∗E2)

Γ ` () ↓ 1
(1I)

c : A → δ Γ ` e ↓ A

Γ ` c(e) ↓ δ
(δI)

Γ ` e ↑ δ Γ ` ms ↓δ B

Γ ` casee of ms ↓ B
(δE)

Γ ` · ↓δ B

c : A → δ Γ, x:A ` e ↓ B Γ ` ms ↓δ B

Γ ` c(x) ⇒ e|ms ↓δ B

Figure 2: Subtyping and typing in the core language

The subtyping rules for our system are designed following the
well-known principle thatA ≤ B only if any (closed) value of type
A also has typeB. Thus, whenever we must check if an expression
e has typeB we are safe if we can synthesize a typeA andA ≤ B.
The subtyping rules then naturally decompose the structureof A

andB by so-calledleft andright rules that closely mirror the rules
of a sequent calculus. In fact, ignoringΓ for now, we can think
of subtyping as a single-antecedent, single-succedent form of the
sequent calculus.

Γ ` A ≤ B1 Γ ` A ≤ B2

Γ ` A ≤ B1 ∧ B2

(∧R)

Γ ` A1 ≤ B

Γ ` A1 ∧ A2 ≤ B
(∧L1)

Γ ` A2 ≤ B

Γ ` A1 ∧ A2 ≤ B
(∧L2)

We omit the common distributivity rule relating intersection and
function types, which is unsound with mutable references [7] and
does not directly fit into the logical pattern of our rules.

3.2 Greatest Type
A greatest type> can be thought of as the 0-ary form of inter-

section (∧). The rules are simply

Γ ` v ↓ >
(>I)

Γ ` A ≤ >
(>R)

There is no elimination or left subtyping rule for>. Its typing
rule is a 0-ary version of (∧I), and the value restriction is also re-
quired [9].

3.3 Refined Datatypes
In our system, each datatype is refined as in [6, 8, 9] by an

atomic subtypingrelation � overdatasortsδ. Each datasort iden-
tifies a subset of values of the formc(v). For example, datasorts
true andfalse identify singleton subsets of values of the typebool.
We further refine datatypes by indices drawn from some constraint
domain, exactly as in [9] which closely followed Xi and Pfen-
ning [28], Xi [26, 27], and Dunfield [8]. The typeδ(i) is the type
of values having datasortδ and indexi.

To accommodate index refinements, we extendΓ to allow index
variablesa, b and propositionsP as well as program variables. Be-
cause the program variables are irrelevant to the index domain, we
can define arestriction functionΓ that yields its argumentΓ without
program variable typings (Figure 3). No variable may be declared
twice inΓ , but ordering is now significant because of dependencies.

Our formulation, like Xi’s, requires only a few properties of the
constraint domain: There must be a way to decide a consequence
relationΓ |= P whose interpretation is that given the index variable
typings and propositions inΓ , the propositionP must hold. Because

P ::= ⊥ | i
.
= j | . . .

Γ ::= · | Γ, x:A | Γ, a:γ | Γ, P

· = ·

Γ, x:A = Γ

Γ, a:γ = Γ , a:γ

Γ, P = Γ , P

Figure 3: PropositionsP, contextsΓ , and the restriction func-
tion Γ

we have both universal and existential quantifiers over elements of
the constraint domain, the constraints must remain decidable in the
presence of quantifiers, though we have not encountered quantifier
alternations in our examples. There must also be a relationi

.
= j

denoting index equality, and a judgmentΓ ` i : γ whose interpre-
tation is thati hasindex sortγ in Γ . Note the stratification: terms
have types, indices have index sorts; terms and indices are distinct.
The proof of safety in [9] requires that|= be a consequence rela-
tion, that

.
= be an equivalence relation, that· 6|= ⊥, and that|= and

` have expected substitution and weakening properties [8].
Each datatype has an associated atomic subtyping relation on

datasorts, and an associated sort whose indices refine the datatype.
In this paper, the only index sort is the natural numbersN with

.
=

and the arithmetic operations+, −, ∗. ThenΓ |= P is decidable
provided the equalities inP are linear.

We add an infinitary definite typeΠa:γ. A, introducing an index
variablea universally quantified over indices of sortγ. One can
also viewΠ as a dependent function type on indices (instead of
arbitrary terms).

Example. Assume we define a datatype of integer lists: a list is
eitherNil() or Cons(h, t) for some integerh and list t. Refine
this type by a datasortodd if the list’s length is odd, by a datasort
even if it is even. We also refine the lists by their length, soNil has
type 1 → even(0), andCons has type(Πa:N . int ∗ even(a) →

odd(a + 1)) ∧ (Πa:N . int ∗ odd(a) → even(a + 1)). Writing
Nil() asNil, the function

fix repeat.λx.

casex of Nil ⇒ Nil |Cons(h,t) ⇒ Cons(h,Cons(h,repeat(t)))

checks againstΠa:N . list(a) → even(2 ∗ a).

The subtyping rule for datatypes checks the datasortsδ1, δ2 and
(separately) the indicesi, j:

δ1 � δ2 Γ ` i
.
= j

Γ ` δ1(i) ≤ δ2(j)
(δ)
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To maintain reflexivity and transitivity of subtyping, we require
� to be reflexive and transitive.

We assume the constructorsc are typed by a judgmentΓ ` c :

A → δ(i) whereA is any type andδ(i) is some refined type.
Now, however, the typeA → δ(i) need not be unique; indeed, a
constructor should often have more than one refined type. Therule
for constructor application is

Γ ` c : A → δ(i) Γ ` e ↓ A

Γ ` c(e) ↓ δ(i)
(δI)

To deriveΓ ` casee of ms ↓ B, we check that all the matches in
ms check againstB, under a context appropriate to each arm; this is
how propositionsP arise. The contextΓ may be contradictory (Γ |=

⊥) if the case arm can be shown to be unreachable by virtue of the
index refinements of the constructor type and the case subject. In
order to not typecheck unreachable arms, we have

Γ |= ⊥

Γ ` e ↓ A
(contra)

We also do not check case arms that are unreachable by virtue
of thedatasortrefinements. For a complete accounting of how we
typecaseexpressions and constructors, see [8].

The typing rules forΠ are

Γ, a:γ ` v ↓ A

Γ ` v ↓ Πa:γ. A
(ΠI)

Γ ` e ↑ Πa:γ. A Γ ` i : γ

Γ ` e ↑ [i/a]A
(ΠE)

By our general assumption, the index variablea added to the
context must be new, which can always be achieved via renaming.
The directionality of these rules follows our general scheme. As for
intersections, the introduction rule is restricted to values in order to
maintain type preservation in the presence of effects.

One potentially subtle issue with the introduction rule is that
v cannot referencea in an internal type annotation, because that
would violateα-conversion: one could not safely renamea to b in
Πa:γ. A, which is the natural scope ofa. We describe our solution,
contextual typing annotations, in Section 4.

The subtyping rules forΠ are

Γ ` [i/a]A ≤ B Γ ` i : γ

Γ ` Πa:γ. A ≤ B
(ΠL)

Γ, b:γ ` A ≤ B

Γ ` A ≤ Πb:γ. B
(ΠR)

The left rule allows one to instantiate a quantified index variable
a to an indexi of appropriate sort. The right rule states that if
A ≤ B for an arbitraryb:γ thenA is also a subtype ofΠb:γ. B. Of
course,b cannot occur free inA.

As written, in (ΠL) and (ΠE) we must guess the indexi; in prac-
tice, we would plug in a new existentially quantified index vari-
able and continue, using constraint solving to determinei. Thus,
even if we had no existential typesΣ in the system, the solver for
the constraint domain would have to allow existentially quantified
variables.

3.4 Indefinite Property Types
We now have a system with definite types∧, >, Π. The typing

and subtyping rules are both orthogonal and internally regular: no
rule mentions both> and∧, (>I) is a 0-ary version of (∧I), and
so on. However, one cannot express the types of functions with
indeterminate result type. A standard example is thefilter function
on lists of integers:filter f l returns the elements ofl for which f

returnstrue. It has the ordinary typefilter : (int→bool) → list →

list. Indexing lists by their length, the refined type should looklike

filter : Πn:N . (int→bool) → list(n) → list( )

To fill in the blank, we add dependent sumsΣa:γ. A, quantifying
existentially over index variables, as in [28, 26]. Then we can ex-

press the fact thatfilter returns a list of some indefinite lengthm as
follows1:

filter : Πn:N . (int→bool) → list(n) → (Σm:N . list(m))

For similar reasons, we also occasionally would like union types
and the empty type, which should also be considered indefinite.
We discuss unions first.

On values, the binary indefinite type is simply a union in the
ordinary sense: ifv : A ∨ B then eitherv : A or v : B. The
introduction rules directly express the simple logical interpretation,
again using checking for the introduction form.

Γ ` e ↓ A

Γ ` e ↓ A ∨ B
(∨I1)

Γ ` e ↓ B

Γ ` e ↓ A ∨ B
(∨I2)

No restriction to values is needed for the introductions, but, du-
ally to intersections, the elimination must be restricted.A sound
formulation of the elimination rule in a type assignment form [9]
without a syntactic marker2 requires an evaluation contextE around
the subterm of union type.

Γ ` e ′ : A ∨ B

Γ, x:A ` E[x] : C

Γ, y:B ` E[y] : C

Γ ` E[e ′] : C

This is where the “third direction” is necessary. We no longer
move from terms to their immediate subterms, but when typecheck-
ing e we may have to decompose it into an evaluation contextE and
subterme ′. Using the analysis and synthesis judgments we have

Γ ` e ′ ↑ A ∨ B

Γ, x:A ` E[x] ↓ C

Γ, y:B ` E[y] ↓ C

Γ ` E[e ′] ↓ C
(∨E)

Here, if we can synthesize a union type fore ′—which is in eval-
uation position inE[e ′]—and checkE[x] andE[y] againstC, as-
suming thatx andy have typeA and typeB respectively, we can
conclude thatE[e ′] checks againstC. Note that the assumptions
x:A andy:B can be read asx↑A andy↑B so we do indeed transi-
tion from ↑ A ∨ B to ↑ A and ↑ B. While typechecking still
somehow follows the syntax, there may be many choices ofE and
e ′, leading to excessive nondeterminism.

The subtyping rules are standard and dual to the intersection
rules.

Γ ` A1 ≤ B Γ ` A2 ≤ B

Γ ` A1 ∨ A2 ≤ B
(∨L)

Γ ` A ≤ B1

Γ ` A ≤ B1 ∨ B2

(∨R1)
Γ ` A ≤ B2

Γ ` A ≤ B1 ∨ B2

(∨R2)

The 0-ary indefinite type is the empty or void type⊥; it has no
values and therefore no introduction rules. For an elimination rule
(⊥E), we proceed by analogy with (∨E):

Γ ` e ′ ↑ ⊥

Γ ` E[e ′] ↓ C
(⊥E)

As before, the expression must be an evaluation contextE with e ′

in evaluation position. For> we had one right subtyping rule; for
⊥, following the principle of duality, we have one left rule:

1The additional constraintm ≤ n could be expressed by asubset
sort [27, 26].
2Pierce [17] used an explicit markercasee ′ of x ⇒ e as the union
elimination form. This is technically straightforward buta heavy
burden on the programmer, particularly as markers would also be
needed to eliminateΣ types, which are especially common in code
without refinements; legacy code would have to be extensively
“marked” to make it typecheck.
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Γ ` ⊥ ≤ A
(⊥L)

For existential dependent types, the introduction rule presents no
difficulties, and proceeds using the analysis judgment.

Γ ` e ↓ [i/a]A Γ ` i : γ

Γ ` e ↓ Σa:γ. A
(ΣI)

For the elimination rule, we follow (∨E) and (⊥E):

Γ ` e ′ ↑ Σa:γ. A Γ, a:γ, x:A ` E[x] ↓ C

Γ ` E[e ′] ↓ C
(ΣE)

Again, there is a potentially subtle issue: the index variable a

must be new and cannot be mentioned in an annotation inE.
The subtyping forΣ is dual to that ofΠ.

Γ, a:γ ` A ≤ B

Γ ` Σa:γ. A ≤ B
(ΣL)

Γ ` A ≤ [i/b] B Γ ` i : γ

Γ ` A ≤ Σb:γ. B
(ΣR)

3.5 Properties of Subtyping
Our subtyping rules are the same as in [9] except for the addition

of productsA ∗ B. Since the premises are smaller than the con-
clusion in each rule, and we assume decidability for the constraint
domain, we immediately obtain thatΓ ` A ≤ B is decidable. Re-
flexivity and transitivity are admissible, which follows quite eas-
ily [9].

3.6 The Tridirectional Rule
Considering⊥E to be the 0-ary version of the∨E for the binary

indefinite type, what is the unary version? It is:

Γ ` e ′ ↑ A Γ, x:A ` E[x] ↓ C

Γ ` E[e ′] ↓ C
(direct)

One might expect this rule to be admissible. However, due to the
restriction to evaluation contexts, it is not. As a simple example,
consider

append : Πa:N . list(a) → Πb:N . list(b) → list(a + b)

filterpos : Πn:N . list(n) → Σm:N . list(m)

` filterpos[. . . ] ↑ Σm:N . list(m)

Goal: 6` append[42] (filterpos[. . . ]) ↓ Σk:N . list(k)

where[42] is shorthand forCons(42, Nil) and [...] is some literal
list. Here we cannot derive the goal, because we cannot introduce
the k on the type checked against. To do so, we would need to
introduce the index variablem representing the length of the list
returned byfilterpos[. . . ], and usem + 1 for k. But filterpos[. . . ]

is not in evaluation position, becauseappend[42] will need to
be evaluated first. However,append[42] synthesizes only type
Πb:N . list(b) → list(1 + b), so we are stuck. However, using
rule (direct) we reduce

append[42] (filterpos[. . . ]) ↓ Σk:N . list(k)

to
x : Πb:N. list(b)→list(1+b) ` x (filterpos[. . . ]) ↓ Σk:N. list(k)

Sincex is a value,(filterpos[. . .]) is in evaluation position. Apply-
ing the existential elimination rule, we need to derive

x:Πb:N. list(b)→list(1+b), m:N, y:list(m) ` x y ↓ Σk:N. list(k)

Now we can complete the derivation with (ΣI), using1 + m for k

and several straightforward steps.

4. CONTEXTUAL TYPING ANNOTATIONS
Our tridirectional system so far has the property that only terms

in normal form have types. For example,(λx. x)() neither synthe-
sizes nor checks against a type. This is because the functionpart of

an application must synthesize a type, but there is no rule for λx. e

to synthesize a type.
But annotations are not as straightforward as they might seem.

In our setting, two issues arise: checking against intersections, and
index variable scoping.

4.1 Checking Against Intersections
Consider the following function, which conses42 to its argu-

ment.

cons42= (λx. (λy. Cons(42, x))()) : (odd → even) ∧ (even → odd)

This does not typecheck:λy.Cons(42, x) needs an annotation.
Observe that by rule (∧I), cons42will be checked twice: first
againstodd → even, then againsteven → odd. Hence, we can-
not write(λy.Cons(42, x)) : (1 → even)—it is correct only when
checkingcons42againstodd → even. Moreover, we cannot write

(λy.Cons(42, x)) : (1 → even) ∧ (1 → odd)

We need to use1 → even while checkingcons42againstodd →

even, and1 → odd while checkingcons42againsteven → odd.
Exasperatingly, union types are no help here:(λy. Cons(42, x)) :

(1 → even) ∨ (1 → odd) is a value of type1 → even or of type
1 → odd, but we do not know which; following(∨E), we must
suppose it has type1 → even and then check its application to1,
and thensuppose it has type1 → odd and check its application
to 1. Only one of these checks will succeed—a different one, de-
pending on which conjunct of(odd → even) ∧ (even → odd)

we happen to be checkingcons42against—but according to (∨E)
both need to succeed.

Pierce [16] and Reynolds [19] addressed this problem by allow-
ing a function to be annotated with a list of alternative types; the
typechecker chooses the right one. Davies followed this approach
in his datasort refinement checker, allowing a term to be annotated
with (e : A, B, . . . ). In that notation, the above function could be
written as

cons42 = (λx. ((λy.Cons(42, x)) : 1 → even, 1 → odd)())

: (odd → even) ∧ (even → odd)

Now the typechecker can choose1 → even when checking against
1 → odd. This notation is easy to use and effective but intro-
duces additional nondeterminism, since the typechecker must guess
which type to use.

4.2 Index Variable Scoping
Some functions need type annotations inside their bodies, such

as this (contorted) identity function on lists.

id = λx. (λz. x)() : Πa:N . list(a) → list(a)

In a bidirectional system, the function part of an application must
synthesize a type, but we have no rule to synthesize a type fora λ-
abstraction. So we need an annotation on(λz. x). We need to show
that the whole application checks againstlist(a), so we might try

λz. x : 1 → list(a)

But this would violate variable scoping.α-convertibility dictates
that Πa:N . list(a) → list(a) andΠb:N . list(b) → list(b) must
be indistinguishable which would be violated if we permitted

λx. ((λz. x) : 1 → list(a))() ↓ Πa:N . list(a) → list(a)

but not

λx. ((λz. x) : 1 → list(a))() ↓ Πb:N . list(b) → list(b)
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Xi already noticed this problem and introduced a term-levelab-
straction over index variables,Λa.e, to mirror universal index quan-
tification Πa:γ. A [26]. But this violates the basic principle of
property types that the term should remain unchanged, and fails
in the presence of intersections. For example, we would expect the
reverse function on lists,rev, to satisfy

rev : (Πa:N . list(a) → list(a))

∧ ((Σb:N . list(b)) → Σc:N . list(c))

but the first component of the intersection would demand a term-
level index abstraction, while the second would not tolerate one.

4.3 Contextual Subtyping
We address these two problems by a method that extends and

improves the notation of comma-separated alternatives. The essen-
tial idea is to allow a context to appear in the annotation along with
each type:

e ::= . . . | (e : Γ1 ` A1 , . . . , Γn ` An)

where each contextΓk declares the types of some, but not necessar-
ily all, free variables ine.

In the first approximation we can think of such an annotated term
as follows: if Γk ` e ↓ Ak thenΓ ` (e : Γ1 ` A1 , . . . , Γn `
An) ↑ Ak if the current assumptions inΓ validate the assumptions
in Γk . For example, the second judgment below is not derivable,
sincex:odd does not validatex:even (becauseodd 6≤ even).

x:even ` ((λy.Cons(42, x)) : x:even ` 1 → odd,

x:odd ` 1 → even) ↑ 1 → odd

x:odd 6` ((λy.Cons(42, x)) : x:even ` 1 → odd,

x:odd ` 1 → even) ↑ 1 → odd

In practice, this should significantly reduce the nondeterminism
associated with type annotations in the presence of intersection.
However, we still need to generalize the rule in order to correctly
handle index variable scoping.

Returning to our earlier example, we would like to find an anno-
tationAs allowing us to derive

` λx. ((λz. x) : As)() ↓ Πa:N . list(a) → list(a)

The idea is to use a locally declared index variable (here,b)

λx. ((λz. x) : (b:N , x:list(b) ` 1 → list(b)))

to make the typing annotation self-contained. Now, when we check
if the current assumptions forx validate local assumption forx, we
are permitted to instantiateb to any index objecti. In this exam-
ple, we could substitutea for b. As a result, we end up checking
(λz. x) ↓ 1 → list(a), even though the annotation does not men-
tion a. Note that in an annotatione : (Γ0 ` A0), As, all index
variables declared inΓ0 are considered bound and can be renamed
consistently inΓ0 andA0 . In contrast, the free term variables inΓ0

may actually occur ine and so cannot be renamed freely.
These considerations lead to acontextual subtypingrelation . :

(Γ0 ` A0) . (Γ ` A)

which is contravariant in the contextsΓ0 andΓ . It would be covari-
ant inA0 andA, except that in the way it is invoked,Γ0 , A0 , and
Γ are known andA is generated as an instance ofA0 . This should
become more clear when we consider its use in the new typing rule

(Γ0 ` A0) . (Γ ` A) Γ ` e ↓ A

Γ ` (e : (Γ0 ` A0), As) ↑ A
(ctx-anno)

Typings As ::= Γ `A | Γ `A, As

Terms e ::= . . . | (e : As)

Values v ::= . . . | (v : As)

Eval. contextsE ::= . . . | (E : As)

Figure 4: Language additions for contextual typing annotations

(· ` A) . (Γ ` A)
(.-empty)

Γ ` i : γ0 ([i/a] Γ0 ` [i/a]A0) . (Γ ` A)

(a:γ0 , Γ0 ` A0) . (Γ ` A)
(.-ivar)

Γ |= P (Γ0 ` A0) . (Γ ` A)

(P, Γ0 ` A0) . (Γ ` A)
(.-prop)

Γ ` Γ (x) ≤ B0 (Γ0 ` A0) . (Γ ` A)

(x:B0 , Γ0 ` A0) . (Γ ` A)
(.-pvar)

Figure 5: Contextual subtyping

where we regard the annotations as unordered (soΓ0 ` A0 could
occur anywhere in the list). In the bidirectional style,Γ , e, Γ0 , A0

andAs are known when we try this rule. While finding a derivation
of (Γ0 ` A0) . (Γ ` A) we generateA, which is the synthe-
sized type of the original annotated expressione, if in fact e checks
againstA. It is also possible that(Γ0 ` A0) . (Γ ` A) fails to
have a derivation (whenΓ0 andΓ have incompatible declarations
for the term variables occurring in them), in which case we need to
try another annotation(Γk ` Ak).

The formal rules for contextual subtyping are given in Figure 5.
Besides the considerations above, we also must make sure that any
possible assumptionsP about the index variables inΓ0 are indeed
entailed by the current context, after any possible substitution has
been applied (this is why we traverseΓ0 from left to right).

While the examples above are artificial, similar situationsarise
in ordinary programs in the common situation when local function
definitions reference free variables. Two small examples ofthis
kind are given in Figure 6 presented in the style of ML; we have
omitted the evident constructor types and, following the tradition of
implementations such as Davies’, written typing annotations inside
bracketed comments.

The essence of the completeness result we prove in Section 4.5
is that annotations can be added to any term that is well typed
in the type assignment system to yield a well typed term in the
tridirectional system. For this result to hold,. must be reflexive,
(Γ ` A) . (Γ ` A). Furthermore, in a judgment

Γ ` (e : (Γ1 ` A1 , . . . , Γn ` An)) ↑ A

we must be able to consistently rename index variables inΓ , all
Γk , ande. This different treatment of index variables and term
variables arises from the fact that index variables are associated
with property types and so do not appear in expressions, onlyin
types.

Reflexivity (together with properα-conversion) issufficientfor
completeness: in the proof of completeness, where we seeΓ ` e :

A we can simply add an annotation(Γ ` A). But it would be
absurd to make programmers type in entire contexts—not onlyis
the length impractical, but whenever a declaration is addedevery
contextual annotation in its scope would have to be changed!

Reflexivity of . follows easily from the following lemma.

LEMMA 1. (Γ2 ` A) . (Γ1, Γ2 ` A).
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true� bool, false� bool even� nat, odd� nat

evenlist� list, oddlist� list, emptylist� evenlist

eq : (even ∗ odd → false)

∧ (odd ∗ even → false)

∧ (nat ∗ nat → bool)

(∗[ member: (even ∗ oddlist → false)

∧ (odd ∗ evenlist → false)

∧ (nat ∗ list → bool) ]∗)

fun member(x, xs) =

(∗[ mem: x:even ` (evenlist → bool) ∧ (oddlist → false),

x:odd ` (evenlist → false) ∧ (oddlist → bool),

x:nat ` natlist → bool ]∗)

let fun memxs =

casexs of Nil ⇒ False

| Cons(y, ys) ⇒ eq(x, y) orelsememys

in memxs end

(∗[ append: Πa:N . Πb:N . list(a) ∗ list(b) → list(a + b) ]∗)

fun append(xs, ys) =

(∗[ app : c:N , ys:list(c) ` Πa:N . list(a) → list(a + c) ]∗)

let fun appxs = casexs of Nil ⇒ ys

| Cons(x, xs) ⇒ Cons(x, appxs)

in appxs end

Figure 6: Example of contextual annotations

PROOF. By induction onΓ2 .

COROLLARY 2 (REFLEXIVITY ). (Γ ` A) . (Γ ` A).

4.4 Soundness
Let |e| denote the erasure of all typing annotations frome.

THEOREM 3 (SOUNDNESS, TRIDIRECTIONAL). If Γ ` e ↑

A or Γ ` e ↓ A thenΓ ` |e| : A.

PROOF. By straightforward induction on the derivation.

4.5 Completeness
We cannot just take a derivationΓ ` e : A in the type assignment

system and obtain a derivationΓ ` e ↑ A in the tridirectional
system. For example,̀ λx. x : A → A for any typeA, but in the
tridirectional systemλx. x does not synthesize a type. However, if
we add a typing annotation, we can derive

` (λx. x : (` A → A)) ↑ A → A

Clearly, the completeness result must be along the lines of “If Γ `
e : A, then there is an annotated versione ′ of e such thatΓ `
e ′ ↑ A.” To formulate this result (Corollary 12, a special case of
Theorem 11) we need a few definitions and lemmas.

DEFINITION 4. A term is insynthesizing formif it has any of
the formsx, e1e2 , u, (e : As), fst(e), snd(e).

DEFINITION 5. e ′ extendsa terme, writtene ′ w e iff e ′ is e

with zero or more additional typing annotations ande ′ contains no
type annotations on the roots of terms in synthesizing form.

DEFINITION 6. e ′ lightly extendsa terme, writtene ′ w` e iff
e ′ is e with zero or more typing annotations added to lists of typing
annotationsalready presentin e. That is, we can replace(e : As)

with (e : As, A ′), but cannot replacee with (e : A ′).

PROPOSITION 7. w andw` are reflexive and transitive.

PROOF. Obvious from the definitions.

LEMMA 8. If e value ande ′ w e thene ′ value.

PROOF. By a straightforward induction one ′ (in the base case,
making use of(v : As) value).

LEMMA 9 (LIGHT EXTENSION). If e ′ w` e then (1)Γ ` e ↑

A impliesΓ ` e ′ ↑ A, (2) Γ ` e ↓ A impliesΓ ` e ′ ↓ A.

PROOF. By induction on the derivation of the typing judgment.
All cases are straightforward: eithere ande ′ must be identical (for
instance, for (1I)), or we apply the IH to all premises, which leads
directly to the result.

Recall that the rule (∧I) led to the need for more than one typ-
ing annotation on a term. It should be no surprise, then, thatthe
(∧I) case in the completeness proof is interesting. Applying the
induction hypothesis to each premisev : A, v : B yields two pos-
sibly differentannotated termsv ′

A andv ′

B such thatv ′

A ↓ A and
v ′

B ↓ B. But given a notion ofmonotonicityunder annotation, we
can incorporate both annotations into a singlev ′ such thatv ′ ↓ A

andv ′ ↓ B. However, the obvious formulation of monotonicity

If e ↓ A ande ′ w e thene ′ ↓ A

does not hold: given a list of annotationsAs the type system must
use at least one of them—it cannot ignore them all. Thus` (() :

(` >)) ↓ 1 is not derivable, even though̀() ↓ 1 is derivable and
(() : (` >)) w (). However, further annotating(() : (` >)) to
(() : (` >), (` 1)) yields a term that checks against both> and
1. Note that this further annotation was light—we added a typing
to an existing annotation. This observation leads to Lemma 10.

LEMMA 10 (MONOTONICITY UNDER ANNOTATION).

(1) If Γ ` e ↓ A ande ′ w e then there existse ′′ w` e ′ such that
Γ ` e ′′ ↓ A.

(2) If Γ ` e ↑ A ande ′ w e then there existse ′′ w` e ′ such that
Γ ` e ′′ ↑ A.

PROOF. By induction on the typing derivation.

THEOREM 11 (COMPLETENESS, TRIDIRECTIONAL). If Γ `
e : A ande ′ w e then

(i) there existse ′′

1 such thate ′′

1 w e ′ andΓ ` e ′′

1 ↓ A

(ii) there existse ′′

2 such thate ′′

2 w e ′ andΓ ` e ′′

2 ↑ A

PROOF. By induction on the derivation ofΓ ` e : A.

COROLLARY 12. If Γ ` e : A then there existse ′ w e such
that Γ ` e ′ ↓ A and there existse ′′ w e such thatΓ ` e ′′ ↑ A.

5. THE LEFT TRIDIRECTIONAL SYSTEM
In the simple tridirectional system, the contextual rules are highly

nondeterministic. Not only must we choose which contextualrule
to apply, but each rule can be applied repeatedly with the same
contextE; for (direct), which does not even break down the type of
e ′, this repeated application is quite pointless. The system in this
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Subtyping Γ ` A ≤ B

Contextual subtyping (Γ0 `A0) . (Γ `A)

Constraint satisfaction Γ |= P

Index expression sorting Γ ` i : γ

Data constructor typing Γ ` c : A → δ(i)

Simple tridirectional checking Γ ` e ↓ A

Simple tridirectional synthesis Γ ` e ↑ A

Left tridirectional checking Γ ; ∆ ` e ↓L A

Left tridirectional synthesis Γ ; ∆ ` e ↑L A

∆ appear linearly ine ∆  e

—and in evaluation position ine ∆ � e

Figure 7: Judgment forms appearing in the paper

Rules of the simple tridirectional system absent in
the left tridirectional system:

Rules new or substantially altered in the left tri-
directional system:

Γ ; x:A ` x ↑L A
(var)

Γ ` e ′ ↑ A Γ, x:A ` E[x] ↓ C

Γ ` E[e ′] ↓ C
(direct)

e′ not a linear var
Γ ;∆1 ` e ′ ↑L A Γ ; ∆2, x:A ` E[x] ↓L C

Γ ; ∆1, ∆2 ` E[e ′] ↓L C
(directL)

Γ ` e ′ ↑ ⊥

Γ ` E[e ′] ↓ C
(⊥E) ∆, x:⊥  e

Γ ;∆, x:⊥ ` e ↓L C
(⊥L)

Γ ` e ′ ↑ A ∨ B

Γ, x:A ` E[x] ↓ C

Γ, y:B ` E[y] ↓ C

Γ ` E[e ′] ↓ C
(∨E)

Γ ;∆, x:A ` e ↓L C Γ ; ∆, x:B ` e ↓L C

Γ ;∆, x:A ∨ B ` e ↓L C
(∨L)

Γ ` e ′ ↑ Σa:γ. A Γ, a:γ, x:A ` E[x] ↓ C

Γ ` E[e ′] ↓ C
(ΣE)

Γ, a:γ; ∆, x:A ` e ↓L C

Γ ;∆, x:Σa:γ. A ` e ↓L C
(ΣL)

Γ ; ∆, x:A ` e ↓L C

Γ ;∆, x:A ∧ B ` e ↓L C
(∧L1)

Γ ; ∆, x:B ` e ↓L C

Γ ; ∆, x:A ∧ B ` e ↓L C
(∧L2)

Γ ` i : γ Γ ; ∆, x:[i/a]A ` e ↓L C

Γ ;∆, x:Πa:γ. A ` e ↓L C
(ΠL)

Rules of the left tridirectional system identical to the simple tridirectional system, except for the linear contexts∆:

Γ (x) = A

Γ ; · ` x ↑ A
(var)

Γ, x:A; · ` e ↓ B

Γ ; · ` λx. e ↓ A → B
(→I)

Γ ; ∆1 ` e1 ↑ A → B Γ ;∆2 ` e2 ↓ A

Γ ; ∆1 , ∆2 ` e1e2 ↑ B
(→E)

Γ ; ∆ ` e ↑ A Γ ` A ≤ B

Γ ; ∆ ` e ↓ B
(sub)

Γ (u) = A

Γ ; · ` u ↑ A
(fixvar)

Γ, u:A; · ` e ↓ A

Γ ; · ` fix u. e ↓ A
(fix)

Γ ; · ` () ↓ 1
(1I)

Γ ; ∆1 ` e1 ↓ A1 Γ ; ∆2 ` e2 ↓ A2

Γ ; ∆1, ∆2 ` (e1, e2) ↓ A1 ∗ A2

(∗I)
Γ ; ∆ ` e ↑ A ∗ B

Γ ; ∆ ` fst(e) ↑ A
(∗E1)

Γ ; ∆ ` e ↑ A ∗ B

Γ ; ∆ ` snd(e) ↑ B
(∗E2)

Γ ` c : A → δ2(i) Γ ` δ2(i) ≤ δ1(j) Γ ; ∆ ` e ↓ A

Γ ; ∆ ` c(e) ↓ δ1(j)
(δI)

Γ |= ⊥ ∆  e

Γ ; ∆ ` e ↓ A
(contra)

Γ ;∆ ` e ↑ δ(i) Γ ; · ` ms ↓δ(i) B

Γ ;∆ ` casee of ms ↓ B
(δE)

∆  v

Γ ; ∆ ` v ↓ >
(>I)

Γ ; ∆ ` v ↓ A Γ ; ∆ ` v ↓ B

Γ ;∆ ` v ↓ A ∧ B
(∧I)

Γ ;∆ ` e ↑ A ∧ B

Γ ; ∆ ` e ↑ A
(∧E1)

Γ ;∆ ` e ↑ A ∧ B

Γ ; ∆ ` e ↑ B
(∧E2)

Γ, a:γ; ∆ ` v ↓ A

Γ ; ∆ ` v ↓ Πa:γ. A
(ΠI)

Γ ; ∆ ` e ↑ Πa:γ. A Γ ` i : γ

Γ ; ∆ ` e ↑ [i/a]A
(ΠE)

Γ ; ∆ ` e ↓ [i/a]A Γ ` i : γ

Γ ; ∆ ` e ↓ Σa:γ. A
(ΣI)

Γ ; ∆ ` e ↓ A

Γ ;∆ ` e ↓ A ∨ B
(∨I1 )

Γ ; ∆ ` e ↓ B

Γ ; ∆ ` e ↓ A ∨ B
(∨I2)

(Γ0 ` A0) . (Γ ` A) Γ ` e ↓ A

Γ ` (e : (Γ0 ` A0), As) ↑ A
(ctx-anno)

Figure 8: The left tridirectional system, with the part of th e simple tridirectional system (upper left corner) from which it substan-
tially differs. The figure also summarizes the simple tridirectional system: The complete typing rules for the simple tridirectional
system can be obtained by removing the second context∆, including premises of the form∆  e, from the lower rules, along with
the rules in the upper left corner. Hence the subscripts↑L, ↓L are elided.
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Γ ` |e| : A

Type
assignment
system [9]

Thm. 11
?

6
Thm. 3

Γ ` e ↑ A

Γ ` e ↓ A

Simple
tridirectional
system

Thm. 20
?

6
Thm. 18

Γ ; ∆ ` e ↑L A

Γ ; ∆ ` e ↓L A

Left
tridirectional
system

Figure 9: Connections between our type systems

section has only one contextual rule and disallows repeatedappli-
cation. Inspired by the sequent calculus formulation of Barbanera
et al. [2], it replaces the contextual rules with one contextual rule
(directL), closely corresponding to (direct), and severalleft rules,
shown in the upper right hand corner of Figure 8. In combination,
these rules subsume the contextual rules of the simple tridirectional
system.

The typing judgments in the left tridirectional system are

Γ ; ∆ ` e ↑L A Γ ; ∆ ` e ↓L A

where∆ is a linear contextwhose domain is a new syntactic cate-
gory, thelinear variablesx, y and so forth. These linear variables
correspond to the variables introduced in evaluation position in the
(direct) rule, and appear exactly once in the terme, in evaluation
position. We consider these linear variables to be values, like ordi-
nary variables.

The rule (directL) is the only rule that adds to the linear context,
and is the true source of linearity:x appears exactly once in evalu-
ation position inE[x]. It requires that the subterme ′ being brought
out cannot itself be a linear variable, so one cannot bring out a term
more than once, unlike with (direct).

To maintain linearity, the linear context is split among subterms.
For example, in (∗I) (Figure 8), the context∆ = ∆1, ∆2 is split
betweene1 ande2 . To maintain the property that linear variables
appear in evaluation position, in rules such as (→I) that type terms
that cannot contain a variable, the linear context is empty.

After some preliminary definitions and lemmas, we prove that
this newleft tridirectional systemis sound and complete with re-
spect to the simple tridirectional system from Section 3. (See also
Figure 9).

DEFINITION 13. Let FLV(e) denote the set of linear variables
appearing free ine. Furthermore, let∆  e if and only if (1) for
everyx ∈ dom(∆), x appears exactly once ine, and (2) FLV(e) ⊆
dom(∆). (Similarly define FLV(ms) and∆  ms.)

PROPOSITION14 (LINEARITY ). If Γ ; ∆ ` e ↑L C or Γ ; ∆ `
e ↓L C then∆  e. Similarly, if Γ ; ∆ ` ms ↓δ(i) C then∆  ms.

PROOF. By induction on the derivation. For (contra), (>I),
(⊥L), use the appropriate premise.

DEFINITION 15. Let ∆ � e if and only if (1) for everyx ∈

dom(∆), there exists anE such thate = E[x] andx /∈ FLV(E), and
(2) FLV(e) ⊆ dom(∆). (It is clear that∆ � e implies∆  e.)

LEMMA 16. If D derivesΓ ; ∆ ` e ↑L C or Γ ; ∆ ` e ↓L C by
a rule R and∆ � e, then for each premiseΓ ′; ∆ ′ ` e ′ ↑L C ′ or
Γ ′; ∆ ′ ` e ′ ↓L C ′ of R, it is the case that∆ ′ � e ′.

PROOF. Straightforward.

5.1 Soundness

DEFINITION 17. A renamingρ is a variable-for-variable sub-
stitution from one set of variables (dom(ρ)) to another, disjoint set.

When a renaming is applied to a term,[ρ]e, it behaves as a substi-
tution, and can substitute the same variable for multiple variables.
Unlike a substitution, however, it can also be applied to contexts.
A renaming from linear variables to ordinary program variables,
ρ = x/x, . . . , may be applied to a linear context∆: [ρ]∆ yields
an ordinary contextΓ by renaming all variables in dom(∆). In the
other direction, a renamingρ from ordinary program variables to
linear variables may be applied to an ordinary contextΓ : [ρ]Γ yields
a zoned contextΓ ′; ∆, where dom(Γ ′) = dom(Γ ) − dom(ρ) and
dom(∆) is the image ofρ on Γ restricted to dom(ρ).

THEOREM 18 (SOUNDNESS, LEFT RULE SYSTEM). If ρ re-
names linear variables to ordinary program variables andΓ ; ∆ `
e ↑L C (resp.Γ ; ∆ ` e ↓L C) and∆ � e anddom(ρ) ⊇ dom(∆),
thenΓ, [ρ]∆ ` [ρ]e ↑ C (resp.Γ, [ρ]∆ ` [ρ]e ↓ C).

The condition∆ � e is trivially satisfied if∆ = · ande contains
no linear variables, which is precisely the situation for the whole
program.

PROOF. By induction on the typing derivation. We use Lemma
16 to satisfy the linearity condition whenever we apply the IH.
Most cases are completely straightforward, except for the rules not
present in the simple tridirectional system.

For (var), it is given that dom(ρ) ⊇ dom(∆), so we can apply
(var). For (directL), use the IH on the first premise, letx be new,
and use the IH on the second premise with the renamingρ, x/x; ap-
ply properties of substitution and weakening to yield derivations to
which (direct) can be applied. For the left rules, use a different re-
namingρ, x ′/x wherex ′ is new for each premise, then apply the IH
to yield derivation(s) typing[ρ, x ′/x] E[x] (by ∆ � e, e = E[x]).
Use (var) to obtain a typing of[ρ]x. Finally, apply the correspond-
ing tridirectional rule, such as (∨E) for the (∨L) case.

5.2 Completeness
We now show completeness: If a term can be typed in the sim-

ple tridirectional system, it can be typed in the left tridirectional
system. First, a small lemma:

LEMMA 19. If Γ ; x:A ` x ↑L B and Γ ;∆, x:B ` e ↓L C then
Γ ; ∆, x:A ` e ↓L C.

PROOF. By induction on the first derivation.

THEOREM 20 (COMPLETENESS, LEFT RULE SYSTEM). If ρ

renames ordinary program variables to linear variables andΓ `
e ↑ C (resp.Γ ` e ↓ C) and∆ � [ρ]e where[ρ]Γ = Γ ′; ∆, then
[ρ]Γ ` [ρ]e ↑L C (resp.[ρ]Γ ` [ρ]e ↓L C).

PROOF. By induction on the typing derivation. Most of the
cases can be handled as follows: Restrictρ to variables appearing
in subterms ofe (if any). Apply the IH to all premises. Reason that
if ρ ′ is a restriction ofρ to a subterme ′, then the result of applying
the IH—namely[ρ ′]Γ ` [ρ ′]e ′ ↓L A—implies [ρ]Γ ` [ρ]e ′ ↓L A.
Finally, reapply the original rule.

However, this fails for the rules that are absent or modified in the
left tridirectional system: (direct), (⊥E), (∨E), (ΣE). In each of
the cases for these rules, there are two subcases:

• If the subterme ′ is not a variable renamed byρ, then we ap-
ply the IH to the premise typinge ′, make a new linear vari-
ablex, apply the IH to the contextual premises as needed, ap-
ply the corresponding left rule (or do nothing in the (direct)
case) to showE[x] ↓L C, then apply (directL).
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• If e ′ is a variable in dom(ρ), we apply the IH to all premises,
apply the corresponding left rule (or do nothing in the (direct)
case), then use Lemma 19.

5.3 Decidability of Typing

THEOREM 21. Γ ;∆ ` e ↓L A is decidable.

PROOF. We impose an order< on two judgmentsJ1 = Γ1 ; ∆1 `
e1 ↓↑ A1 andJ2 = Γ2 ; ∆2 ` e2 ↓↑ A2 . When ordering terms, we
consider linear variables to be smaller than any other terms; for ex-
ample,(x, e2) is smaller than(y, e2)). When ordering types (that
is, type expressions), we consider all index expressions tobe of
equal size.

The order is defined as follows.

1. If e1 is smaller thane2 thenJ1 < J2 . If e1 is the same size
ase2 :

2. If the directions of the judgments differ, the synthesis judg-
ment is smaller than the checking judgment. If the directions
are the same:

3. If both judgments are checking judgments andA1 is smaller
than A2 thenJ1 < J2. If both judgments are synthesis
judgments,Γ1 = Γ2 , ∆1 = ∆2 , A1 is as small as, or smaller
than, some type in(Γ1 ; ∆1), andA1 is larger thanA2 , then
J1 < J2. Otherwise:

4. If the number of times any of the type constructors∨, Σ, ⊥,
∧, Π, > appear in∆1 is less than the number of times they
appear in∆2 thenJ1 < J2 .

Now we show that for every rule, each premise is smaller than the
conclusion. For most premises, the first criterion alone makes the
premise smaller. The second criterion is for (sub). The third crite-
rion is needed for rules such as (ΠI) and (ΠE). Note that a synthe-
sis judgment whose type expression becomes larger is considered
smaller! Synthesis judgments eventually “bottom out” at rules like
(ctx-anno) and (∗E1), in which the term becomes smaller, or at
rules (var), (fixvar) or (var), where the type synthesized is taken
from Γ or ∆. Since all the type expressions inΓ and∆ are finite,
there is no problem. The fourth criterion is for the left rules, where
the term, direction, and type do not change.

The second premise of (directL) is smaller than its conclusion
because we consider linear variables to be the smallest terms and
(directL) does not permite ′ to be a linear variable.

5.4 Type Safety
If ·; · ` e ↓L A in the left tridirectional system, from Theorem

18 we know· ` e ↓ A. Then by Theorem 3,· ` |e| : A in our
type assignment system [9]. That is, type erasure suffices toget a
typing derivation in the type assignment system. It followsfrom
[9]’s Theorem 3, Type Preservation and Progress, that|e| either
diverges or evaluates to a value of typeA.

6. RELATED WORK
Refinements, intersections, unions.The notion of datasort refine-
ment combined with intersection types was introduced by Freeman
and Pfenning [11]. They showed that full type inference was de-
cidable under the so-called refinement restriction by usingtech-
niques from abstract interpretation. Interaction with effects in a
call-by-value language was first addressed conclusively byDavies
and Pfenning [7] who introduced the value restriction on intersec-
tion introduction, pointed out the unsoundness of distributivity, and
proposed a practical bidirectional checking algorithm.

Index refinements were proposed by Xi and Pfenning [28]. As
mentioned earlier, the necessary existential quantifierΣ led to dif-
ficulties [26] because elaboration must determine the scopeof Σ,
which is not syntactically apparent in the source program. Xi ad-
dressed this by translating programs into a let-normal formbefore
checking index refinements, which is akin to typechecking the orig-
inal term in evaluation order. Because of the specific form ofXi’s
translation, our tridirectional system admits more programs, even
when restricted to just index refinements and quantifiers. Nonethe-
less, we conjecture that Xi’s idea of traversing the entire program
strictly in evaluation order is applicable in our significantly more
complex setting to eliminate the nondeterminism inherent in the
(directL) rule; we plan to pursue this in further research.

Intersection types [4] were first incorporated into a practical lan-
guage by Reynolds [19]. Pierce [17] gave examples of program-
ming with intersection and union types in a pureλ-calculus using
a typechecking mechanism that relied on syntactic markers.The
first systematic study of unions in a type assignment framework [2]
identified several issues, including the failure of type preservation
even for the pureλ-calculus when the union elimination rule is too
unrestricted. It also provided a framework for our more specialized
study of a call-by-value language with possible effects.

Some work on program analysis in compilation uses intersection
and union types to infer control flow properties [24, 15]. Because
of the goals of these systems for program analysis and control flow
information, the specific forms of intersection and union types are
quite different from ours.Soft typingsystems designed for type in-
ference under dynamic typing [3] are somewhat similar, allowing
intersection, union, and even conditional types [1]. Again, due to
the different setting and goal, the technical realization differs sub-
stantially from our work.

Partial inference systems. Our system shares several properties
with Pierce and Turner’slocal type inference[18]. Their language
has subtyping and impredicative polymorphism, making fulltype
inference undecidable. Their partial inference strategy is formu-
lated as a bidirectional system with synthesis and checkingjudg-
ments, in a style not too far removed from ours. However, in
order to handle parametric polymorphism without using nonlocal
methods such as unification, they infer type arguments to polymor-
phic functions, which seems to substantially complicate matters.
Hosoya and Pierce [12] further discuss this style, particularly its
effectiveness in achieving a reasonable number of annotations.

Our system does not yet have parametric polymorphism. Prior
research, either with (in [26]) or without (in [7]) a syntactic distinc-
tion between ordinary and property types, is not conclusive. How-
ever, the work on local type inference suggests that, at least, prefix
polymorphism in the style of ML should be amenable to a consis-
tent treatment with bidirectional rules.

Principal typings. A principal typeof e is a type that represents
all types ofe—in some particular contextΓ . A principal typing[13]
of e is a pair(Γ, A) of a context and a type, such that(Γ,A) rep-
resents all pairs(Γ ′, A ′) such thatΓ ′ ` e : A ′. These defini-
tions depend on some idea of representation, which varies from
type system to type system, making comparisons between systems
difficult. Wells [25] improved the situation by introducinga gen-
eral notion of representation. Since full type inference seems in any
case unattainable, we have not investigated whether principal typ-
ings might exist for our language. However, the idea of assigning
a typing (rather than just a type) to a term appears in our system
in the form of contextual typing annotations, enabling us tosolve
some otherwise very unpleasant problems regarding the scope of
quantified index variables.
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7. CONCLUSION
In [9], we developed a type assignment system with a rich set of

property type constructors. That system is sound in a standard call-
by-value semantics, but is inherently undecidable. In thispaper, by
taking a tridirectional version of the type assignment system, we
have obtained a rich yet decidable type system. Every program
well-typed under the type assignment system has an annotation
with contextual typingsthat checks under the tridirectional rules.
Contextual typing annotations should be useful in other settings,
such as systems of parametric polymorphism in which subtyping is
decidable.

In order to show decidability, and as a first important step to-
wards a practical implementation, we also presented a less nonde-
terministic left tridirectional systemand proved it to be decidable
and sound and complete with respect to the tridirectional system.

We are in the process of formulating a let-normal version of the
left tridirectional system. Such a system would drastically reduce
the nondeterminism in (directL) by forcing the typechecker to tra-
verse subterms in evaluation order, while being sound and complete
with respect to the left tridirectional system.

Once this is done, we plan to develop a prototype implementa-
tion of the let-normal system that should help us answer questions
regarding the practicality of our design on realistic programs. The
main questions will be (1) if the required annotations are reasonable
in size, (2) if type checking is efficient enough for interesting pro-
gram properties, and (3) if the typing discipline is accurate enough
to track properties in complex programs. The preliminary experi-
ence with refinement types, including both datasort refinements [5]
and index refinements [28], gives reason for optimism, but more
research and experimentation is needed.
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