
Fungi: Typed incremental computation with names

MATTHEW A. HAMMER, University of Colorado Boulder
JANA DUNFIELD, Queen’s University
KYLE HEADLEY, University of Colorado Boulder
MONAL NARASIMHAMURTHY, University of Colorado Boulder
DIMITRIOS J. ECONOMOU, University of Colorado Boulder

Incremental computations attempt to exploit input similarities over time, reusing work that is unaffected
by input changes. To maximize this reuse in a general-purpose programming setting, programmers need a
mechanism to identify dynamic allocations (of data and subcomputations) that correspond over time.

We present Fungi, a typed functional language for incremental computation with names. Unlike prior
general-purpose languages for incremental computing, Fungi’s notion of names is formal, general, and
statically verifiable. Fungi’s type-and-effect system permits the programmer to encode (program-specific)
local invariants about names, and to use these invariants to establish global uniqueness for their composed
programs, the property of using names correctly. We prove that well-typed Fungi programs respect global
uniqueness.

We derive a bidirectional version of the type and effect system, and we have implemented a prototype
of Fungi in Rust. We apply Fungi to a library of incremental collections, showing that it is expressive in
practice.

1 INTRODUCTION
In many software systems, a fixed algorithm runs repeatedly over a series of incrementally changing
inputs (Inp1, Inp2, . . .), producing a series of incrementally changing outputs (Out1,Out2, . . .). For
example, programmers often change only a single line of source code and recompile, so Inpt is
often similar to Inpt−1.

The goal of incremental computation is to exploit input similarity by reusing work from previous
runs. If the source code Inpt is almost the same as Inpt−1, much of the work done to compile
Inpt and produce the target Outt can be reused. In many settings, this reuse leads to asymptotic
improvements in running time.

Such improvements are possible when the recomputation is stable: when the work done by run
t − 1, producing output Outt−1 from input Inpt−1, is similar to the work needed for run t to
produce output Outt from Inpt. In some cases, such as total replacement of the source program
being compiled, stability is impossible. Thus, a central design question is how to maximize stability.
Consider a simple program that applies a binary operation g to two parts (x, y) of the input,

and then applies another binary operation f to the result of g and a third part (z) of the input.
This program has three inputs, one output, and one intermediate result (the result of g on x and y).

Authors’ addresses: Matthew A. Hammer, University of Colorado Boulder, Department of Computer Science; Jana Dunfield,
Queen’s University, School of Computing; Kyle Headley, University of Colorado Boulder, Department of Computer Science;
Monal Narasimhamurthy, University of Colorado Boulder, Department of Computer Science; Dimitrios J. Economou,
University of Colorado Boulder, Department of Computer Science.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:2
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou
initial run change z; redo f; reuse g change x; redo g; reuse f (le�), or redo f (right)

x

f

a b

input
variable
cached
computation
a depends

on b

x y z

f

g

x y z ′

f

g

x ′ y z

f

g

x ′ y z

f

g

Fig. 1. Reuse across several program runs

Assuming efficient equality tests for x, y and the result of g, we can save this intermediate result
and, potentially, reuse it across runs.

Fig. 1 shows some example runs. In the first run, we have stored g(x, y). In the second run, the
user has changed the input z to z ′—but since the inputs x and y have not changed, we can reuse
the result g(x, y) and perform only the operation f. In the third run, the user has changed x to x ′,
which requires doing the operation g again.

Thus, between the first and second runs we had to recompute only f; between the second and
third runs, we had to recompute g. Depending on whether g’s result changes, we might recompute
f as well.
At this low level of complexity, it may seem straightforward to ensure that the incremental

program is both consistent and efficient:
• An incremental program is from-scratch consistent if its output matches the output that would
be produced by running the program from scratch (that is, without using saved intermediate
results).
As long as we reuse the result of g only when x and y have not changed, and reuse f only
when g and z have not changed, this simple program is from-scratch consistent.

• An incremental program is incrementally efficient (or achieves incremental efficiency) if it does
only the necessary new work.
As long as we always reuse the result of g when x and y have not changed, and always reuse
f when g and z have not changed, this simple program is incrementally efficient.

For nontrivial programs, however, achieving both incremental consistency and incremental
efficiency can be extremely difficult. Consider GNU make, a relatively simple build system: it
achieves consistency (at least in principle) only by working at a very coarse level of granularity—
entire programs (cc, ld, etc.) and entire files. Opportunities to reuse work within a 5,000-line
input to cc are missed, and understandably so: compilers are large systems that use complex data
structures and clever algorithms. Merely comparing file modification times (or even file contents)
cannot utilize, say, the fact that the result of a liveness analysis has not changed. (Or, that the
analysis has changed slightly, which creates many subtle dependencies.)

The gold standard for incremental programs is to painstakingly design an incremental algorithm
that explicitly saves results and reuses work, perhaps in very clever ways. In many development
settings, it is not feasible to expend that kind of effort. Rather than giving up on incremental software
(by not attempting to reuse work at all) or using simplistic approaches (along the lines of make) that
miss many opportunities for reuse, we should offer incremental programming languages that allow
programmers to easily build incremental programs that are correct and efficient, at scale. Thus, an
incremental programming language should enable programmers (1) to store and reuse intermediate
results, without drastically changing their source program; (2) to exploit similarities (between
inputs, and between stored results), including for highly structured input data and nontrivial data

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :3

structures; (3) to easily combine smaller incremental programs into incremental systems. Moreover,
the language should make it as easy as possible to obtain both correctness and efficiency.

Incremental languages can be categorized by their breadth of applicability, with domain-specific
languages at one end of the spectrum and general-purpose languages at the other; the language in
this paper is general-purpose. The central advance we make is in statically verifying an important
aspect of incremental programs: that subcomputations are named uniquely within each run.
The tiny program shown above is not adequate to illustrate the need for unique naming: the

program’s input has no interesting structure, and there is only one intermediate result. We argue
the need for names themselves here; we will discuss a concrete example, illustrating the need for
unique names, in Sec. 2.

To reuse a unit of work, we must observe that the newer result corresponds to the older result. The
program f(g(x, y), z) uses no control structures and performs the operations f and g exactly once,
so it is immediate that g(x, y) in the second run corresponds to g(x, y) in the first run. Moreover,
we say that g(x ′, y) in the third run corresponds to g(x, y) in the second run, even though x ′ is
(probably) not equal to x and hence g(x ′, y) is (probably) not equal to g(x, y): Correspondence is
not equality; instead, correspondence is the idea that two uses of g happen “in the same place”.

The correspondence of x ′ to x, and z ′ to z, is even more immediate. But what if, instead of giving
three discrete inputs (x, y, z), we gave a list of integers as input? If the change in input across runs
is confined to specific list elements, say replacing the second element 22 with 23, we could say
that the kth element of the previous input corresponds to the kth element of the current input.
However, if the change is to insert an element in the input list, identifying the kth element at time
t− 1 with the kth element at time t won’t work: the small change of inserting a single element will
look like the complete replacement. We need some notion of identity to realize that, if we insert an
element at (say) the head of the list, the 1st element at time t− 1 corresponds to the 2nd element at
time t, the 2nd element at time t− 1 corresponds to the 3rd element at time t, and so forth.
In our setting of a general-purpose language, there is no one-size-fits-all notion of identity.

Instead, we need to enable programmers to choose a notion of identity that is appropriate for each
program—a notion that exposes appropriate correspondences, and hence enables reuse. We call
this notion of identity a naming strategy. Choosing a naming strategy that actually enables reuse is
often difficult; the study of incremental cost semantics, which describe the potential for reuse, is a
research area in itself. Our contribution is to make it easier for programmers to experiment with
different naming strategies: the Fungi type system rules out a large class of naming errors that, in
earlier languages such as Nominal Adapton [Hammer et al. 2015], could only be caught at run time.
In Table 1, we compare Fungi to some related approaches. The first two rows list work on

incremental languages for substantially different programming models; those systems’ answers
to the question of how to identify corresponding subcomputations do not apply in our setting
(nor would our answer apply in theirs). We briefly discuss these two systems, and other work
in substantially different settings, in Section 8. The remaining rows in the table—starting with
AFL [Acar et al. 2002]—list general-purpose incremental programming languages that endeavor to
provide a standard programming model with (relatively) lightweight incrementality; as we noted
above, we want to support incrementality without requiring programmers to drastically change
their source programs. Within this broad setting, we can observe an evolution from no mechanism
to identify corresponding subcomputations (AFL in 2002) to informal or specialized mechanisms
(several papers through 2012 and Adapton in 2014), and then to formal mechanisms.

Contributions. We make the following contributions:
• We develop a type-and-effect system for a general-purpose incremental programming lan-
guage (Sections 3 and 4). Using refinement types, the system statically relates names to

, Vol. 1, No. 1, Article . Publication date: May 2021.



:4
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

approach
programming
model

mechanism
to identify
corresponding
subcomputations

detection of
naming errors

Demetrescu et al. [2011] reactive/imperative memory address n/a
Concurrent revisions

[Burckhardt et al. 2011]
revision-based
imperative programming

call graphs (1) n/a

AFL [Acar et al. 2002] functional language none n/a
Carlsson [2002] functional language none n/a

Acar et al. [2006b,a] functional language keys (informal) (2)

DeltaML [Acar and Ley-Wild 2008] functional language keys (informal) (2)

CEAL [Hammer et al. 2009] imperative language keys (informal) (2)

implicit SAC [Chen et al. 2011, 2012] functional language keys (informal) (2)

Adapton [Hammer et al. 2014] functional language
structural

(hash-consing) n/a

Nominal Adapton [Hammer et al. 2015] functional language names (formal) dynamic
Fungi (this paper) functional language names (formal) static

(1) position in global call graph; small changes in call graph structure prevent reuse
(2) fall back to a global counter—preventing reuse now, in the future, or both

Table 1. Some approaches to incremental computation

allocated data (references) and computations (thunks); it supports a set of type-level opera-
tions on names that is large enough to describe sophisticated uses of names, but small enough
for decidable type checking.

• In Section 6, we prove that the effects tracked by our system are sound with respect to
our dynamic semantics (Section 5). As a consequence, our type system ensures, statically,
that names are unique within each run of the program—a property that, previously, could
only be checked dynamically [Hammer et al. 2015]. In nontrivial programs, this global
uniqueness property is a consequence of local uniqueness properties that are specific to
particular algorithms and data structures; see Section 2.

• We implement the type system, and demonstrate its applicability to a variety of examples
(Section 7).

2 OVERVIEW
In this section, we use an example program to give an overview of Fungi as a typed language for
incremental computation with names. Specifically, we consider the from-scratch semantics, typing,
and incremental semantics of dedup, a list-processing function that removes duplicates: the output
list retains only the first occurrence of each input list element.
The implementation of dedup uses names to create correspondences between similar inputs,

leading to incremental reuse via an efficient application of a (general-purpose) change propagation
algorithm. The correctness of change propagation relies on the global uniqueness of allocation
names, explained below.
The Fungi type system ensures that dedup satisfies global uniqueness; to do so, the Fungi

programmer uses types to express several local uniqueness invariants. Before discussing this
example, we briefly discuss these naming properties, which are each fundamental to the novel
design of Fungi as a language for typed incremental computation with names.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :5

2.1 Naming properties
Our Fungi type system enforces the global uniqueness of names. For nontrivial programs, global
uniqueness requires local uniqueness of names; our type system also checks local uniqueness
properties as stated by the programmer.

Global uniqueness of allocation names: For every allocated reference cell or thunk, the name used
to identify the allocated reference (or thunk) is unique.

Local uniqueness properties: The data structures in an incremental program may contain names.
For example, if we map over a list, we may need to associate the third element of the input list
with the third element of the output list. The name used to represent “being the third element”
may then occur within related pointer names, such as the pointer names of the third element of
the input and the third element of the output. The name that represents “being the third element”
may be stored in several different lists, but it should not occur more than once within each list:
the input list cannot have two third elements. Since the appropriate local uniqueness properties
depend on the details of each program, they cannot be given a priori. Instead, the programmer or
library designer expresses the appropriate properties, using the Fungi type system.

In general, local uniqueness—in the form appropriate to each program—is needed to ensure global
uniqueness. Our type system rules out, statically, violations of global uniqueness and violations
of local uniqueness. While previous systems such as Nominal Adapton included constant-time
dynamic checks to catch violations of global uniqueness, most local uniqueness properties cannot
be checked in constant time.

Since local uniqueness violations can lead to subsequent global uniqueness violations, being able
to statically ensure local uniqueness rules out a large class of subtle errors—much like the advanced
type system of the Rust language rules out dangling pointers. As we show below (Sec. 2.6), some
violations in these principles are only triggered by certain inputs, which may be unlikely, and thus
unlikely to show up in randomized dynamic tests.
By enforcing these principles of unique names statically, Fungi programs enjoy the guarantees

they afford, e.g., that change propagation will work correctly.
These principles about names, which are fundamental to general-purpose incremental computa-

tion, have been applied in some incremental computing systems of the past, but until now, have
not been codified formally, or statically verified (see Table 1 for details).

In some past systems (based on self-adjusting computation), the runtime dynamically detects and
tolerates violations of these uniqueness properties—the names are called “keys”, and are viewed as
hints that can be wrong, or non-unique. In the cases that they are not unique, the caching/allocation
mechanism falls back to using a global counter. In turn, this cache location choice is not based
on the current input, is not functional, and consequently, it will generally not be reusable as a
“replayed” allocation in subsequent invocations of change propagation on similar inputs.

In other systems (Nominal Adapton), the runtime system simply triggers a dynamic error for
violations of global uniqueness.

No prior system of which we are aware permits programmers to systematically encode or check
local uniqueness, either statically, or dynamically (which would be expensive).

Next, to make these ideas concrete, we consider an example.

2.2 The program listing and dynamic semantics of dedup
Fig. 2 gives the program listing for dedup, including type declarations. The right-hand column of
the figure shows additional type declarations, explained further below (Sec. 2.4).

, Vol. 1, No. 1, Article . Publication date: May 2021.



:6
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

idxtm Dedup : NmSet → NmSet
= λX. { @t }•(Insert X) ⊥ { @dd }•X ⊥ { @r }•X

dedup : ∀X1⊥X2:NmSet.
List [ X1 ] → Trie [ X2 ] → List [ X1 ]

�[ Dedup X1 ]

dedup l t =
match (get l) with
Nil ⇒ l
Cons x y ys ⇒

let (tx ,b) = scope ⟨ @t ⟩ insert x y t
let ddys = thunk ⟨ @dd•x ⟩ { dedup ys tx }

if b then force ddys else
ref ⟨ @r•x ⟩(Cons x y (force ddys))

type List [ X ] = Ref(ListNode [ X ])

type ListNode : NmSet ⇒ Type
Nil : ∀X:NmSet. ListNode [ X ]

Cons : ∀X1⊥X2:NmSet.
Nm [ X1 ] → Nat → List [ X2 ] →
ListNode [ X1⊥X2 ]

type Trie [ X ] = Ref(TrieNode [ X ])

idxtm Insert : NmSet → NmSet
insert : ∀X1⊥X2:NmSet.

Nm [ X1 ] → Nat → Trie [ X2 ] →
(Trie [ X1⊥X2 ] , Bool)
�[ Insert X1 ]

Fig. 2. The effect, type and code listing for dedup (left), and definitions for linked lists and hash tries (right).

Input List Computation Output List

dd·n1

dd·n2

...

a3

...
t·n1·0 t·n1·1 · · · · · · · · ·

...

r·n4

t·n2·0 t·n2·1 t·n2·2 t·n2·3 t·n2·4

a2

r·n2

l t

x = n2

y = 4

ys

tx

b = False

ddys

n2

4 dedup a2

t·n1·0
n2 4

n2

4

when forced, returns

Accumulator: Hash Trie

Fig. 3. The static variables of dedup (left column), and their dynamic values and structure (to the right),
for the second iteration of dedup on the input list [3, 4, 3, 9], where the list element y is 4.

First, let’s consider an approximation of the declared type and code for dedup, ignoring the index
term declaration (idxtm Dedup) and other type indices and effects. The type declaration of dedup
says that it accepts two arguments, a list of type List[X1 ] and a hash trie of type Trie[X2 ], and
returns a list of type List[X1 ]. Before examining the type structure of dedup in more detail, we
consider the code, and its dynamic semantics.
Consider the initial run of dedup on the input list [3, 4, 3, 9], stored at the sequence of pointer

addresses ⟨a1, a2, a3, a4, a5⟩, which store Cons cells and a terminal Nil value. In addition to the
elements [3, 4, 3, 9], the Cons cells also contain a sequence of names (as values) ⟨n1, n2, n3, n4⟩,
with one name per Cons cell.

The dedup function uses these names to determine its allocation names—the identities of allocated
data and thunks. Moreover, it stores these names (as values) within the allocated data. Intuitively,
these names identify the logical places of the Cons cells in the input list, and by copying these
names into these other allocated values, they permit the dedup program to create correspondences
with other logical places in its data. Further below, we will look at a full picture of this entire
execution.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :7

Fig. 3 shows a single “tile” of this execution, for the iteration on input cell a2 containing name n2

and input element 4. The left side of the figure gives the rest of dedup’s static variables, and relates
them to their dynamic values and structure, including the input list, accumulator and output list. We
consider the remainder of Fig. 3 in the context of the dedup algorithm (Fig. 2). The dedup algorithm
processes the input list l using structural recursion, retaining the first occurrence of each element
and filtering out subsequent occurrences. We use a hash trie argument t to efficiently represent the
set of input elements already processed. The final if-else expression branches on this case: if b is
true, the element has already been seen so we recur (force ddys) without building an output Cons
cell; if b is false (else branch), the element has not been seen and we construct an output Cons cell.
In this tile (Fig. 3), the Cons case of dedup consists of handling the given named list position

(x = n2), holding a list element (y = 4), and recursively processing the elements in the tail of the
Cons cell (ys = a3). To do so efficiently, dedup inserts element y = 4 into the current trie (t) using
a helper function insert.
The call to insert uses a write scope (written scope), which permits the call site to specialize

the names written by this function: the names written by function insert are each prefixed by the
given name constant @t. (In listings, we include the symbol @ to distinguish the constant name t
from the static program variable t; to save space, in figures we use the face t for this same name
constant @t, and omit the @ symbol.)
As Fig. 3 shows, the value of variable t is (pointer) name t·n1·0, which contains the prefix

(sub-name) t, and suffix (sub-name) 0. Similarly, the value of variable tx is (pointer) name t·n2·0,
which contains the same prefix t and suffix 0, but uses name n2 in place of name n1. For reasons
we explain below (Sec. 2.6), omitting this write scope name t would constitute a static typing error
for this program, as it would allow some input lists to violate global uniqueness (Sec. 2.1).
Next, dedup allocates an explicitly named thunk to identify its recursive call, giving the subex-

pression @dd•x, which prepends the name constant dd to the name value of variable x, in this
casen2, resulting in the dynamic name dd·n2. As Fig. 3 shows, our “current thunk” for this iteration
is dd·n1, and the next iteration (statically named ddys) is dynamically named dd·n2, using the
“current name” n2. As we explain in Sec. 2.6, omitting this prefix dd constitutes a static naming
error, since it violates global uniqueness (unique pointer names).

Finally, the dedup code executes the else case, since input element 4 is not present in the input
trie t = t·n1·0, and is making its first occurrence with this Cons cell. Similarly with thunk above,
the dedup code allocates an explicitly named reference cell to identify its resulting list cell, giving
the subexpression @r•x, which prepends the name constant r to x = n2, resulting in the dynamic
name r·n2. As Fig. 3 shows, the “next thunk” that this iteration forces, dd·n2, returns the list
pointer r·n4, which we store as the tail of the output Cons cell r·n2. As above, omitting this prefix r
violates global uniqueness. Other naming mistakes are possible as well; see Sec. 2.6.

In the remainder of the overview, we define the internal structure of names and discuss reasoning
about uniqueness (Sec. 2.3), discuss the details of the insert function used by dedup, and consider
static reasoning for dedup’s use of names (Sec. 2.4).

2.3 Apartness for names, name sets and name functions
We briefly describe the structure of names, and discuss a notion that underpins Fungi’s design:
apartness of names, name sets and name functions.

Our core calculus defines names as binary trees, n ::= leaf | ⟨⟨n, n⟩⟩. In practice, we augment this
definition in two small ways. First, we extend the leaf production with other terminal productions
for numbers and symbolic constants, written 0 and t (respectively) in the example above. For the
purposes of reasoning formally, we assume (unspecified) encodings of these terminal productions
into the simple formal grammar above. Second, we use a more lightweight notation for binary

, Vol. 1, No. 1, Article . Publication date: May 2021.



:8
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

name composition: n1·n2·n3 denotes ⟨⟨n1, ⟨⟨n2, n3⟩⟩⟩⟩. This is only a convenient notation;
names are still trees, so (unlike string concatenation) binary name composition is not associative:
n1·n2·n3 , (n1·n2)·n3, since ⟨⟨n1, ⟨⟨n2, n3⟩⟩⟩⟩ , ⟨⟨⟨⟨n1, n2⟩⟩, n3⟩⟩.
To respect the principles of unique names, Fungi encodes “uniqueness” through apartness.

Apartness plays a central role in our type-and-effects system and metatheory. In Fungi code, we
read the connective ⊥ as “apart”, a notion that (1) generalizes the operation of (disjoint) set union
and (2) asserts that the left- and right-hand operands are indeed disjoint, with no common names.

Unlike disjoint set union, which is only defined for sets, our type system defines apartness over
(pairs of) name terms and index terms. Name terms include functions over names, as well as literal
names; index terms include name sets. Informally, we say that (1) two names n1 and n2 are apart
if they are not equal (if n1 and n2 are distinct binary trees), (2) two sets of names are apart if they
are disjoint, and (3) two functions are apart if the functions’ images are apart. For example, two
functions from names to names are apart if their images (name sets) are apart.

2.4 Static effects and types for dedup
Having seen part of a dynamic execution, we consider a static view of dedup, how Fungi enforces
global uniqueness for it, and how Fungi permits the programmer to express and enforce the local
uniqueness invariants that support global uniqueness.

Global uniqueness: Static effects for dedup. Returning to Fig. 2, the index term declaration idxtm
Dedup defines a function from name sets to name sets, of sort NmSet→ NmSet. Given the names
in dedup’s input list, the name set function Dedup gives an overapproximation of dedup’s write
set—the set of names written by executing dedup on an input list associated with the given name
set. This name set function Dedup appears in the type of dedup, defining the write set in terms of X1
as �[Dedup X1 ].1 This annotation says that Dedup is a static abstraction of the dynamic allocation
effects in the body of dedup.
As explained in detail above, dedup uses each input name x (drawn from name set X1) three

times. However, in each of these uses x is composed with other name constants, resulting in unique
global names. The three uses are as follows.

(1) Allocate a new path in the trie. In aggregate, these allocations write names in the set Insert
X1, but with the name constant @t prepended.

(2) Allocate a recursive thunk. In aggregate, these allocations write names in X1, but with the
name constant @dd prepended.

(3) Allocate an output list cell. In aggregate, these allocations write some names in X1 (for names
of non-duplicated input list elements), but with the name constant @r prepended.

These three terms appear in the body of Dedup. To describe pointwise binary name combination
over pairs of name sets, Fungi uses the notation •. (Above, wewrite “·” and “•” for binary combination
of name constants and name values, respectively.) Using the apart name set operator ⊥, the body
of Dedup combines these three (disjoint) subsets, simultaneously asserting that they stand apart.

1Our full type system also tracks read sets, and checks that the read and write sets are in harmony: it is not possible to read
a location before it has been allocated.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :9

To see why these terms indeed stand apart, consider the following expansion, where we expand
the definition of Dedup over {n2}, to account for the write set of the n2 tile only (Fig. 3):

Dedup {n2} = {t}•(Insert {n2}) ⊥ {dd}•{n2} ⊥ {r}•{n2}

= {t}•{n2}•Nat ⊥ {dd·n2} ⊥ {r·n2}

= {t}•{n2}•Succ
∗{Zero} ⊥ {dd·n2, r·n2}

= {t}•{n2}• (Succ
∗{Succ(Zero)}⊥{Zero}) ⊥ {dd·n2, r·n2}

= {t}•{n2}•Succ
∗{Succ(Zero)} ⊥ {t·n2·Zero,dd·n2, r·n2}

= {t}•{n2}•Succ
∗{Succ(4)} ⊥ {t·n2·4, t·n2·3, t·n2·2, t·n2·1, t·n2·0,dd·n2, r·n2}

The definition of Insert uses Nat, an infinite set defined by Kleene closure: Succ∗{Zero}. Sec.
2.5 explains this definition and the corresponding implementation of insert, but note that the
“unrolled” set includes the five names that appear in Fig. 3 that are each based on n2, with t
prepended and 0–4 appended. We use decimal notation in place of the actual unary Zero and Succ.
As this expansion shows, the names in the image of Dedup {n2} are pairwise distinct: we can

distinguish them by their prefixes (t, dd and r), or—for those with the common prefix t—by their
distinct suffix 0–4.

What about the other tiles, for input positions n1, n3 and n4? Global uniqueness for the entire
execution of dedup rests on the assumptions of local uniqueness for the input list and input trie,
e.g., that n2 is distinct from all other names, which are also pairwise distinct. Next, we explain how
the Fungi programmer establishes and maintains the local uniqueness invariants.

Local uniqueness: Type indices for dedup. The Fungi programmer encodes local uniqueness
invariants by attaching apartness constraints to the type indices used in the definitions of data
structures and functions. Consider the type indices for the two (user-defined) data structures used
by dedup, linked lists and hash tries. The invariants expressed in the types are also useful for many
other functional algorithms.
The programmer defines List and ListNode recursively, giving a reference cell at the head of

each list and recursive sub-list (Fig. 2, right). Though not shown, TrieNode is defined similarly.
The type indices enforce that, in each structure, each name appears at most once; but names may
be shared across different structures.

In the type for Cons, the quantifier for name sets X1 and X2 includes the constraint X1⊥X2, which
says that X1 and X2 are apart (disjoint). These indices appear in the types of the Cons cell’s name
(X1), and its list tail (X2). Consequently, to form lists inductively, the constraint X1⊥X2 must hold,
showing that each additional Cons cell name is distinct from the others already in its tail.
The type indices for insert are similar to those of Cons. They express a similar function in

terms of name sets: stating that the resulting structure (a trie) contains an additional name (in
X1) not present in the input structure (name set X2). The type for Nil allows any name set (a safe
overapproximation), since Nil contains no concrete names at runtime. Similarly, the type for an
empty trie (not shown) allows any name set.

Turning to the type signature of dedup, it includes the apartness constraint X1⊥X2, encoding the
invariant that the type indices for dedup’s input structures (name sets X1 and X2) are apart. The
codomain of the type, List[X1 ], says that the resulting list contains the same names as the input
list. The type system uses the apartness constraints within the types of Cons and insert to show
that dedup’s apartness constraint holds for the recursive invocation of dedup.

Intuitively, that invocation moves name x (x = n2 in Fig. 3) from the head of input list l to the
accumulated trie tx, maintaining the pairwise apartness of names in each of the two structures. In
terms of Fig. 3, the inductive reasoning about dedup’s invariants goes as follows. By assumption,
the name sets of l and t are apart. (In Fig. 3, the name set of l is {n2, n3, n4}, and the name set of

, Vol. 1, No. 1, Article . Publication date: May 2021.



:10
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

type TrieNode : NmSet ⇒ Type
Emp :∀X:NmSet. TrieNode [ X ]

Leaf:∀X:NmSet.
Nm [ X ] → Nat → TrieNode [ X ]

Bin :∀X1⊥X2:NmSet.
Trie [ X1 ] → Trie [ X2 ] →
TrieNode [ X1⊥X2 ]

nmtm Zero : Nm = leaf
nmtm Succ : Nm → Nm = λx.⟨⟨leaf , x ⟩⟩
idxtm Gte : Nm → NmSet = λx.Succ ∗ { x }

idxtm N a t : NmSet = Gte Zero
idxtm Insert X = X• N a t

insert x y t = insrec x y t 0 Zero

insrec : ∀X1⊥X2:NmSet. ∀m:Nm.
Nm [ X ] → Nat → Trie [ X2 ] →
Nat → Nm [ { m } ] → Trie [ X1⊥X2 ]

�[ X•Gte m ]

insrec x y t i ni = if i = 4 then
ref ⟨ x•ni ⟩ (Leaf x y)

else
let (j, nj) = (i+1, Succ ni)
let (txl , txr) =

if hash_bit y i then
(insrec x y (left t) j nj, right t)

else
(left t, insrec x y (right t) j nj)

ref ⟨ x•ni ⟩ (Bin txl txr)

Fig. 4. Types and implementation of hash tries; insrec illustrates general recursion with named effects.

t is {n1}.) In the Cons branch, the apartness constraint in the type signature for Cons provides that
the name x at the Cons cell is apart from the names of the list tail ys, if any. (In Fig. 3, recall that x
= n2, and the names in ys consist of n3 and n4.) The type signature for insert provides that the
names of the output trie consist of the existing names from the existing trie, along with the new
name for the inserted element. In Fig. 3, the inserted trie tx contains the names n1 and n2.

Putting these facts together, in the recursive invocation of thunk ddys, we have that the names
of the list tail ys (n3 and n4) and those of the updated trie tx (n1 and n2) are apart.

Static reasoning: To statically enforce both global and local uniqueness, Fungi uses decision
procedures to determine whether (static approximations of) name sets are apart. When it needs
to prove such an assertion, but decides otherwise, it tells the programmer that the name sets in
question—describing either global effects or local type indices—cannot be proven to be apart. For
instance, if the programmer mistakenly passed l instead of ys in the recursive call, the inductive
invariant would not hold: the names of l and tx overlap at name x. As a result, Fungi would report
that it cannot show the invariant for the recursive call.

Below, we consider insert in more depth (Sec. 2.5) before exploring other possible uniqueness
errors within dedup (Sec. 2.6),

2.5 Helper function insert

Fig. 4 shows the Fungi programmer’s implementation of insert, in terms of a recursive function
insrec (right column). The left column gives the type definition of TrieNode, whose use of indices
is similar to ListNode from Fig. 2. Below this definition, the programmer defines various name and
index terms, culminating in the definition of Insert, which gives the write set for insert, just as
Dedup did for dedup in Fig. 2.
Recall that dedup used structural recursion over a list with a name at each recursive position

(Cons cell). Here, insrec illustrates a pattern of naming allocations within general recursion. The
insert function takes a name, an element (natural number) and a trie; it returns the hash trie
obtained by hashing the given element and inserting it into the given trie. In addition to the updated
trie, insert returns a boolean indicating whether the element was already present in the trie (but
with a distinct name). For clarity, we discuss a simpler variant that only returns the updated trie;
the other variant is similar, with similar allocation effects.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :11

class of mistake the dedup programmer. . . apartness failure
missing tag forgets @dd and/or @r ⊬ λx.(dd·x) ⊥ id and ⊬ λx.(r·x) ⊥ id
prefix/suffix mismatch uses @r as suffix, or forgets @t ⊬ λx.(dd·x) ⊥ λx.(x·r)

⊬ λx.(dd·x) ⊥ λx.(x·0)
“overlapping primes” defines Insert X = Succ∗X X : NmSet ⊬ Succ(Succ(X))⊥Succ(X)

Table 2. Naming mistakes, with examples from dedup and their associated apartness failure

To allocate a new trie path, the Fungi programmer uses names to identify each allocation. Rather
than use names from an input structure, as with the structural recursion of dedup, insert generates
name sets (statically) with Kleene closure: repeated application of a name function Succ∗{x } to an
initial set (Fig. 4). By defining write sets in this way, we can name any allocations within general
recursion based on each allocation’s (complete) path in the recursive call graph. Since insert
recurs only once, there is a single chain of calls and a natural number suffices to name each call.
The implementation of insrec (dynamically) computes the sequence of names, starting from

Zero. (As Fig. 3 illustrates, the last computed name corresponds to 4.) In the final iteration, insert
creates a leaf node holding the inserted element y, and its associated name x. In a more complex
structure, we would handle hash collisions by creating linked lists at these leaf positions; for
simplicity, we assume here that hash collisions are impossible.

The index function Gte gives the inductive invariant for insrec: Every numeral suffix written by
the recursive call to insrec is greater than the one written by the current iteration of the loop, ni.
Recursive iterations will use nj, or some larger numeral. While natural numbers are not built-in to
Fungi’s type index system, the programmer encodes the “greater than” constraint using Fungi’s
notion of apartness.

2.6 Apartness failures violate global uniqueness
As explained above, Fungi enforces global uniqueness and local uniqueness by statically reasoning
about apartness. In writing dedupwithout the Fungi type system, it is easy to make namingmistakes
that violate an apartness constraint—breaking local uniqueness, global uniqueness, or both.
In Table 2, we list three classes of naming mistakes, showing concrete examples in the context

of dedup and the apartness constraint that does not hold (⊢/). We explain each mistake in more
detail, to see why it violates apartness, sometimes on very specific (and unlikely) inputs. It is easy
to overlook these mistakes; the authors have made all of them.

To see the problem with a missing tag, consider mapping the name set {0, 0·1} by id (the identity
function) and by λx.x·1: The images overlap on name 0·1, since the two names in the input set are
already related by the second function λx.x·1, which id fails to distinguish by adding any tag of its
own. By contrast, consider mapping the same name set by two apart name functions, λx.x·0 and
λx.x·1; the two images are disjoint ({0·0, (0·1)·0} ⊥ {0·1, (0·1)·1}).

To see the problem with prefix/suffix mismatches, consider mapping the name set {0, 1} by λx.0·x
and λx.x·1; the two images overlap on name 0·1, since the two functions disagree about how they
distinguish names in the input set.

Finally, to see the problemwith what we call “overlapping primes”, consider mapping the name set
{0, 1} by Succ and Succ ◦ Succ: the images overlap at name 2. The problem is similar to the missing
tag problem, but at the level of name sets. Overlapping primes may involve Kleene closure, e.g.,
X : NmSet ⊬ Succ∗(Succ(X))⊥X. There is a critical difference between this apartness violation
and the apartness property used by insert and insrec in Sec. 2.5, x : Nm ⊢ Succ∗({Succ(x)})⊥{x}.
Like the violation above, this valid apartness property also involves Kleene closure, but the “seed”

, Vol. 1, No. 1, Article . Publication date: May 2021.



:12
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou
Input List

comp

dd·n1

dd·n2

dd·n3

dd·n4

Accumulator: Hash Trie Output
List

t·n1·0 t·n1·1 t·n1·2 t·n1·3 t·n1·4

t·n2·0 t·n2·1 t·n2·2 t·n2·3 t·n2·4

t·n3·0 t·n3·1 t·n3·2 t·n3·3 t·n3·4

t·n4·0 t·n4·1 t·n4·2 t·n4·3 t·n4·4

a1

a2

a3

a4

a5

r·n1

r·n2

r·n4

a5

n1

3 dedup a1

emp

n1 3
n1

3

n2

4 dedup a2

t·n1·0
n2 4

n2

4

n3

3 dedup a3

t·n2·0
n3 3

n4

9 dedup a4

t·n3·0
n4 9

n4

9

nil
dedup a5

t·n4·0 nil

Input List comp

dd·n1

dd·n2

dd·n3

dd·n4

Accumulator: Hash Trie Output
List

t·n1·0 t·n1·1 t·n1·2 t·n1·3 t·n1·4

t·n2·0 t·n2·1 t·n2·2 t·n2·3 t·n2·4

t·n3·0 t·n3·1 t·n3·2 t·n3·3 t·n3·4

t·n4·0 t·n4·1 t·n4·2 t·n4·3 t·n4·4

a1

a2

a3

a4

a5

r·n1

r·n2

r·n3

r·n4

a5

n1

1 dedup a1

emp

n1 1
n1

1

n2

4 dedup a2

t·n1·0
n2 4

n2

4

n3

3 dedup a3

t·n2·0
n3 3

n3

3

n4

9 dedup a4

t·n3·0
n4 9

n4

9

nil
dedup a5

t·n4·0 nil

Fig. 5. Distinct runs of dedup on (similar) input lists [3, 4, 3, 9] (left side) and [1, 4, 3, 9] (right side).

set used by insrec is a single unknown name. We call this kind of mistake “overlapping primes”
because an analogous issue arises when manually “freshening” meta-variables in a proof: adding a
prime to each existing variable does not work when an existing variable is the prime of another.
For example, priming the variable A in the set {A,B,A ′} clashes with the existing A ′.

2.7 Global uniqueness implies correct change propagation
The metatheory of the Fungi type system considers one run at a time. Within each run, it ensures
global uniqueness, the prerequisite for change propagation to ensure from-scratch consistency:
When global uniqueness holds, the outcome of change propagation for any iteration is always
consistent with the outcome of a from-scratch run on the current input.

Using names to compare similar from-scratch runs. Because change propagation is from-scratch
consistent, we can predict its time complexity (and other dynamic behavior) by comparing two
from-scratch runs and seeing where they differ. Due to their use of names, the two runs similarities
and differences can be identified precisely, by name. Change propagation, described in detail below,
attempts to exploit these similarities to reuse past work wherever possible.
Fig. 5 shows two full runs of dedup on (similar) input lists [3, 4, 3, 9] and [1, 4, 3, 9], stored in

identical list cells (a1–a5) and initial recursive thunk (comp). The tile in Fig. 3 is consistent with
the left run. The left run consists of two occurrences of element 3, at logical positions n1 and n3;
in the right run, logical position n1 instead contains the (unique) element 1.
The later recursive calls depend on the trie paths allocated in earlier calls. For instance, by

carefully comparing the left and right runs’ allocated trie paths rooted at t·n1·0, we see that the
hashes of 3 and 1 consist of inverted bits: all of the pointers have “flipped” between left and right.
Moving downward in the figure, the allocated trie paths rooted at t·n2·0 differ at that name, and at
t·n2·1, but then “sync up” at t·n2·2—t·n2·4. The allocated trie paths rooted at t·n3·0 and t·n4·0
are the same in the two runs.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :13

Input List comp

dd·n1

dd·n2

dd·n3

dd·n4

Accumulator: Hash Trie Output
List

t·n1·0 t·n1·1 t·n1·2 t·n1·3 t·n1·4

t·n2·0 t·n2·1 t·n2·2 t·n2·3 t·n2·4

t·n3·0 t·n3·1 t·n3·2 t·n3·3 t·n3·4

t·n4·0 t·n4·1 t·n4·2 t·n4·3 t·n4·4

a1

a2

a3

a4

a5

r·n1

r·n2

r·n3

r·n4

a5

n1

1 dedup a1

emp

n1 1
n1

1

n2

4 dedup a2

t·n1·0
n2 4

n2

4

n3

3 dedup a3

t·n2·0
n3 3

n3

3

n4

9 dedup a4

t·n3·0
n4 9

n4

9

nil
dedup a5

t·n4·0 nil

Fig. 6. Change propagation uses names to identify the correspondences between subsequent runs of dedup
and efficiently exploit the similarities between these inputs, outputs and intermediate structures (hash tries).

Because of the input list’s logical position names (n1—n4), the output list uses identical addresses
in the left- and right-hand runs, where they overlap. The right-hand run’s list contents are similar,
with three (necessary) exceptions: (a) the element at logical position n1 is changed to 1; (b) 3
appears at logical position n3 (and pointer name r·n3), whereas the left-hand run had a duplicate 3
at position n3; (c) the tail pointer in the output Cons cell r·n2 differs, since position n3 was absent
in the left-hand run.

Change propagation. Fig. 6 considers the behavior of using change propagation where the left run
of Fig. 5 happens first, followed by an input change (at a1), that precipitates change propagation
updating this dependence graph to be from-scratch consistent with the right run. As explained
above, the two runs in Fig. 5 differ at certain allocated names; change propagation selectively
re-executes thunks in the dependence graph in an order that is consistent with a from-scratch run
on the current input (in this case, the right run of Fig. 5). We indicate the re-executed thunks with
an additional (blue) border pattern.

Change propagation re-executes thunk comp first, since it observes the changed input list cell a1

that replaces the first 3 with 1. As described above, the new element 1 hashes differently, resulting
in a different pattern of pointers in this trie path rooted at t·n1·0.
We indicate overwritten (and changed) reference cells with an additional (red) border pattern.

Fungi dynamically records thunks that depend on changed reference cells, and avoids reusing their
results without first applying the change propagation algorithm to their dependence graphs. For
this reason, change propagation next re-executes dd·n1.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:14
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Values v ::= x | () | (v1, v2) | inji v | name n | nmfn M | ref n | thunk n | pack(a.v)

Terminal exprs. t ::= ret(v) | λx. e

Expressions e ::= t | split(v, x1.x2.e) | case(v, x1.e1, x2.e2)
| e v | let(e1, x.e2) | thunk(v, e) | force(v) | ref(v, v) | get(v)
| scope(v, e) | vM v | vunpack(v, a.x.e)

Fig. 7. Syntax of expressions

When re-executed, dd·n1 changes some trie names with its overwrites, but not all of them (as
described above). Next, it re-forces dd·n2, which re-executes (due to the trie overwrites).

When a re-execution results in behavior that is the same as the prior run, the frontier of change
propagation may end, as with thunk dd·n2. Its allocations overwrite the prior reference cells with
identical values. It (re-)forces dd·n3, whose local effects are unaffected by the input change (either
directly or indirectly). In this case, Fungi reuses the cached result of this (unaffected) thunk.
Next, control returns to t·n1·0, which overwrites its output cell’s tail pointer with the inserted

(and new) cell at r·n3. Finally, control returns to comp, which overwrites r·n1 with the changed
input value 1, but returns the same result, r·n1. If comp were occuring in the context of more
recursive calls in a longer input list, these earlier calls would be unaffected, and not re-executed.

In summary, the change propagation behavior described above critically relies on (unique) names
to bring the initial and updated runs into a correspondence that it can efficiently exploit. Unique
names are generally necessary for efficient (stable) change propagation, but not alone sufficient. In
particular, the Fungi type-and-effect system enforces global uniqueness by reasoning about a single
from-scratch execution, not the relationship between two (or more) similar executions on similar
inputs. In Sec. 8, we discuss connections to (relational) cost semantics for incremental computation.

3 PROGRAM SYNTAX
The examples from the prior section use an informally defined variant of ML, enriched with a
(slightly simplified) variant of our proposed type system. In this section and the next, we focus on
a core calculus for programs and types, and on making these definitions precise.

3.1 Values and Expressions
Fig. 7 gives the grammar of values v and expressions e. We use call-by-push-value (CBPV) con-
ventions in this syntax, and in the type system that follows. There are several reasons for this.
First, CBPV can be interpreted as a “neutral” evaluation order that includes both call-by-value or
call-by-name, but prefers neither in its design. Second, since we make the unit of memoization a
thunk, and CBPV makes explicit the creation of thunks and closures, it exposes exactly the structure
that we extend to a general-purpose abstraction for incremental computation. In particular, thunks
are the means by which we cache results and track dynamic dependencies.
Values v consist of variables, the unit value, pairs, sums, and several special forms (described

below).
We separate values from expressions, rather than considering values to be a subset of expres-

sions. Instead, terminal expressions t are a subset of expressions. A terminal expression t is either
ret(v)—the expression that returns the value v—or a λ. Expressions e include terminal expressions,
elimination forms for pairs, sums, and functions (split, case and e v, respectively); let-binding
(which evaluates e1 to ret(v) and substitutes v for x in e2); introduction (thunk) and elimination

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :15

Names m,n ::= leaf leaf name
(binary trees) | ⟨⟨n1, n2⟩⟩ binary name composition
Name terms M,N ::= n | ⟨⟨M1, M2⟩⟩ literal names, binary name composition
(STLC+names) | a | λa.M | M(N) variable, abstraction, application
Name term values V ::= n | λa.M

Name term sorts γ ::= Nm name; inhabitants n
| γ

Nm→ γ name term function; inhabitants λa.M
Typing contexts Γ ::= · | Γ, a : γ | · · · full definition in Figure 11

Fig. 8. Syntax of name terms: a λ-calculus over names, as binary trees

Γ ⊢ M : γ Under Γ , name term M has sort γ

Γ ⊢ n : Nm
M-const

(a : γ) ∈ Γ

Γ ⊢ a : γ
M-var

Γ ⊢ M1 : Nm
Γ ⊢ M2 : Nm

Γ ⊢ ⟨⟨M1, M2⟩⟩ : Nm
M-bin

Γ, a : γ ′ ⊢ M : γ

Γ ⊢ (λa.M) : (γ ′ Nm→ γ)
M-abs

Γ ⊢ M : (γ ′ Nm→ γ) Γ ⊢ N : γ ′

Γ ⊢ M(N) : γ
M-app

M ⇓M V Name term M evaluates to name term value V

V ⇓M V
teval-value

M1 ⇓M n1 M2 ⇓M n2

⟨⟨M1, M2⟩⟩ ⇓M ⟨⟨n1, n2⟩⟩
teval-bin

M ⇓M λa.M ′

N ⇓M V
[V/a]M ′ ⇓M V ′

M(N) ⇓M V ′
teval-app

Fig. 9. Sorting and evaluation rules for name termsM

(force) forms for thunks; and introduction (ref) and elimination (get) forms for pointers (reference
cells that hold values).
The special forms of values are names name n, name-level functions nmfn M, references

(pointers), and thunks. References and thunks include a name n, which is the name of the reference
or thunk, not the contents of the reference or thunk.
This syntax is similar to Adapton [Hammer et al. 2015]; we add the notion of a name function,

which captures the idea of a namespace and other transformations on names. The scope(v, e)
construct controls monadic state for the current name function, composing it with a name function v
within the dynamic extent of its subexpression e. Name function applicationM v permits programs
to compute with names and name functions that reside within the type indices. Since these name
functions always terminate, they do not affect a program’s termination behavior.
We do not distinguish syntactically between value pointers (for reference cells) and thunk

pointers (for suspended expressions); the store maps pointers to either of these.

3.2 Names
Figure 8 shows the syntax of literal names, name terms, name term values, and name term sorts.
Literal namesm, n are simply binary trees: either an empty leaf leaf or a branch node ⟨⟨n1, n2⟩⟩.
Name terms M, N consist of literal names n and branch nodes ⟨⟨M1, M2⟩⟩, abstraction λa.M
and application M(N).

Name terms are classified by sorts γ: sortNm for names n, and γ Nm→ γ for (name term) functions.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:16
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

The rules for name sorting Γ ⊢ M : γ are straightforward (Figure 9), as are the rules for name
term evaluation M ⇓M V (Figure 9). We write M =β M ′ when name terms M and M ′ are
convertible, that is, applying any series of β-reductions and/or β-expansions changes one term
into the other.

4 TYPE SYSTEM
The structure of our type system is inspired by Dependent ML [Xi and Pfenning 1999; Xi 2007].
Unlike full dependent typing, DML is separated into a program level and a less-powerful index
level. The classic DML index domain is integers with linear inequalities, making type-checking
decidable. Our index domain includes names, sets of names, and functions over names. Such
functions constitute a tiny domain-specific language that is powerful enough to express useful
transformations of names, but preserves decidability of type-checking.
Indices in DML have no direct computational content. For example, when applying a function

on vectors that is indexed by vector length, the length index is not directly manipulated at run
time. However, indices can indirectly reflect properties of run-time values. The simplest case is
that of an indexed singleton type, such as Int[k]. Here, the ordinary type Int and the index domain
of integers are in one-to-one correspondence; the type Int[3] has one value, the integer 3.
While indexed singletons work well for the classic index domain of integers, they are less

suited to names—at least for our purposes. Unlike integer constraints, where integer literals
are common in types—for example, the length of the empty list is 0—literal names are rare
in types. Many of the name constraints we need to express look like “given a value of type
A whose name in the set X, this function produces a value of type B whose name is in the
set f(X)”. A DML-style system can express such constraints, but the types become verbose:
∀a : Nm. ∀X : NmSet. (a ∈ X) ⊃

(
A[a] → B[f(a)]

)
. The notation is taken from one of DML’s

descendants, Stardust [Dunfield 2007]. The type is read “for all names a and name sets X, such that
a ∈ X, given some A[a] the function returns B[f(a)]”.

We avoid such locutions by indexing single values by name sets, rather than names. For types of
the shape given above, this removes half the quantifiers and obviates the ∈-constraint attached via
⊃: ∀X : NmSet. A[X] → B[f(X)]. This type says the same thing as the earlier one, but now the
approximations are expressed within the indexing of A and B. Note that f, a function on names, is
interpreted pointwise: f(X) = {f(N) | N ∈ X}. Standard singletons are handy for index functions
on names, where one usually needs to know the specific function.
For aggregate data structures such as lists, indexing by a name set denotes overapproximation

of names: the proper DML type ∀Y : NmSet. ∀X : NmSet. (Y ⊆ X) ⊃
(
A[Y] → B[f(Y)]

)
can be

expressed by ∀X : NmSet. A[X] → B[f(X)].
Following call-by-push-value [Levy 1999, 2001], we distinguish value types from computation

types. Our computation types will also model effects, such as the allocation of a thunk with a
particular name.

4.1 Index Level
Figure 10 gives the syntax of index expressions and index sorts (which classify indices). We use
several meta-variables for index expressions; by convention, we use X, Y, Z, R and W only for sets
of names—index expressions of sort NmSet.

Name sets. If we give a name to each element of a list, then the entire list should carry the set of
those names. We write {N} for the singleton name set, ∅ for the empty name set, and X ⊥ Y for a
union of two sets X and Y that requires X and Y to be disjoint; this is inspired by the separating
conjunction of separation logic [Reynolds 2002]. While disjoint union is common in the types

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :17

Index exprs. i, j, ::= a index variable
X, Y, Z, | {N} singleton name set
R,W | ∅ | X ⊥ Y empty set, separating union

| X ∪ Y union (not necessarily disjoint)
| () | (i, i) | prj1i | prj2i unit, pairing, and projection
| λa. i | i(j) function abstraction and application
| M[i] | i[j] | i∗[j] name set mapping and set building

Index sorts γ ::= · · · | NmSet name set sort
| 1 unit index sort; inhabitant ()
| γ ∗ γ product index sort; inhabitants (i, j)
| γ1

idx→ γ2 index functions over name sets

Fig. 10. Syntax of indices, name set sort

Kinds K ::= type kind of value types
| type ⇒ K type argument (binder space)
| γ ⇒ K index argument (binder space)

Propositions P ::= tt | P and P truth and conjunction
| i ⊥ j : γ index apartness
| i ≡ j : γ index equivalence

Effects ϵ ::= ⟨W;R⟩

Value types A,B ::= α | d | unit type variables, type constructors, unit
| A+ B | A × B sum, product
| Ref[i]A named reference cell
| Thk[i]E named thunk (with effects)
| A[i] application of type to index
| A B application of type constructor to type
| Nm[i] name type (name in name set i)
| (Nm Nm→ Nm)[M] name function type (singleton)
| ∀a : γ | P.A universal index quantifier
| ∃a : γ | P.A existential index quantifier

Computation types C,D ::= FA | A → E liFt, functions
. . .with effects E ::= C� ϵ effects

| ∀α : K. E type polymorphism
| (∀a : γ | P. E) index polymorphism

Typing contexts Γ ::= ·

| Γ, a : γ index variable sorting
| Γ, α : K type variable kinding
| Γ, d : K type constructor kinding
| Γ,N : A ref pointer
| Γ,N : E thunk pointer
| Γ, x : A value variable
| Γ, P proposition P holds

Fig. 11. Syntax of kinds, effects, and types

that we believe programmers need, our effects discipline requires non-disjoint union X ∪ Y, so we
include it as well.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:18
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢ i : γ Under Γ , index i has sort γ

(a : γ) ∈ Γ

Γ ⊢ a : γ
sort-var

Γ ⊢ () : 1
sort-unit

Γ ⊢ i1 : γ1 Γ ⊢ i2 : γ2

Γ ⊢ (i1, i2) : (γ1 ∗ γ2)
sort-pair

Γ ⊢ i : γ1 ∗ γ2

Γ ⊢ prjbi : γb

sort-proj
Γ ⊢ ∅ : NmSet

sort-empty
Γ ⊢ N : Nm

Γ ⊢ {N} : NmSet
sort-singleton

Γ ⊢ X : NmSet
Γ ⊢ Y : NmSet

Γ ⊢ (X ∪ Y) : NmSet
sort-union

Γ ⊢ X : NmSet
Γ ⊢ Y : NmSet extract(Γ) ⊩ X ⊥ Y : NmSet

Γ ⊢ (X ⊥ Y) : NmSet
sort-sep-union

Γ, a : γ1 ⊢ i : γ2

Γ ⊢ (λa. i) : (γ1
idx→ γ2)

sort-abs
Γ ⊢ i : γ1

idx→ γ2 Γ ⊢ j : γ1

Γ ⊢ i(j) : γ2

sort-apply

Γ ⊢ M : Nm Nm→ Nm
Γ ⊢ j : NmSet
Γ ⊢ M[j] : NmSet

sort-map

Γ ⊢ i : Nm idx→ NmSet
Γ ⊢ j : NmSet
Γ ⊢ i[j] : NmSet

sort-build

Γ ⊢ i : Nm idx→ NmSet
Γ ⊢ j : NmSet
Γ ⊢ i∗[j] : NmSet

sort-star

Fig. 12. Sorts statically classify name termsM, and the name indices i that index types

Variables, pairing, functions. An index i (also written X, Y, . . .when the index is a set of names) is
either an index-level variable a, a name set (described above: {N}, X ⊥ Y or X ∪ Y), the unit index
(), a pair of indices (i1, i2), pair projection prjbi for b ∈ {1, 2}, an abstraction λa. i, application
i(j), or name term applicationM[i].
Name terms M are not a syntactic subset of indices i, though name terms can appear inside

indices (for example, singleton name sets {M}). Because name terms are not a syntactic subset of
indices (and name sets are not name terms), the application form i(j) does not allow us to apply a
name term function to a name set. Thus, we also need name term application M[i], which applies
the name functionM to each element of the name set i. The index-level map form i[j] collects the
output sets of function i on the elements of the input set j. The Kleene star variation i∗[j] applies
the function i zero or more times to each input element in set j.

Sorts. We use the meta-variable γ to classify indices as well as name terms. We inherit the
function space Nm→ from the name term sorts (Figure 8). The sortNmSet (Figure 10) classifies indices
that are name sets. The function space idx→ classifies functions over indices (e.g., tuples of name sets),
not merely name terms. The unit sort and product sort classify tuples of index expressions.
Most of the sorting rules in Figure 12 are straightforward, but rule ‘sort-sep-union’ includes a

premise extract(Γ) ⊩ X ⊥ Y : NmSet, which says that X and Y are apart (disjoint).

Propositions and extraction. Propositions P are conjunctions of atomic propositions i ≡ j : γ
and i ⊥ j : γ, which express equivalence and apartness of indices i and j. For example, {n1} ⊥

{n2} : NmSet implies that n1 , n2. Propositions are introduced into Γ via index polymorphism
∀a : γ | P. E, discussed below.
The function extract(Γ) (Figure 28 in the appendix) looks for propositions P, which become

equivalence and apartness assumptions. It also translates Γ into the relational context used in the
definition of apartness. We give semantic definitions of equivalence and apartness in the appendix
(Definitions F.6 and F.7).

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :19

Γ ⊢ v : A Under assumptions Γ , value v has type A
(x : A) ∈ Γ

Γ ⊢ x : A
var

Γ ⊢ v : A1 Γ ⊢ A1 ≤V A2

Γ ⊢ v : A2

vtype-sub

Γ ⊢ () : unit
unit

Γ ⊢ v1 : A1 Γ ⊢ v2 : A2

Γ ⊢ (v1, v2) : (A1 ×A2)
pair

Γ ⊢ vi : Ai

Γ ⊢ inji vi : (A1 +A2)
inj

Γ ⊢ n ∈ X

Γ ⊢ (name n) : Nm[X]
name

Γ ⊢ Mv : Nm Nm→ Nm Mv =β M

Γ ⊢ (nmfn Mv) : (Nm Nm→ Nm)[M]
namefn

Γ ⊢ n ∈ X Γ(n) = A

Γ ⊢ (ref n) : (Ref[X]A)
ref

Γ ⊢ n ∈ X Γ(n) = E

Γ ⊢ (thunk n) : (Thk[X]E)
thunk

Γ, a : γ, P ⊢ v : A

Γ ⊢ v : (∀a : γ | P.A)
vtype-∀IndexIntro Γ ⊢ i : γ

extract(Γ) ⊩ [i/a]P
Γ ⊢ v : (∀a : γ | P.A)

Γ ⊢ v : [i/a]A
vtype-∀IndexElim

Γ ⊢ i : γ extract(Γ) ⊩ [i/a]P Γ ⊢ v : [i/a]A

Γ ⊢ pack(a.v) : (∃a : γ | P.A)
vtype-∃IndexIntro

Fig. 13. Value typing

4.2 Kinds
We use a simple system of kinds K (Figure 21 in the appendix). Kind type classifies value types,
such as unit and (Thk[i]E).

Kind type ⇒ K classifies type expressions that are parametrized by a type. Such types are called
type constructors in some languages.
Kind γ ⇒ K classifies type expressions parametrized by an index. For example, the List type

constructor from Section 2 takes a name set: List[X], so List has kind NmSet ⇒ type. A more
general Seq type would also track its pointers (not just its names), and permit any element type,
and would thus have kind NmSet ⇒ (

NmSet ⇒ (type ⇒ type)
)
.

4.3 Effects
Effects are described by ⟨W;R⟩, meaning that the associated code may write names inW, and read
names in R. (To simplify the example in the overview, we omitted the read set.)

Effect sequencing (Figure 14) is a (meta-level) partial function over a pair of effects: the judgment
Γ ⊢ ϵ1 then ϵ2 = ϵ, means that ϵ describes the combination of having effects ϵ1 followed by effects
ϵ2. Sequencing is a partial function because the effects are only valid when (1) the writes of ϵ1 are
disjoint from the writes of ϵ2, and (2) the reads of ϵ1 are disjoint from the writes of ϵ2. Condition
(1) holds when each cell or thunk is not written more than once (and therefore has a unique value).
Condition (2) holds when each cell or thunk is written before it is read.
Effect coalescing, “E after ϵ”, combines “clusters” of effects:

(
C � ⟨{n2}; ∅⟩

)
after ⟨{n1}; ∅⟩ =

C � (⟨{n1}; ∅⟩ then ⟨{n2}; ∅⟩) = C � ⟨{n1, n2}; ∅⟩. Effect subsumption ϵ1 ⪯ ϵ2 holds when the
write and read sets of ϵ1 are subsets of the respective sets of ϵ2.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:20
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢ (ϵ1 then ϵ2) = ϵ Effect sequencing

extract(Γ) ⊢ W1 ⊥ W2

extract(Γ) ⊢ R1 ⊥ W2

extract(Γ) ⊢ W1 ∪W2 ≡ W3

extract(Γ) ⊢ R1 ∪ R2 ≡ R3

Γ ⊢ ⟨W1;R1⟩ then ⟨W2;R2⟩ = ⟨W3;R3⟩

Γ ⊢ ϵ1 ⪯ ϵ2 Effect subsumption

extract(Γ) ⊢ (X1 ⊥ Z1) ≡ Y1 : NmSet
extract(Γ) ⊢ (X2 ⊥ Z2) ≡ Y2 : NmSet

Γ ⊢ ⟨X1;X2⟩ ⪯ ⟨Y1; Y2⟩

Γ ⊢ (E after ϵ) = E ′ Effect coalescing
Γ ⊢ (ϵ1 then ϵ2) = ϵ

Γ ⊢
(
(C� ϵ2) after ϵ1

)
= (C� ϵ)

Γ ⊢ (E after ϵ) = E ′

Γ ⊢ (∀α : K. E) after ϵ = (∀α : K. E ′)
Γ ⊢ (∀a : γ | P. E) after ϵ = (∀a : γ | P. E ′)

Γ ⊢M e : E Under Γ , within namespaceM, computation e has type-with-effects E
Γ ⊢M e : E1 Γ ⊢ E1 ≤E E2

Γ ⊢M e : E2
etype-sub

Γ ⊢ v : (A1 ×A2)

Γ, x1 : A1, x2 : A2 ⊢M e : E

Γ ⊢M split(v, x1.x2.e) : E
split

Γ ⊢ v : (A1 +A2)

Γ, x1 : A1 ⊢M e1 : E

Γ, x2 : A2 ⊢M e2 : E

Γ ⊢M case(v, x1.e1, x2.e2) : E
case

Γ ⊢ v : A

Γ ⊢M ret(v) : (FA)� ⟨∅; ∅⟩
ret

Γ ⊢M e1 : (FA)� ϵ1
Γ, x : A ⊢M e2 : (C� ϵ2) Γ ⊢ (ϵ1 then ϵ2) = ϵ

Γ ⊢M let(e1, x.e2) : (C� ϵ)
let

Γ, x : A ⊢M e : E

Γ ⊢M (λx. e) :
(
(A → E)� ⟨∅; ∅⟩

) lam

Γ ⊢ (E after ϵ1) = E1
Γ ⊢M e :

(
(A → E)� ϵ1

)
Γ ⊢ v : A

Γ ⊢M (e v) : E1
app

Γ ⊢ v : Nm[X] Γ ⊢M e : E

Γ ⊢M thunk(v, e) :
(
F (Thk[M[X]]E)

)
� ⟨M[X]; ∅⟩

thunk

Γ ⊢ v : Thk[X] (C� ϵ) Γ ⊢ (⟨∅;X⟩ then ϵ) = ϵ ′

Γ ⊢M force(v) : (C� ϵ ′)
force

Γ ⊢ v1 : Nm[X] Γ ⊢ v2 : A

Γ ⊢M ref(v1, v2) : F (Ref[M[X]]A)� ⟨M[X]; ∅⟩
ref

Γ ⊢ v : Ref[X]A

Γ ⊢M get(v) : (FA)� ⟨∅;X⟩
get

Γ ⊢ vM : (Nm Nm→ Nm)[M]
Γ ⊢ v : Nm[i]

Γ ⊢N (vM v) : F (Nm[M[i]])� ⟨∅; ∅⟩
name-app

Γ ⊢ v : (Nm Nm→ Nm)[N ′]

Γ ⊢N◦N′

e : C� ⟨W;R⟩

Γ ⊢N scope(v, e) : C� ⟨W;R⟩
scope

Γ, α : K ⊢M t : E

Γ ⊢M t : (∀α : K. E)
etype-∀Intro Γ ⊢M e : (∀α : K. E) Γ ⊢ A : K

Γ ⊢M e : [A/α]E
etype-∀Elim

Γ, a : γ, P ⊢M t : E

Γ ⊢M t : (∀a : γ | P. E)
etype-∀IndexIntro Γ ⊢ i : γ

extract(Γ) ⊩ [i/a]P

Γ ⊢M e : (∀a : γ | P. E)

Γ ⊢M e : [i/a]E
etype-∀IndexElim

Γ ⊢ v : (∃a : γ | P.A) Γ, a : γ, P, x : A ⊢M e : E

Γ ⊢M vunpack(v, a.x.e) : E
etype-∃IndexElim

Fig. 14. Computation typing

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :21

4.4 Types
The value types (Figure 11), written A, B, include standard sums + and products ×; a unit type; the
type Ref[i]A of references named i containing a value of type A; the type Thk[i]E of thunks
named i whose contents have type E (see below); the application A[i] of a type to an index; the
applicationA B of a typeA (e.g. a type constructor d) to a type B; the type Nm[i]; and a singleton
type (Nm Nm→ Nm)[M] whereM is a function on names.

As usual in call-by-push-value, computation types C andD include a connective F, which “liFts”
value types to computation types: FA is the type of computations that, when run, return a value
of type A. (Call-by-push-value usually has a connective dual to F, written U, that “thUnks” a
computation type into a value type; in our system, Thk plays the role of U.)
Computation types also include functions, written A → E. In standard CBPV, this would be

A → C, not A → E. We separate computation types alone, written C, from computation types
with effects, written E; this decision is explained in Appendix A.3.

Computation types-with-effects E consist of C � ϵ, which is the bare computation type C
with effects ϵ, as well as universal quantifiers (polymorphism) over types (∀α : K. E) and indices
(∀a : γ | P. E). In the latter quantifier, the proposition P lets us express quantification over disjoint
sets of names.

Value typing rules. The typing rules for values (Figure 13) for unit, variables and pairs are standard.
Rule ‘name’ uses index-level entailment to check that the name n is in the name set X. Rule ‘namefn’
checks thatMv is well-sorted, and thatMv is convertible toM. Rule ‘ref’ checks that n is in X,
and that Γ(n) = A, that is, the typing n : A appears somewhere in Γ ; rule ‘thunk’ is similar.

Computation typing rules. Many of the rules that assign computation types (Figure 14) are
standard—for call-by-push-value—with the addition of effects and the namespace M. The rules
‘split’ and ‘case’ have nothing to do with namespaces or effects, so they passM up to their premises,
and leave the type E unchanged. Empty effects are added by rules ‘ret’ and ‘lam’, since both ret
and λ do not read or write anything. The rule ‘let’ uses effect sequencing to combine the effects of
e1 and the let-body e2. The rule ‘force’ also uses effect sequencing, to combine the effect of forcing
the thunk with the read effect ⟨∅;X⟩.
The only rule that modifies the namespace is ‘scope’, which composes the given namespace N

(in the conclusion) with the user’s v = nmfn N ′ in the second premise (typing e).

4.5 Subtyping
As discussed above, our type system can overapproximate names. The type Nm[X] means that the
name is contained in the set of X; unless X is a singleton, the type system does not guarantee the
specific name. Approximation induces subtyping: we want to allow a program to pass Nm[X1] to
a function expecting Nm[X1 ⊥ X2].

For space reasons, the subtyping rules are given and explained in the appendix (Sec. A.1).

4.6 Bidirectional Version
The typing rules in Figures 13 and 14 are declarative: they define what typings are valid, but not
how to derive those typings. The rules’ use of names and effects annotations means that standard
unification-based techniques, like Damas–Milner inference, are not readily applicable. For example,
it is not obvious when to apply etype-∀Intro, or how to solve unification constraints over names
and name sets.

Bidirectional typing [Pierce and Turner 1998] alternates between checking an expression against
a known type (e.g. from a type annotation) and synthesizing a type from an expression. Since

, Vol. 1, No. 1, Article . Publication date: May 2021.



:22
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Pointers p, q ::= n name constants
Stores S ::= · empty store

| S, p:v p points to value v
| S, p:e@M p points to thunk e, run in scopeM

Notation: S{p 7→v} and S{p 7→e@M} extend S at p when p < dom(S)
S{p 7→v} and S{p 7→e@M} overwrite S at p when p ∈ dom(S)

S1 ⊢
M
m e ⇓ S2; t

Under store S in namespaceM at current node m,
expression e produces new store S2 and result t

S1 ⊢
M1◦M2
m e ⇓ S2; e

′

S1 ⊢
M1
m scope(M2, e) ⇓ S2; e

′
⇓-scope M1 ⇓M λa.M2 [n/a]M2 ⇓M p

S ⊢Mm M1 (name n) ⇓ S; ret(name p)
⇓-name-app

(Mn) ⇓M p S1{p 7→e@M} = S2

S1 ⊢Mm thunk(name n, e) ⇓ S2; ret(thunk p)
⇓-thunk (Mn) ⇓M p S1{p 7→v} = S2

S1 ⊢Mm ref(name n, v)⇓ S2; ret(ref p)

⇓-ref
S(p) = e@M0

S1 ⊢
M0
p e ⇓ S2; t

S1 ⊢Mm force(thunk p) ⇓ S2; t
⇓-force S(p) = v

S ⊢Mm get(ref p) ⇓ S; ret(v)
⇓-get

S ⊢Mm t ⇓ S; t
⇓-term

Fig. 15. Excerpt from the dynamic semantics (see also Figure 19)

checking rules utilize the given type, bidirectional typing is decidable for a wide range of rich
type systems; see the citations in Dunfield and Krishnaswami [2013]. Therefore, we formulate
bidirectional typing rules that are decidable and directly give rise to an algorithm.
For space reasons, this system is presented in the supplementary material (Appendix C). We

prove in Appendix D that our bidirectional rules are sound and complete with respect to the type
assignment rules in this section:

Soundness (Thms. D.1, D.3): Given a bidirectional derivation for an annotated expression e, there
exists a type assignment derivation for e without annotations.
Completeness (Thms. D.2, D.4): Given a type assignment derivation for e without annotations,

there exist two annotated versions of e: one that synthesizes, and one that checks. (This result is
sometimes called annotatability.)

5 DYNAMIC SEMANTICS
Name terms. Recall Fig. 9 (Sec. 3.2), which gives the dynamics for evaluating name termM to

name term value V . Because name terms have no recursion, evaluating a well-sorted name term
always produces a value (Theorem G.9).

Program expressions (Figure 15). Stores hold the mutable state that names dynamically identify.
Big-step evaluation for expressions relates an initial and final store, and the “current scope” and
“current node”, to a program and value. We define this dynamic semantics, which closely mirrors
prior work, to show that well-typed evaluations always allocate with unique names.

To make this theorem meaningful, the dynamics permits programs to overwrite prior allocations
with later ones: if a name is used ambiguously, the evaluation will replace the old store content with
the new store content. The rules ⇓-ref and ⇓-thunk either extend or overwrite the store, depending
on whether the allocated pointer name is unique or ambiguous, respectively. We prove that, in
fact, well-typed programs always extend (and never overwrite) the store in any single derivation.
(During change propagation, not modeled here, we begin with a store and dependency graph from

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :23

a prior run, and even programs without naming errors overwrite the (old) store/graph, as discussed
in Sec. 1.)
While motivated by incremental computation, we are interested in the allocation effects of a

single run, not change propagation between runs. Consequently, this semantics is simpler than the
dynamics of prior work. First, the store never caches values from evaluation, that is, it does not
model function caching (memoization). Next, we do not build the dependency edges required for
change propagation. Likewise, the “current node” is not strictly necessary here, but we include it
for illustration. Were we modeling change propagation, rules ⇓-ref, ⇓-thunk, ⇓-get and ⇓-force
would create dependency edge structure that we omit here. (These edges relate the current node
with the node being observed.)

6 METATHEORY: TYPE SOUNDNESS AND UNIQUE NAMES
In this section, we prove that our type system is sound with respect to evaluation: Every well-typed,
terminating program produces a terminal computation of the program’s type, the set of dynamic
allocations match the program’s static approximation, and each allocation is globally unique. Def.
6.2 defines which evaluation derivations have precise effects matching the requirements above.
We sometimes constrain typing contexts to be store types, which type store pointers but not

program variables; hence, they only type closed values and programs:
Definition 6.1 (Store type). We say that Γ is a store typing, written Γ store-type, when each
assumption in Γ has the reference-pointer form p : A or the thunk-pointer form p : E.

Definition 6.2 (Precise effects). Given an evaluation derivation D, we write D readsRwritesW
for its precise effects (Figure 20 in the appendix).

This is a (partial) function over derivations. We call these effects “precise” since sibling sub-
derivations must have disjoint write sets.

We write ⟨W ′;R ′⟩ ⪯ ⟨W;R⟩ to mean that W ′ ⊆ W and R ′ ⊆ R. For proofs, see Appendix B.
Theorem 6.1 (Subject Reduction). If Γ1 store-type and Γ1 ⊢ M : Nm Nm→Nm and Γ1 ⊢M e :

C� ⟨W;R⟩ and ⊢ S1 : Γ1and Dderives S1 ⊢Mm e ⇓ S2; t then there exists Γ2 ⊇ Γ1 s.t. Γ2 store-type
and ⊢S2 : Γ2 and Γ2 ⊢ t : C� ⟨∅; ∅⟩ and D readsRD writesWD and ⟨WD ;RD⟩ ⪯ ⟨W;R⟩.

Our implementation (Sec. 7) follows the change propagation algorithm of Hammer et al. [2015],
which has been formalized and proven correct (from-scratch consistent) when Def. 6.2 (precise
effects) holds for every program run under consideration—a guarantee of Fungi’s type-and-effect
system, as stated above.

7 IMPLEMENTATION
7.1 Prototype in Rust
Using this on-paper design as a guide, we have implemented a preliminary prototype of Fungi in
Rust. In particular, we implement each abstract syntax definition and typing judgement presented
in this paper and appendix as a Rust datatype (a “deep” embedding of the language into Rust).
We implement the bidirectional type system (Sec. C) as a family of Rust functions that produce
judgement data structures (possibly with nested type or effect errors) from a Fungi syntax tree.
By using Rust macros, we implement a concrete syntax and associated parser that suffices for

authoring examples similar to those in Sec. 2. In two ways, we deviate from the Fungi program
syntax presented here: (1) Rust macros can only afford certain concrete syntaxes (2) Fungi programs
use explicit (not implicit) index and type applications; inferring these arguments is future work.
We implement an incremental semantics for Fungi based on Adapton in Rust, as provided by

an existing external library [Adapton Developers 2018]. This library uses the change propagation

, Vol. 1, No. 1, Article . Publication date: May 2021.



:24
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

algorithm(s) of Hammer et al. [2014, 2015]. The implementation of Fungi is documented and
publicly available. At present, it consists of about 10K lines of Rust. For the latest version of Fungi,
see crates.io and/or docs.rs, and search for “fungi-lang”. Note to reviewers: visiting those sites
will deanonymize the authors; see supplemental material instead.

7.2 Ongoing and Future Work
Sec. A.3 discusses a proposal for imperative (name) effects in the context of incremental sub-
computations that (still) require unique names. Conceivably, future Fungi-based systems could
track reactive names and their effects, potentially encoding reactive aspects of FRP language seman-
tics [Elliott and Hudak 1997; Wan and Hudak 2000; Cooper and Krishnamurthi 2006; Krishnaswami
and Benton 2011; Krishnaswami 2013; Czaplicki and Chong 2013]. In the long term, we intend
Fungi as a target language for higher-level incremental programming languages.

Interactive type derivations. To debug the examples’ type and effect errors, we load the (possibly
incomplete) typing derivations in an associated interactive, web-based tool. The tool makes the
output typing derivation interactive: using a pointer, we can inspect the syntactic family/constructor,
typing context, type and effect of each subterm in the input program, including indices, name terms,
sorts, values, expressions, etc. Compared with getting parsing or type errors out of context (or else,
only with an associated line number), we’ve found this interactive tool very helpful for teaching
newcomers about Fungi’s abstract syntax rules and type system, and for debugging examples (and
Fungi) ourselves. This tool, the Human-Fungi Interface (HFI), is publicly available software.
As future work, we will extend HFI into an interactive program editor, based on our existing

bidirectional type system, and the (typed) structure editor approach developed by Omar et al.
[2017a]. We speculate that Fungi itself may be useful in the implementation of this tool, by
providing language support for interactive, incremental developer features [Omar et al. 2017b].
Current approaches prescribe conversion to a distinct, “co-contextual” judgement form that requires
transforming the desired typing rules and their modes [Erdweg et al. 2015; Kuci et al. 2017]. Fungi’s
explicit-name programming model may offer an alternative approach for authoring incremental
type checkers, based on their “ordinary” judgments (rule and typing context structure).

8 RELATEDWORK
DML [Xi and Pfenning 1999; Xi 2007] is an influential system of limited dependent types or indexed
types. Inspired by Freeman and Pfenning [1991], who created a system inwhich datasort refinements
were clearly separated from ordinary types, DML separates the “weak” index level of typing from
ordinary typing; the dynamic semantics ignores the index level.
Motivated in part by the perceived burden of type annotations in DML, liquid types [Rondon

et al. 2008; Vazou et al. 2013] deploy machinery to infer more types. These systems also provide
more flexibility: types are not indexed by fixed tuples.
To our knowledge, Gifford and Lucassen [1986] were the first to express effects within (or

alongside) types. Since then, a variety of systems with this power have been developed. A full
accounting of this area is beyond the scope of this paper; for an overview, see Henglein et al. [2005].
We briefly discuss a type system for regions [Tofte and Talpin 1997], in which allocation is central.
Regions organize subsets of data, so that they can be deallocated together. The type system tracks
each block’s region, which in turn requires effects on types: for example, a function whose effect
is to return a block within a given region. Our type system shares region typing’s emphasis on
allocation, but we differ in how we treat the names of allocated objects. First, names in our system
are fine-grained, in contrast to giving all the objects in a region the same designation. Second,
names have structure—for example, the names 0·n = ⟨⟨leaf, n⟩⟩ and 1·n = ⟨⟨⟨⟨leaf, leaf⟩⟩, n⟩⟩

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :25

share the right subtree n—which allows programmers to deterministically compute two distinct
names from one.
Substructural type systems [O’Hearn 2003; Walker 2005] might seem suitable for statically

verifying the correct usage of names. We initially believed that an affine type system would be
good for checking global uniqueness, but we abandoned that route. First, sharing between data
structures can be essential for efficiency (e.g. a suffixes function over a list). Second, while global
uniqueness itself seems within the scope of affine typing, the justification for global uniqueness
rests on local uniqueness properties that fall outside the scope of affine typing. It is conceivable that
some not-yet-invented substructural type system could accomplish our goals, but “off-the-shelf”
affine typing is not viable.

Type systems for variable binding and fresh name generation, such as FreshML [Pitts and Gabbay
2000] and Pure FreshML [Pottier 2007], can express that sets of names are disjoint. But the names
lack internal structure that relates specific names across disjoint name sets.

Compilers have long used alias analysis to support optimization passes. Brandauer et al. [2015]
extend alias analysis with disjointness domains, which can express local (as well as global) aliasing
constraints. Such local constraints are more fine-grained than classic region systems; our work
differs in having a rich structure on names.

Approaches to incremental computation. General-purpose incremental computation techniques
use change propagation algorithms. Change propagation is a provably sound approach for recom-
puting the affected output, as the input changes dynamically after an initial run of the program
[Acar et al. 2006b; Acar and Ley-Wild 2008; Hammer et al. 2014, 2015].

Our type and effect system complements past work on self-adjusting computation. In particular,
we expect that variations of the proposed type system can express and verify the use of names in
some of the work cited above.
Incremental computation can deliver asymptotic speedups for certain algorithms [Acar et al.

2007, 2008, 2009; Sümer et al. 2011; Chen et al. 2012], and has even addressed open problems [Acar
et al. 2010]. Incremental computing abstractions exist in many settings [Shankar and Bodik 2007;
Hammer et al. 2009; Acar and Ley-Wild 2008]. Cai et al. [2014] use derivatives in an incremental λ-
calculus, which is more restricted than our setting (for example, their calculus lacks rich datatypes).
Approaches such as concurrent revisions [Burckhardt et al. 2011], hybrid reactive/imperative
programming [Demetrescu et al. 2011], and embedded incremental query languages [Mitschke
et al. 2014] constitute alternate approaches to incremental computation, but diverge more markedly
from conventional programming languages.
Çiçek et al. [2015] develop cost semantics for a limited class of incremental programs: they

support only in-place input changes and fixed control flow, so that the structure of the dynamic
dependency graph is fixed. For example, the length of an input list cannot change across successive
incremental runs, nor can the structure of its dependency graph. Çiçek et al. [2016] relax the
restriction on control flow (but not input changes) to permit replacing a dependency subgraph
according to a different, from-scratch execution. Extending their cost semantics to allow general
structural changes (e.g. insertion or removal of list elements), while describing the cost of change
propagation for programs like dedup from Sec. 2, would require integrating a general notion of
names. Without such a notion, constant-sized input changes may cascade, preventing reuse.

Detection of naming errors. Some past systems dynamically detect ambiguous names, either
forcing the system to fall back to a non-deterministic name choice [Acar et al. 2006b; Hammer
and Acar 2008], or to signal an error and halt [Hammer et al. 2015]. In scenarios with a non-
deterministic fall-back mechanism, a name ambiguity carries the potential to degrade incremental
performance, making it less responsive and asymptotically unpredictable in general [Acar 2005].

, Vol. 1, No. 1, Article . Publication date: May 2021.



:26
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

To ensure that incremental performance gains are predictable, past work often merely assumes,
without enforcement, that names are precise [Ley-Wild et al. 2009]. These existing approaches are
complementary to Fungi, whose type and effect system is applicable to each, either directly (in the
case of Adapton, and variants), or with some minor adaptations (as we speculate for the others).

9 CONCLUSION
We present Fungi, a typed functional language for incremental computation with names. Unlike
prior general-purpose languages for incremental computing (Table 1), Fungi’s notion of names is
formal, general, and statically verified. In particular, Fungi’s type-and-effect system permits the
programmer to encode (program-specific) local uniqueness invariants about names, and to use
these invariants to establish global uniqueness for their composed programs, the property of using
names correctly. We derive a bidirectional version of the type and effect system, and we have
implemented a prototype of Fungi in Rust. We apply Fungi to a library of incremental collections.
Our ongoing and future work on Fungi builds on initial prototypes reported here: We are

extending Fungi to settings that mix imperative and functional programming models, and we are
creating richer tools for developing, debugging and visualizing Fungi programs in the context of
larger systems (e.g., written in Rust).

ACKNOWLEDGMENTS
We thank Ryan L. Vandersmith, who leads the development of the Human-Fungi Interface described
in Sec. 7; this tool has been invalable for implementing and testing our Fungi prototype in Rust.
We thank Neelakantan R. Krishnaswami, Deepak Garg, Roly Perera, and David Walker for

insightful discussions about this work, and for their suggestions and comments. This material is
based in part upon work supported by a gift from Mozilla, a gift from Facebook, and support from
the National Science Foundation under grant number CCF-1619282. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of Mozilla, Facebook or the National Science Foundation.

REFERENCES
Umut A. Acar. 2005. Self-Adjusting Computation. Ph.D. Dissertation. Department of Computer Science, Carnegie Mellon

University.
Umut A. Acar, Amal Ahmed, and Matthias Blume. 2008. Imperative Self-Adjusting Computation. In Proceedings of the 25th

Annual ACM Symposium on Principles of Programming Languages.
Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan. 2006b. A Library for Self-Adjusting

Computation. Electronic Notes in Theoretical Computer Science 148, 2 (2006).
Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan. 2009. An Experimental Analysis

of Self-Adjusting Computation. TOPLAS 32, 1 (2009), 3:1–53.
Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. 2006a. An Experimental Analysis of Self-Adjusting

Computation. In Proceedings of the ACM Conference on Programming Language Design and Implementation.
Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2002. Adaptive Functional Programming. In Principles of Programming

Languages. 247–259.
Umut A. Acar, Andrew Cotter, Benoît Hudson, and Duru Türkoğlu. 2010. Dynamic Well-Spaced Point Sets. In Symposium

on Computational Geometry.
Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. 2007. Adaptive Bayesian Inference. In Neural Information

Processing Systems (NIPS).
Umut A. Acar and Ruy Ley-Wild. 2008. Self-adjusting Computation with Delta ML. In Advanced Functional Programming.

Springer.
Adapton Developers. 2018. Adapton. https://github.com/adapton
Stephan Brandauer, Dave Clarke, and Tobias Wrigstad. 2015. Disjointness Domains for Fine-grained Aliasing. In OOPSLA.

ACM Press, 898–916.

, Vol. 1, No. 1, Article . Publication date: May 2021.

https://github.com/adapton


Fungi: Typed incremental computation with names :27

Sebastian Burckhardt, Daan Leijen, Caitlin Sadowski, Jaeheon Yi, and Thomas Ball. 2011. Two for the Price of One: A
Model for Parallel and Incremental Computation. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications.

Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. 2014. A theory of changes for higher-order languages:
incrementalizing λ-calculi by static differentiation. In Programming Language Design and Implementation. ACM Press,
145–155.

Magnus Carlsson. 2002. Monads for Incremental Computing. In International Conference on Functional Programming. 26–35.
Ezgi Çiçek, Deepak Garg, and Umut A. Acar. 2015. Refinement Types for Incremental Computational Complexity. In ESOP.
Ezgi Çiçek, Zoe Paraskevopoulou, and Deepak Garg. 2016. A Type Theory for Incremental Computational Complexity with

Control Flow Changes. In ICFP.
Yan Chen, Jana Dunfield, and Umut A. Acar. 2012. Type-Directed Automatic Incrementalization. In ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). ACM Press, 299–310.
Yan Chen, Jana Dunfield, Matthew A. Hammer, and Umut A. Acar. 2011. Implicit Self-Adjusting Computation for Purely

Functional Programs. In Int’l Conference on Functional Programming (ICFP ’11). 129–141.
Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding dynamic dataflow in a call-by-value language. In ESOP.
Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive Programming for GUIs. In PLDI.
Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. 2011. Reactive Imperative Programming with Dataflow Constraints.

In Proceedings of ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

Jana Dunfield. 2007. A Unified System of Type Refinements. Ph.D. Dissertation. Carnegie Mellon University. CMU-CS-07-129.
Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and Easy Bidirectional Typechecking for Higher-Rank

Polymorphism. In ICFP. ACM Press. arXiv:1306.6032 [cs.PL].
Jana Dunfield and Frank Pfenning. 2004. Tridirectional Typechecking. In Principles of Programming Languages. ACM Press,

281–292.
Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In ICFP. ACM Press, 263–273.
Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and Mira Mezini. 2015. A co-contextual formulation of type

rules and its application to incremental type checking. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh,
PA, USA, October 25-30, 2015. 880–897.

Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Programming Language Design and Implementation.
ACM Press, 268–277.

David K. Gifford and John M. Lucassen. 1986. Integrating Functional and Imperative Programming. In ACM Conference on
LISP and Functional Programming. ACM Press, 28–38.

Matthew A. Hammer and Umut A. Acar. 2008. Memory management for self-adjusting computation. In International
Symposium on Memory Management. 51–60.

Matthew A. Hammer, Umut A. Acar, and Yan Chen. 2009. CEAL: a C-Based Language for Self-Adjusting Computation. In
ACM SIGPLAN Conference on Programming Language Design and Implementation.

Matthew A. Hammer, Jana Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S. Foster, Michael Hicks, and David Van Horn.
2015. Incremental Computation with Names. In OOPSLA. ACM Press, 748–766.

Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster. 2014. Adapton: Composable, Demand-driven
Incremental Computation. In PLDI. ACM Press.

Fritz Henglein, Henning Makholm, and Henning Niss. 2005. Effect Types and Region-Based Memory Management. In
Advanced Topics in Types and Programming Languages, B. C. Pierce (Ed.). MIT Press, Chapter 3, 87–135.

Neelakantan R. Krishnaswami. 2013. Higher-order functional reactive programming without spacetime leaks. In ICFP.
Neelakantan R. Krishnaswami and Nick Benton. 2011. A semantic model for graphical user interfaces. In ICFP.
Edlira Kuci, Sebastian Erdweg, Oliver Bracevac, Andi Bejleri, and Mira Mezini. 2017. A Co-contextual Type Checker

for Featherweight Java. In 31st European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017,
Barcelona, Spain. 18:1–18:26.

Paul Blain Levy. 1999. Call-by-push-value: A subsuming paradigm. In Typed Lambda Calculi and Applications. Springer,
228–243.

Paul Blain Levy. 2001. Call-By-Push-Value. Ph.D. Dissertation. Queen Mary and Westfield College, University of London.
Ruy Ley-Wild, Umut A. Acar, and Matthew Fluet. 2009. A Cost Semantics for Self-Adjusting Computation. In Principles of

Programming Languages.

, Vol. 1, No. 1, Article . Publication date: May 2021.

http://arxiv.org/abs/1306.6032


:28
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Ralf Mitschke, Sebastian Erdweg, Mirko Köhler, Mira Mezini, and Guido Salvaneschi. 2014. i3QL: Language-integrated Live
Data Views. In OOPSLA. ACM Press.

Peter W. O’Hearn. 2003. On bunched typing. J. Funct. Program. 13, 4 (2003), 747–796. https://doi.org/10.1017/
S0956796802004495

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer. 2017a. Hazelnut: a bidirectionally
typed structure editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017. 86–99.

Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan Aldrich, and Matthew A. Hammer.
2017b. Toward Semantic Foundations for Program Editors. In 2nd Summit on Advances in Programming Languages,
SNAPL 2017, May 7-10, 2017, Asilomar, CA, USA. 11:1–11:12.

Benjamin C. Pierce and David N. Turner. 1998. Local Type Inference. In Principles of Programming Languages. 252–265. Full
version in ACM Trans. Prog. Lang. Sys., 22(1):1–44, 2000.

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Prog. Lang. Syst. 22 (2000), 1–44.
Andrew M. Pitts and Murdoch J. Gabbay. 2000. A Metalanguage for Programming with Bound Names Modulo Renaming. In

Mathematics of Program Construction. Springer.
François Pottier. 2007. Static Name Control for FreshML. In Logic in Computer Science. 356–365.
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Logic in Computer Science. 55–74.

http://www.cs.cmu.edu/~jcr/seplogic.pdf
Patrick Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Programming Language Design and Implementation.

159–169.
Ajeet Shankar and Rastislav Bodik. 2007. DITTO: Automatic Incrementalization of Data Structure Invariant Checks (in

Java). In Programming Language Design and Implementation.
Özgür Sümer, Umut A. Acar, Alexander Ihler, and Ramgopal Mettu. 2011. Adaptive Exact Inference in Graphical Models.

Journal of Machine Learning 8 (2011), 180–186.
Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Information and Computation 132, 2 (1997),

109–176.
Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In European Symp. on Programming.

Springer, Berlin Heidelberg, 209–228.
David Walker. 2005. Substructural Type Systems. In Advanced Topics in Types and Programming Languages, B. C. Pierce

(Ed.). MIT Press, Chapter 1, 3–43.
Zhanyong Wan and Paul Hudak. 2000. Functional reactive programming from first principles. In Programming Language

Design and Implementation. ACM Press, 242–252.
Hongwei Xi. 2007. Dependent ML: An approach to practical programming with dependent types. J. Functional Programming

17, 2 (2007), 215–286.
Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In Principles of Programming Languages.

ACM Press, 214–227.

, Vol. 1, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1017/S0956796802004495
https://doi.org/10.1017/S0956796802004495
http://www.cs.cmu.edu/~jcr/seplogic.pdf


Fungi: Typed incremental computation with names :29

Γ ⊢ A ≤V B Value type A is a subtype of B

Γ ⊢ A ≤V A
≤V-refl

Γ ⊩ X ⊆ Y

Γ ⊢ Nm[X] ≤V Nm[Y]
≤V-name

Γ ⊢ A1 ≤V B1 Γ ⊢ A2 ≤V B2

Γ ⊢ A1 ×A2 ≤V B1 × B2

≤V-×
Γ ⊢ A1 ≤V B1 Γ ⊢ A2 ≤V B2

Γ ⊢ A1 +A2 ≤V B1 + B2

≤V-+

extract(Γ) ⊩ X ⊆ Y Γ ⊢ A ≤V B

Γ ⊢ (Ref[X]A) ≤V (Ref[Y]B)
≤V-ref

extract(Γ) ⊩ X ⊆ Y Γ ⊢ E1 ≤C E2

Γ ⊢ (Thk[X]E1) ≤V (Thk[Y]E2)
≤V-thk

Γ ⊢ M1 =β M2

Γ ⊢ (Nm Nm→ Nm)[M1] ≤V (Nm Nm→ Nm)[M2]
≤V-namefn

Γ ⊢ i : γ
extract(Γ) ⊩ [i/a]P
Γ ⊢ [i/a]A ≤V B

Γ ⊢ (∀a : γ | P.A) ≤V B
≤V-∀L

Γ, b : γ, P ⊢ A ≤V B

Γ ⊢ A ≤V (∀b : γ | P. B)
≤V-∀R

Γ, a : γ, Pa ⊢ A ≤V [a/b]B extract(Γ, a : γ, Pa) ⊩ [a/b]Pb

Γ ⊢ (∃a : γ | Pa. A) ≤V (∃b : γ | Pb. B)
≤V-∃

Fig. 16. Subtyping on value types

Γ ⊢ C ≤C D Computation type C is a subtype of D

Γ ⊢ A ≤V B

Γ ⊢ FA ≤C FB
≤C-lift

Γ ⊢ A2 ≤V A1 Γ ⊢ E1 ≤E E2

Γ ⊢ (A1 → E1) ≤C (A2 → E2)
≤C-arr

Γ ⊢ E1 ≤E E2 Type-with-effects E1 is a subtype of E2

Γ ⊢ C1 ≤C C2 Γ ⊢ ϵ1 ⪯ ϵ2

Γ ⊢ (C1 � ϵ1) ≤C (C2 � ϵ2)
≤E-eff

Γ, α : K ⊢ E1 ≤E E2

Γ ⊢ (∀α : K. E1) ≤E (∀α : K. E2)
≤E-all-type

Γ ⊢ i : γ
extract(Γ) ⊩ [i/a]P
Γ ⊢ [i/a]E1 ≤E E2

Γ ⊢ (∀a : γ | P. E1) ≤E E2

≤E-all-index-L
Γ, a : γ, P ⊢ E1 ≤E E2

Γ ⊢ E1 ≤E (∀a : γ | P. E2)
≤E-all-index-R

Fig. 17. Subtyping on computation types

A OMITTED DEFINITIONS, FIGURES, AND REMARKS
A.1 Subtyping
To design subtyping rules that are correct and easy to implement, we turn to the DML descendant
Stardust [Dunfield 2007]. The subtyping rules in Stardust are generally a helpful guide, with the
exception of the rule that compares atomic refinements. In Dunfield’s system, τ[i] ≤ τ[j] if i = j
in the underlying index theory. For example, a list of length i is a subtype of a list of length j if and
only if i = j in the theory of integers. While approximate in the sense of considering all lists of
length i to have the same type, the length itself is not approximate.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:30
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

In contrast, our name set indices are approximations. Thus, our rule ≤V-name (Figure 16) says
that Nm[X] ≤V Nm[Y] if X ⊆ Y, rather than X = Y. Similarly, subtyping for references and
thunks (≤V-ref, ≤V-thk) checks inclusion of the associated name (pointer) set, not strict equality.
Our polymorphic types combine two fundamental typing constructs, universal quantification

and guarded types (requiring that P hold for the quantified index a), so our rule ≤V-∀L combines
the Stardust rules ΠL for index-level quantification and ⊃L for the guarded type [Dunfield 2007, p.
33]. Likewise, our ≤V-∀R combines Stardust’s ΠR and ⊃R.

Unlike Stardust’s Σ (and unlike our ∀), our existential types have a term-level pack construct, so
an ∃ cannot be a sub- or supertype of a non-existential type. Thus, instead of rules analogous to
Stardust’s ΣL and ΣR, we have a single rule ≤V-∃ with ∃ on both sides, which specializes ΣR to
the case when ΣL derives its premise. Like ∀, our ∃ incorporates a constraint P on the quantified
variable, so our ≤V-∃ also incorporates the Stardust rules for asserting types ( &), checking that Pa
entails Pb.

For refs and thunks, rules ≤V-ref and ≤V-thk are covariant in the name set describing the location.
They are also covariant in the type of their contents: unlike an ordinary ML ref type, our Ref
names a location, but the programs described by our type system cannot mutate that location. To
extend our theory to editor programs, we would need different rules (Section A.3 in the appendix).
In our subtyping rules for computation types (Figure 17), rule ≤C-arr reflects the usual con-

travariance of function domains, rule ≤E-eff allows subsumption within effects ϵ, and the rules
for computation-level ∀ follow our rules for value-level ∀. Instead of an explicit transitivity rule,
which is not trivial to implement, the transitivity of subtyping is admissible.

A.2 Dynamic semantics, read and write sets, sorting and kinding

⊢ · : Γ
emp

S ⊢ Γ Γ ⊢ v : A Γ(p) = A

⊢ (S, p : v) : Γ
ref

S ⊢ Γ Γ ⊢ e : E Γ(p) = E

⊢ (S, p : e) : Γ
thunk

Fig. 18. Store typing: S ⊢ Γ , read “store S typed by Γ”.

In Figure 20, we write
D by Rulename (Dlist) readsRwritesW

to mean that rule Rulename concludes D and has subderivations Dlist. For example,
D by⇓-scope(D0) readsRwritesW

provided that D readsRwritesW, where D0 derives the only premise of ⇓-scope.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :31

Pointers p, q ::= n name constants
Stores S ::= · empty store

| S, p:v p points to value v
| S, p:e@M p points to thunk e, run in scopeM

Notation: S{p 7→v} and S{p 7→e@M} extend S at p when p < dom(S)
S{p 7→v} and S{p 7→e@M} overwrite S at p when p ∈ dom(S)

S1 ⊢
M
m e ⇓ S2; t

Under store S in namespaceM at current node m,
expression e produces new store S2 and result t

S1 ⊢Mm [v2/x2][v1/x1]e ⇓ S2; e
′

S1 ⊢Mm split((v1, v2), x1.x2.e) ⇓ S2; e
′
⇓-split S1 ⊢Mm [vi/xi]ei ⇓ S2; e

′

S1 ⊢Mm case(inji v, x1.e1, x2.e2) ⇓ S2; e
′
⇓-case

S1 ⊢Mm [v/x]e ⇓ S2; e
′

S1 ⊢Mm vunpack(pack(a.v), b.x.e) ⇓ S2; e
′
⇓-unpack

S1 ⊢Mm e1 ⇓ S ′
1; ret(v) S ′

1 ⊢Mm [v/x]e2 ⇓ S ′
2; e

′
2

S ′
1 ⊢Mm let(e1, x.e2) ⇓ S ′

2; e
′
2

⇓-let
S1 ⊢Mm e1 ⇓ S ′

1; λx. e2 S1 ⊢Mm [v/x]e2 ⇓ S ′
2; e

′
2

S ′
1 ⊢Mm e1 v ⇓ S ′

2; e
′
2

⇓-app
S1 ⊢

M1◦M2
m e ⇓ S2; e

′

S1 ⊢
M1
m scope(M2, e) ⇓ S2; e

′
⇓-scope M1 ⇓M λa.M2 [n/a]M2 ⇓M p

S ⊢Mm M1 (name n) ⇓ S; ret(name p)
⇓-name-app

(Mn) ⇓M p S1{p7→e@M} = S2

S1 ⊢Mm thunk(name n, e) ⇓ S2; ret(thunk p)
⇓-thunk (Mn) ⇓M p S1{p 7→v} = S2

S1 ⊢Mm ref(name n, v)⇓ S2; ret(ref p)

⇓-ref
S(p) = e@ M0

S1 ⊢
M0
p e ⇓ S2; t

S1 ⊢Mm force(thunk p) ⇓ S2; t
⇓-force S(p) = v

S ⊢Mm get(ref p) ⇓ S; ret(v)
⇓-get

S ⊢Mm t ⇓ S; t
⇓-term

Fig. 19. Dynamic semantics, complete

, Vol. 1, No. 1, Article . Publication date: May 2021.



:32
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

D by⇓-term() reads ∅writes ∅

D by⇓-app(D1,D2) readsR1 ∪ (R2 −W1)writesW1 ⊥ W2 if D1 readsR1 writesW1

and D2 readsR2 writesW2

D by⇓-let(D1,D2) readsR1 ∪ (R2 −W1)writesW1 ⊥ W2 if D1 readsR1 writesW1

and D2 readsR2 writesW2

D by⇓-scope(D0) readsRwritesW if D0 readsRwritesW

D by⇓-case(D0) readsRwritesW if D0 readsRwritesW
D by⇓-split(D0) readsRwritesW if D0 readsRwritesW

D by⇓-ref() reads ∅writesp where e = ref(name n, v) and p ≡ M n

D by⇓-thunk() reads ∅writesp where e = thunk(name n, e0) and p ≡ M n

D by⇓-get() readspwrites ∅ where e = get(ref p)

D by⇓-force() readsq, R ′writesW ′ where e = force(thunk q)
and D ′ readsR ′writesW ′

where D ′ is the derivation that computed t

Fig. 20. Read- and write-sets of a non-incremental evaluation derivation

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :33

Γ ⊢ A : K Under Γ , value type A has kind K

(α : K) ∈ Γ

Γ ⊢ α : K
k-typevar

(d : K) ∈ Γ

Γ ⊢ d : K
k-tycon

Γ ⊢ A1 : type Γ ⊢ A2 : type

Γ ⊢ (A1 +A2) : type
Γ ⊢ (A1 ×A2) : type

k-binop

Γ ⊢ unit : type
k-unit

Γ ⊢ i : NmSet

Γ ⊢ Nm[i] : type
k-name

Γ ⊢ i : NmSet Γ ⊢ A : type

Γ ⊢ (Ref[i]A) : type
k-ref

Γ ⊢ i : NmSet
Γ ⊢ E efftype

Γ ⊢ (Thk[i]E) : type
k-thk

Γ ⊢ A : (type ⇒ K)
Γ ⊢ B : type

Γ ⊢ (A B) : K
k-app-type

Γ ⊢ A : (γ ⇒ K)
Γ ⊢ i : γ

Γ ⊢ A[i] : K
k-app-index

Γ, a : γ ⊢ P prop Γ, a : γ ⊢ A : type

Γ ⊢ (∀a : γ | P.A) : type
k-all

Γ, a : γ ⊢ P prop Γ, a : γ ⊢ A : type

Γ ⊢ (∃a : γ | P.A) : type
k-exists

Γ ⊢ C ctype Under Γ , computation type C is well-formed
Γ ⊢ A : type

Γ ⊢ (FA) ctype
ctype-lift

Γ ⊢ A : type Γ ⊢ E efftype
Γ ⊢ (A → E) ctype

ctype-arr

Γ ⊢ ϵ wf-effects Under Γ , effects ϵ are well-formed
Γ ⊢ W : NmSet Γ ⊢ R : NmSet

Γ ⊢ ⟨W;R⟩ wf-effects
wf-eff

Γ ⊢ P prop Under Γ , proposition P is well-formed

Γ ⊢ tt prop
Γ ⊢ P1 prop Γ ⊢ P2 prop
Γ ⊢ (P1 and P2) prop

Γ ⊢ i : γ Γ ⊢ j : γ

Γ ⊢ (i ⊥ j : γ) prop
Γ ⊢ (i ≡ j : γ) prop

Γ ⊢ E efftype Under Γ , type-with-effects E is well-formed

Γ ⊢ C ctype Γ ⊢ ϵ wf-effects
Γ ⊢ (C� ϵ) efftype

etype-eff

Γ, α : K ⊢ E efftype
Γ ⊢ (∀α : K. E) efftype

etype-poly
Γ, a : γ ⊢ P prop Γ, a : γ ⊢ E efftype

Γ ⊢ (∀a : γ | P. E) efftype
etype-idx

Fig. 21. Kinding and well-formedness for types and effects

, Vol. 1, No. 1, Article . Publication date: May 2021.



:34
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

A.3 Remarks
Why distinguish computation types from types-with-effects? Can we unify computation types

C and types-with-effects E? Not easily. We have two computation types, F and →. For F, the
expression being typed could create a thunk, so we must put that effect somewhere in the syntax.
For →, applying a function is (per call-by-push-value) just a “push”: the function carries no effects
of its own (though its codomain may need to have some). However, suppose we force a thunked
function of type A1 → (A2 → · · · ) and apply the function (the contents of the thunk) to one
argument. In the absence of effects, the result would be a computation of type A2 → · · · , meaning
that the computation is waiting for a second argument to be pushed. But, since forcing the thunk
has the effect of reading the thunk, we need to track this effect in the result type. So we cannot
return A2 → · · · , and must instead put effects around (A2 → · · · ). Thus, we need to associate
effects to both F and→, that is, to both computation types.
Now we are faced with a choice: we could (1) extend the syntax of each connective with an

effect (written next to the connective), or (2) introduce a “wrapper” that encloses a computation
type, either F or →. These seem more or less equally complicated for the present system, but if we
enriched the language with more connectives, choice (1) would make the new connectives more
complicated, while under choice (2), the complication would already be rolled into the wrapper. We
choose (2), and write the wrapper as C� ϵ, where C is a computation type and ϵ represents effects.

Where should these wrappers live? We could add C� ϵ to the grammar of computation types C.
But it seems useful to have a clear notion of the effect associated with a type. When the effect on
the outside of a type is the only effect in the type, as in (A1 → FA2)� ϵ, “the” effect has to be
ϵ. Alas, types like (C� ϵ1)� ϵ2 raise awkward questions: does this type mean the computation
does ϵ2 and then ϵ1, or ϵ1 and then ϵ2?
We obtain an unambiguous, singular outer effect by distinguishing types-with-effects E from

computation types C. The meta-variables for computation types appear only in the production
E ::= C� ϵ, making types-with-effects E the “common case” in the grammar. Many of the typing
rules follow this pattern, achieving some isolation of effect tracking in the rules.

Future work: Editor and Archivist. To distinguish imperative name allocation from name-precise
computation, future versions of Fungi will introduce two incremental computation roles, which
we term the editor and the archivist, respectively; specifically, we define the syntax for roles
as r ::= ed | ar. The archivist role (ar) corresponds to computation whose dependencies we cache,
and the editor role (ed) corresponds to computation that feeds the archivist with input changes,
and demands any changed output that is relevant; in short, the editor represents the world outside
the cached computation.
While the current type system prototype focuses only on the archivist role, leaving the editor

role to the surrounding Rust code, future work will integrate the editor role into Fungi programs.
For example, consider the following typing rules, which approximate (and extend) our full type
system with a role r in each rule:

Γ ⊢ vn : Nm[X] Γ ⊢ v : A

Γ ⊢ ref(vn, v) : Ref(A)� r(X)

Γ ⊢ e1 : A� ar(X)
Γ, x : A ⊢ e2 : B� ar(Y)
Γ ⊢ (X ⊥ Y) ≡ Z : NmSet

Γ ⊢ let(e1, x.e2) : B� ar(Z)

Γ ⊢ e1 : A� ed(X)
Γ, x : A ⊢ e2 : B� ed(Y)
Γ ⊢ (X ∪ Y) ≡ Z : NmSet

Γ ⊢ let(e1, x.e2) : B� ed(Z)

These rules are similar to the simplified rules presented in Sec. 2. In contrast to those rules,
these conclude with the judgement form Γ ⊢ e : A � r(X), mentioning the written set with
the notation �r(X), where the set X approximates the set of written names (as in the earlier
formulation), and r is the role (absent from the earlier formulation).

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :35

The first rule types a reference cell allocation, as before; in the rule’s conclusion, this name set X
serves as the allocation’s write set. The undetermined role r means that this rule is applicable to
both the editor and the archivist roles.

What was one let sequencing rule (in Sec. 2) is now two rules here: The second rule enforces the
archivist role, where names are precise. The third rule permits the editor role, where names allocated
later may overwrite names allocated earlier. Finally, a new syntax form archivist(e) permits the
editor’s computations to delegate to archivist sub-computations; the program archivist(e) has
role ed whenever program e types under role ar under the same typing context.
Among the future work for mixing these roles, we foresee that extending the theory of Fungi,

including covariant index subtyping, to this mixture of imperative-functional execution semantics
requires mixing imperative effects (for the editor) and type index subtyping (for the archivist) in a
disciplined, sound manner.

B OMITTED LEMMAS AND PROOFS
Lemma B.1 (Index-level weakening).
(1) If Γ ⊢ M : γ then Γ, Γ ′ ⊢ M : γ.
(2) If Γ ⊢ i : γ then Γ, Γ ′ ⊢ i : γ.
(3) If Γ ⊢ A : K then Γ, Γ ′ ⊢ A : K.

Proof. By induction on the given derivation. □

Lemma B.2 (Weakening).
(1) If Γ ⊢ e : A then Γ, Γ ′ ⊢ e : A.
(2) If Γ ⊢M e : C then Γ, Γ ′ ⊢M e : C.

Proof. By induction on the given derivation, using Lemma F.1 (Weakening of semantic equiv-
alence and apartness) (for example, in the case for the value typing rule ‘name’) and Lemma B.1
(Index-level weakening) (for example, in the case for the computation typing rule ‘AllIndexE-
lim’). □

Lemma B.3 (Substitution).
(1) If Γ ⊢ v : A and Γ, x : A ⊢ e : C then Γ ⊢

(
[v/x]e

)
: C.

(2) If Γ ⊢ v : A and Γ, x : A ⊢ v ′ : B then Γ ⊢
(
[v/x]v ′

)
: B.

Proof. By mutual induction on the derivation typing e (in part 1) or v ′ (in part 2). □

In the presence of subtyping, canonical forms (value inversion) is not entirely straightforward.

Lemma B.4 (Subtyping Weakening). If Γ ⊢ A ≤V B then Γ, Γ ′ ⊢ A ≤V B where Γ ′ consists of
a : γ and P assumptions.

Proof. By induction on the derivation of Γ ⊢ A ≤V B. In the ≤V-name, ≤V-namefn, ≤V-ref,
≤V-thk, ≤V-∀L and ≤V-∃ cases, use weakening for the relations ⊢ and ⊩. □

Lemma B.5 (Subtyping Substitution).
If Γ, a : γ, P ⊢ A ≤V B and Γ ⊢ i : γ and extract(Γ) ⊩ P then Γ ⊢ [i/a]A ≤V [i/a]B.

Proof. By induction on the derivation of Γ ⊢ A ≤V B. In the ≤V-ref, ≤V-thk, ≤V-∀L and ≤V-∃
cases, use substitution for the relation ⊩. □

Lemma B.6 (Reflexivity of Subtyping). For all Γ and A, it is the case that Γ ⊢ A ≤V A.

Proof. Immediate by rule ≤V-refl. □

, Vol. 1, No. 1, Article . Publication date: May 2021.



:36
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Lemma B.7 (Transitivity of Subtyping).
If Γ ⊢ AL ≤V B and Γ ⊢ B ≤V AR then Γ ⊢ AL ≤V AR.

Proof. By simultaneous induction on the two given derivations.
If either derivation is by ≤V-refl, we already have our result.
Consider cases of the rule concluding Γ ⊢ AL ≤V B.

• ≤V-×:
The derivation of Γ ⊢ B ≤V AR must be by ≤V-refl (already handled), ≤V-× or ≤V-∀R.
If by ≤V-×, the result follows by using the i.h. twice on the respective subderivations, then
applying ≤V-×.
If by ≤V-∀R, then:

AR = (∀b : γ | P.AR0) By inversion (≤V-∀R)
Γ, b : γ, P ⊢ B ≤V AR0

′′

Γ ⊢ AL ≤V B Given
Γ, b : γ, P ⊢ AL ≤V B By Lemma B.4 (Subtyping Weakening)
Γ, b : γ, P ⊢ AL ≤V AR0 By i.h.

Γ ⊢ AL ≤V (∀b : γ | P.AR0) By ≤V-∀R
Z Γ ⊢ AL ≤V AR By above equation

• ≤V-+: Similar to the ≤V-× case.

• ≤V-name, ≤V-ref, ≤V-thk: Similar to the ≤V-× case, using transitivity of ⊆ at the index level.

• ≤V-namefn: Use transitivity of conv.

• ≤V-∀L:
By i.h., Γ ⊢ [i/a]AL0 ≤V AR.
By ≤V-∀L, Γ ⊢ ∀a : γ | P.AL0 ≤V AR, which was to be shown.

• ≤V-∀R:
The other derivation is by either ≤V-refl (already handled) or ≤V-∀L.

B = (∀b : γ | P. B0) By inversion (≤V-∀R)
Γ, b : γ, P ⊢ AL ≤V B0

′′

Γ ⊢ i : γ By inversion (≤V-∀L)
extract(Γ) ⊩ [i/b]P ′′

Γ ⊢ [i/b]B0 ≤V AR
′′

Γ ⊢ [i/b]AL ≤V [i/b]B0 By Lemma B.5 (Subtyping Substitution)
Γ ⊢ [i/b]AL ≤V AR By i.h.

[i/b]AL = AL b not free in AL

Z Γ ⊢ AL ≤V AR By above equation □

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :37

Lemma B.8 (Canonical Forms). Suppose Γ store-type and Γ ⊢ v : A.
1. If A ≤V unit then v = ().
2. If A ≤V (B1 × B2) then v = (v1, v2) and Γ ⊢ v1 : B1 and Γ ⊢ v2 : B2.
3. If A ≤V (B1 + B2) then v = inji vi where i ∈ {1, 2} and Γ ⊢ vi : Bi.
4. If A ≤V (Nm[X]) then v = name n where Γ ⊢ n ∈ X.
5. If A ≤V (Ref[X]A0) then v = ref n where Γ ⊢ n ∈ X.
6. If A ≤V (Thk[X]E) then v = thunk n where Γ ⊢ n ∈ X.
7. If A ≤V (Nm Nm→ Nm)[M] then v = nmfn Mv where M =β (λa.M ′)

and · ⊢ (λa.M ′) : (Nm Nm→ Nm)
and Mv =β M.

Proof. By induction on the derivation of Γ ⊢ A ≤V B.

(1) Consider cases of the rule concluding Γ ⊢ v : A.
• Case unit: By inversion.
• Case pair: Impossible because Γ ⊢ A1 +A2 ≤V unit is not derivable.
• Case name: Impossible because Γ ⊢ Nm[X] ≤V unit is not derivable.
• Case namefn: Impossible because Γ ⊢ (Nm Nm→ Nm)[M] ≤V unit is not derivable.
• Case ref: Impossible because Γ ⊢ (Ref[X]A0) ≤V unit is not derivable.
• Case thunk: Impossible because Γ ⊢ (Thk[X]E) ≤V unit is not derivable.
• Case vtype-∀IndexIntro:

Γ ⊢ (∀a : γ | P.A0) ≤V unit Given
Γ, a : γ, P ⊢ A0 ≤V unit By inversion (≤V-∀L)
Γ, a : γ, P ⊢ v : A0 Subderivation

Z v = () By i.h. (part 1)

• Case

Γ ⊢ i : γ
extract(Γ) ⊩ [i/a]P
Γ ⊢ v : (∀a : γ | P.A0)

Γ ⊢ v : [i/a]A0

vtype-∀IndexElim

Γ ⊢ i : γ Subderivation
extract(Γ) ⊩ [i/a]P Subderivation

Γ ⊢ (∀a : γ | P.A0) ≤V [i/a]A0 By ≤V-∀L
Γ ⊢ [i/a]A0 ≤V A Given

Γ ⊢ (∀a : γ | P.A0) ≤V unit By Lemma B.7 (Transitivity of Subtyping)
Γ ⊢ v : (∀a : γ | P.A0) Subderivation

Z v = () By i.h.

• Case vtype-∃IndexIntro:
Impossible because Γ ⊢ (∃a : γ | P.A0) ≤V unit is not derivable.

(2) ×:
Consider cases of the rule concluding Γ ⊢ v : A.
• Case unit: Impossible because Γ ⊢ unit ≤V (B1 × B2) is not derivable.
• Case pair:

, Vol. 1, No. 1, Article . Publication date: May 2021.



:38
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢ A ≤V (B1 × B2) Given
A = (A1 ×A2) By inversion (pair)

Z v = (v1, v2) ′′

Γ ⊢ v1 : B1
′′

Γ ⊢ v2 : B2
′′

Γ ⊢ A1 ≤V B1 By inversion (≤V-×)
Γ ⊢ A2 ≤V B2

′′

Z Γ ⊢ v1 : B1 By vtype-sub
Z Γ ⊢ v2 : B2 By vtype-sub

• Cases name, namefn, ref, thunk:
Impossible because the assumed subtyping is not derivable.

• Case vtype-∀IndexIntro:
Γ ⊢ (∀a : γ | P.A0) ≤V (B1 × B2) Given

Γ, a : γ, P ⊢ A0 ≤V (B1 × B2) By inversion (≤V-∀L)
Γ, a : γ, P ⊢ v : A0 Subderivation

Z v = (v1, v2) By i.h. (part 2)
Z Γ ⊢ v1 : B1

′′

Z Γ ⊢ v2 : B2
′′

• Case

Γ ⊢ i : γ
extract(Γ) ⊩ [i/a]P
Γ ⊢ v : (∀a : γ | P.A0)

Γ ⊢ v : [i/a]A0

vtype-∀IndexElim

Γ ⊢ i : γ Subderivation
extract(Γ) ⊩ [i/a]P Subderivation

Γ ⊢ (∀a : γ | P.A0) ≤V [i/a]A0 By ≤V-∀L
Γ ⊢ [i/a]A0 ≤V A Given

Γ ⊢ (∀a : γ | P.A0) ≤V (B1 × B2) By Lemma B.7 (Transitivity of Subtyping)
Γ ⊢ v : (∀a : γ | P.A0) Subderivation

Z v = (v1, v2) By i.h. (part 2)
Z Γ ⊢ v1 : B1

′′

Z Γ ⊢ v2 : B2
′′

• Case vtype-∃IndexIntro:
Impossible because Γ ⊢ (∃a : γ | P.A0) ≤V (B1 × B2) is not derivable.

(3) +: Similar to Part 2.
(4) Nm[X]:

In the ≤V-name case, use the fact that Γ ⊩ X ′ ⊆ X and Γ ⊢ n ∈ X ′ implies Γ ⊢ n ∈ X.
Otherwise similar to Part 1.

(5) Ref[X]A0: Similar to Parts 1 and 4.
(6) Thk[X]E: Similar to Part 5.
(7) (Nm Nm→ Nm)[M]: Similar to Part 5. □

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :39

Lemma B.9 (Application and membership commute). If Γ ⊢ n ∈ i and p =β M(n) then
Γ ⊢ p ∈ M(i).

Proof. The set M(i) consists of all elements of i, but mapped by function M. The name p is
convertible to the name M(n). Since n ∈ i, we have that p is in the M-mapping of i, which is
M(i). □

In each case, we write “Z” to the left of each goal, as we prove it.

Theorem 6.1 (Subject Reduction). If Γ1 store-type and Γ1 ⊢ M : Nm Nm→Nm and Γ1 ⊢M e :
C� ⟨W;R⟩ and ⊢ S1 : Γ1and Dderives S1 ⊢Mm e ⇓ S2; t then there exists Γ2 ⊇ Γ1 s.t. Γ2 store-type
and ⊢S2 : Γ2 and Γ2 ⊢ t : C� ⟨∅; ∅⟩ and D readsRD writesWD and ⟨WD ;RD⟩ ⪯ ⟨W;R⟩.

Proof. By induction on the derivation S of Γ1 ⊢M e : C� ⟨W;R⟩.

• Case Γ1 ⊢ v : A

Γ1 ⊢M ret(v) :
(
(FA)� ⟨∅; ∅⟩

) ret

(e = t) and (S1 = S2) Given
(RD = WD = R = W = ∅) ′′

(Γ2 = Γ1) Suppose
Z ⊢S2 : Γ2 by above equalities
Z Γ2 ⊢ t : C� ⟨∅, ∅⟩ ′′

Z D reads RD writes WD By Def. 6.2
Z ⟨WD ;RD⟩ ⪯ ⟨W;R⟩ All are empty

• Case Γ1 ⊢ v : Ref[X]A

Γ1 ⊢M get(v) :
(
FA

)
� ⟨∅;X⟩

get

(W = ∅) and (R = X) Given
Γ1 ⊢ v : Ref[X]A Given
∃p. (v = ref p) Lemma B.8 (Canonical Forms)
Γ1 ⊢p ∈ X ′′

Γ1(p) = A By inversion of value typing
∃vp. S1(p) = vp Inversion on ⊢ S1 : Γ1
Γ1 ⊢ vp : A ′′

(Γ2 = Γ1) and (t = ret(vp)) Suppose
(RD = {p}) and (WD = ∅ = W) ′′

Z ⊢S2 : Γ2 By above equalities
Z Γ2 ⊢ t : C� ⟨∅, ∅⟩ ′′

Z D reads RD writes WD By Def. 6.2
Z ⟨WD ;RD⟩ ⪯ ⟨W;R⟩ By above equalityWD = W = ∅,

. . . and inequality for (RD = {p}) ⊆ (X = R).

• Case Γ1 ⊢ v : Thk[X] (C� ϵ)

Γ1 ⊢M force(v) :
(
C� (⟨∅;X⟩ then ϵ)

) force

, Vol. 1, No. 1, Article . Publication date: May 2021.



:40
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢ e : τ Given
Γ ⊢ e : τ Given

(W = ∅) and (R = X) Given
Γ1 ⊢ v : Thk[X] (C� ϵ) Given
∃p. (v = thunk p) Lemma B.8 (Canonical Forms)
Γ1 ⊢p ∈ X ′′

Γ1(p) = (C� ϵ) By inversion of value typing
∃ep. S1(p) = ep Inversion on ⊢ S1 : Γ1

S0 :: Γ1 ⊢ ep : (C� ϵ) ′′

D0 :: S1 ⊢M
m ep ⇓ S2; t Inversion of D

Z ⊢S2 : Γ2 By i.h. on S0 and D0

Z Γ2 ⊢ t : C� ⟨∅, ∅⟩ ′′

D0 reads RD writes WD
′′

⟨WD0
;RD0

⟩ ⪯ ⟨W;R⟩ ′′

Z D reads RD0
writes WD0

By Def. 6.2
Z ⟨WD0

;RD0
⟩ ⪯ ⟨W;R⟩ by above equality WD = W = ∅,

. . . and inequality (RD = {p}) ⊆ (X = R).

• Case
Γ1 ⊢ v : (Nm Nm→ Nm)[M ′] Γ1 ⊢M◦M′

e0 : C� ⟨W;R⟩

Γ1 ⊢M scope(v, e0) : C� ⟨W;R⟩
scope

S0 :: Γ1 ⊢M◦M′

e0 : C� ⟨W;R⟩ Subderivation 2 of S
D :: S1 ⊢Mm scope(v, e0) ⇓ S2; t Given
D0 :: S1 ⊢M◦M′

m e0 ⇓ S2; t By inversion (scope)

Γ1 ⊢M : Nm Nm→ Nm Assumption
Γ1 ⊢ v : (Nm Nm→ Nm)[M ′] Subderivation 1 of S
Γ1 ⊢M ′ : Nm Nm→ Nm By inversion

Γ1, x : Nm ⊢M ′ x : Nm By rule t-app
Γ1, x : Nm ⊢M (M ′ x) : Nm By rule t-app

Γ1 ⊢ λx.M (M ′ x) : Nm Nm→ Nm By rule t-abs
Γ1 ⊢ (M ◦M ′) : Nm Nm→ Nm By definition ofM ◦M ′

Z ⊢S2 : Γ2 By i.h. on S0

Z Γ2 ⊢ t : C� ⟨∅; ∅⟩ ′′

D0 readsRD0
writesWD0

′′

⟨WD0
;RD0

⟩ ⪯ ⟨W;R⟩ ′′

Z D readsRD writesWD By Def. 6.2
⟨WD ;RD⟩ = ⟨WD0

;RD0
⟩ ′′

Z ⟨WD ;RD⟩ ⪯ ⟨W;R⟩ By above equalities

• Case Γ1 ⊢ v : Nm[X] Γ1 ⊢ e : E

Γ1 ⊢M thunk(v1, v2) : F (Thk[M(X)]E)� ⟨M(X); ∅⟩
thunk

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :41

C = F (Thk[M(X)]E) and R = ∅ and W = M(X) Given from S

Γ1 ⊢ v : Nm[X] Subderivation
(v = name n) and (n ∈ X) By Lemma B.8
Mn ⇓ p and RD = ∅ and WD = {p} Given from D

S2 = (S1, p : e) ′′

Γ2 = (Γ1, p : Thk[p]E) Suppose
Z ⊢ S2 : Γ2 By rule (Fig. 18)

Γ2(p) = E By inversion of value typing

Γ2 ⊢ ref p : Ref[p]E By rule thunk
Z Γ2 ⊢M ret(thunk p) : F (Thk[p]A)� ⟨∅; ∅⟩ By rule ret
Z D readsRD writesWD andWD = {p} By Def. 6.2

n ∈ X Above
M(n) ∈ M(X) Name term application is pointwise
M(n) ∈ W By above equality
M(n) = p

{p} ⊆ W By set theory
Z ⟨WD ;RD⟩ ⪯ ⟨W;R⟩

• Case Γ1 ⊢ v1 : Nm[X] Γ1 ⊢ v2 : A

Γ1 ⊢M ref(v1, v2) : F (Ref[M(X)]A)� ⟨M(X); ∅⟩
ref

C = F (Ref[M(X)]A) and R = ∅ and W = M(X) Given from S

Γ1 ⊢ v1 : Nm[X] Subderivation
(v1 = name n) and (n ∈ X) Lemma B.8 (Canonical Forms)
Mn ⇓ p and RD = ∅ and WD = {p} Given from D

S2 = (S1, p : v2)
′′

Γ2 = (Γ1, p : Ref[p]A) Suppose
Z ⊢ S2 : Γ2 By rule (Fig. 18)

Γ2(p) = A By inversion of value typing
Γ2 ⊢ ref p : Ref[p]A By rule ref

Z Γ2 ⊢M ret(ref p) : ret(Ref[p]A)� ⟨∅; ∅⟩ By rule ret
Z D readsRD writesWD andWD = {p} By Def. 6.2

n ∈ X Above
M(n) ∈ M(X) Name term application is pointwise
M(n) ∈ W By above equality
M(n) = p

{p} ⊆ W By set theory
Z ⟨WD ;RD⟩ ⪯ ⟨W;R⟩

• Case
Γ1 ⊢M e1 : (FA� ϵ1) Γ1, x : A ⊢M e2 : (C� ϵ2)

Γ1 ⊢M let(e1, x.e2) : C� (ϵ1 then ϵ2)
let

, Vol. 1, No. 1, Article . Publication date: May 2021.



:42
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

⊢ S1 : Γ1 Given
S1 :: Γ1 ⊢M e1 : FA� ϵ1 Subderivation 1 of S
D1 :: S1 ⊢Mm e1 ⇓ S12; t1 Subderivation 1 of D

exists Γ12 ⊇ Γ1 such that S12 : Γ12 By i.h. on S1

Γ12 ⊢ t1 : FA� ⟨∅; ∅⟩ ′′

D1 reads RD1
writesWD1

′′

⟨WD1
;RD1

⟩ ⪯ ϵ1
′′

⟨WD1
;RD1

⟩ ⪯ ⟨W1, R1⟩
′′

Γ12 ⊢ v : A inversion of typing rule ret,
for terminal computation t1

S2 :: Γ1, x : A ⊢M e2 : C� ϵ2 Subderivation 2 of S
Γ12, x : A ⊢M e2 : C� ϵ2 Lemma B.2 (Weakening)
Γ12 ⊢M [v/x]e2 : C� ϵ2 Lemma B.3 (Substitution)

D2 :: S12 ⊢Mm [v/x]e2 ⇓ S2; t2 Subderivation 2 of D
exists Γ2 ⊇ Γ12 ⊇ Γ1 such that By i.h. on S2

Z ⊢ S2 : Γ2
′′

Z Γ2 ⊢M t2 : C� ⟨∅; ∅⟩ ′′

D2 reads RD2
writesWD2

′′

⟨WD2
;RD2

⟩ ⪯ ϵ2
′′

⟨WD2
;RD2

⟩ ⪯ ⟨W2, R2⟩
′′

W1 ⊥ W2 and R1 ⊥ W2 Definition of ϵ1 then ϵ2
WD1

⊥ WD2
and RD1

⊥ WD2
WD1

⊆ W1; WD2
⊆ W2; RD1

⊆ R1

WD = WD1
⊥ WD2

By Def. 6.2
RD = RD1

∪ (RD2
−WD1

) ′′

Z D reads RD writes WD
′′

Z ⟨WD , RD⟩ ⪯ ⟨W,R⟩ SinceWD ⊆ W and RD ⊆ R

• Case
Γ ⊢M e :

(
(A → E)� ϵ1

)
Γ ⊢ v : A

Γ ⊢M (e v) : (E after ϵ1)
app

Similar to the case for let.
• Case

Γ ⊢M v : (A1 ×A2) Γ, x1 : A1, x2 : A2 ⊢M e : E

Γ ⊢M split(v, x1.x2.e) : E
split

Similar to the case for let, using Lemma B.8 (Canonical Forms).
• Case

Γ ⊢M v : (A1 +A2)

Γ, x1 : A1 ⊢M e1 : E

Γ, x2 : A2 ⊢M e2 : E

Γ ⊢M case(v, x1.e1, x2.e2) : E
case

Similar to the case for let, using Lemma B.8 (Canonical Forms).
• Case

Γ1 ⊢ vM : (Nm Nm→ Nm)[M]
Γ1 ⊢ v : Nm[i]

Γ1 ⊢ (vM v) : F (Nm[M(i)])� ⟨∅; ∅⟩
name-app

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :43

Γ1 ⊢ vM : (Nm Nm→ Nm)[M] Given
vM = nmfn Mv Lemma B.8 (Canonical Forms)
M =β (λa.M ′) ′′

· ⊢ λa.M ′ : (Nm Nm→ Nm) ′′

Mv =β M ′′

Γ1 ⊢ v : Nm[i] Given
v = name n Lemma B.8 (Canonical Forms)
Γ ⊢ n ∈ i ′′

M ⇓M (λa.M ′) By inversion on D (name-app)
[n/a]M ′ ⇓M p ′′

p =β [n/a]M ′ By a property of ⇓M

=β (λa.M ′)(n) By a property of =β

=β M(n) By a property of =β

(Γ2 = Γ1), (S2 = S1) Suppose
Z ⊢ S2 : Γ2 By above equalities and S1 ⊢ Γ1

Γ1 ⊢n ∈ i Above
p =β M(n) Above
Γ1 ⊢p ∈ M(i) By Lemma B.9

Γ1 ⊢name p : Nm[M(i)]) By rule name
Z Γ1 ⊢ ret(name p) : F (Nm[M(i)])� ⟨∅; ∅⟩ By rule ret
Z D by⇓-name-app reads ∅writes ∅ By Def. 6.2
Z (RD = R = ∅), (WD = W = ∅) By above equalities

• Case
Γ1, a : γ, P ⊢M t : E

Γ1 ⊢M t : (∀a : γ | P. E)
AllIndexIntro

S0 ::Γ1, a : γ, P ⊢M t : E Subderivation
D0 :: S1 ⊢Mm e ⇓ S2; t Subderivation

∃Γ2 ⊆ Γ1 By i.h.
Z ⊢S2 : Γ2

′′

D0 readsRD0
writesWD0

′′

Γ2 ⊢ t : E ′′

⟨RD0
;WD0

⟩ ⪯ ⟨R;W⟩ ′′

Z Γ2 ⊢M t : (∀a : γ. E) By typing rule
Z D readsRD writesWD By Def. 6.2
Z ⟨RD ;WD⟩ ⪯ ⟨R;W⟩ By set theory

• Case

Γ1 ⊢M e : (∀a : γ | P. E)
Γ1 ⊢ i : γ
extract(Γ1) ⊩ [i/a]P

Γ1 ⊢M e : [i/a]E
AllIndexElim

, Vol. 1, No. 1, Article . Publication date: May 2021.



:44
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

S0 :: Γ1 ⊢M e : (∀a : γ. E) Subderivation
D0 :: S1 ⊢Mm e ⇓ S2; t Subderivation

∃Γ2 ⊆ Γ1 By i.h.
Z ⊢S2 : Γ2

′′

D0 readsRD0
writesWD0

′′

Γ2 ⊢ t : (∀a : γ. E) ′′

⟨RD0
;WD0

⟩ ⪯ ⟨R;W⟩ ′′

Γ1 ⊢ i : γ Subderivation
Γ2 ⊢ i : γ By weakening

Z Γ2 ⊢M t : [i/a]E By typing rule
Z D readsRD writesWD By Def. 6.2
Z ⟨RD ;WD⟩ ⪯ ⟨R;W⟩ By set theory

• Case
Γ, α : K ⊢M t : E

Γ ⊢M t : (∀α : K. E)
AllIntro

Similar to the AllIndexIntro case.
• Case

Γ ⊢M e : (∀α : K. E) Γ ⊢ A : K

Γ ⊢M e : [A/α]E
AllElim

Similar to the AllIndexElim case. □

C BIDIRECTIONAL TYPING
C.1 Syntax
As discussed below, bidirectional typing requires some annotations, so we assume that values v
and expressions e have been extended with annotations (v : A) and (e : A). We also assume that
we have explicit syntactic forms e[i] and e[A], which avoid guessing quantifier instantiations.

C.2 Bidirectional Typing Rules
The typing rules in Figures 13 and 14 are declarative: they define what typings are valid, but not
how to derive those typings. The rules’ use of names and effects annotations means that standard
unification-based techniques, like Damas–Milner inference, are not readily applicable.

Following the DML tradition, we obtain an algorithmic version of our typing rules by defining a
bidirectional system [Pierce and Turner 2000]: we split judgments with a colon into judgments
with an arrow. Thus, the computation typing judgment · · · e : E becomes two judgments. The first
is the checking judgment Γ ⊢M e ⇐ E, in which the type E is already known—it is an input to the
algorithm. The second is the synthesis judgment Γ ⊢M e ⇒ E, in which E is not known—it is an
output—and the rules construct E by examining e (and Γ ).
In formulating the bidirectional versions of value and computation typing (Figures 22 and

23), we mostly follow the “recipe” of Dunfield and Pfenning [2004]: introduction rules check,
and elimination rules synthesize. More precisely, the principal judgment—the judgment, either a
premise or conclusion, that has the connective being introduced or eliminated—is checking (⇐) for
introduction rules, and synthesizing (⇒) for elimination rules. In many cases, once the direction
of that premise (or conclusion) is determined, the direction of the other judgments follows by
considering what information is known (as input, or as the output type of the principal judgment, if
that judgment is synthesizing). For example, if we commit to checking the conclusion of echk-lam,

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :45

Γ ⊢ v ⇒ A Under Γ , value v synthesizes type A

(x : A) ∈ Γ

Γ ⊢ x ⇒ A
vsyn-var

Γ ⊢ v ⇐ A

Γ ⊢ (v : A) ⇒ A
vsyn-anno

Γ ⊢ v ⇐ A Under Γ , value v checks against type A

Γ ⊢ () ⇐ unit
vchk-unit

Γ ⊢ v1 ⇐ A1 Γ ⊢ v2 ⇐ A2

Γ ⊢ (v1, v2) ⇐ (A1 ×A2)
vchk-pair

Γ ⊢ v ⇒ A Γ ⊢ A ≤V B

Γ ⊢ v ⇐ B
vchk-sub

Γ ⊢ n ∈ X

Γ ⊢ (name n) ⇐ Nm[X]
vchk-name

Γ ⊢ Mv ⇒ (Nm Nm→ Nm) Mv =β M

Γ ⊢ (nmfn Mv) ⇐ (Nm Nm→ Nm)[M]
vchk-namefn

Γ ⊢ n ∈ X Γ(n) = A

Γ ⊢ (ref n) ⇐ Ref[X]A
vchk-ref

Γ ⊢ n ∈ X Γ(n) = E

Γ ⊢ (thunk n) ⇐ (Thk[X]E)
vchk-thunk

Γ ⊢ v ⇐ A1

Γ ⊢ inj1 v ⇐ A1 +A2

vchk-inj1
Γ ⊢ v ⇐ A2

Γ ⊢ inj2 v ⇐ A1 +A2

vchk-inj2

Γ, a : γ, P ⊢ v ⇐ A

Γ ⊢ v ⇐ (∀a : γ | P.A)
vchk-∀IndexIntro Γ ⊢ i : γ

extract(Γ) ⊩ [i/a]P
Γ ⊢ v ⇒ (∀a : γ | P.A)

Γ ⊢ v[i] ⇒ [i/a]A
vsyn-∀IndexElim

Γ ⊢ i : γ
extract(Γ) ⊩ [i/a]P
Γ ⊢ v ⇐ [i/a]A

Γ ⊢ pack(a.v) ⇐ (∃a : γ | P.A)
vchk-∃IndexIntro

Fig. 22. Bidirectional value typing

we should check the premise because its type is a subexpression of the type in the conclusion.
(Checking is more powerful than synthesis: every expression that synthesizes also checks, but not
all expressions that check can synthesize.)
When a synthesis (elimination) premise attempts to type an expression that is a checking

(introduction) form, the programmer must write a type annotation (e : E). Thus, following the
recipe means that we have a straightforward annotation discipline: annotations are needed only on
redexes. While we could reduce the number of annotations by adding synthesis rules—for example,
allowing the unit value () to synthesize unit—this makes the system larger without changing its
essential properties; for a discussion of the implications of such extensions in a different context,
see Dunfield and Krishnaswami [2013].
Dually, when an expression synthesizes but we are trying to derive a checking judgment, we

use (1) vchk-sub for value typing, or (2) echk-sub for computation typing. The latter rule includes
effect subsumption.

D BIDIRECTIONAL TYPING PROOFS
Theorem D.1 (Soundness of Bidirectional Value Typing).

, Vol. 1, No. 1, Article . Publication date: May 2021.



:46
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢M e ⇒ E Under Γ , within namespace M,
computation e synthesizes type-with-effects E

Γ ⊢M e ⇐ E

Γ ⊢M (e : E) ⇒ E
esyn-anno

Γ ⊢M e ⇒ (
(A → E)� ϵ1

)
Γ ⊢ v ⇐ A Γ ⊢ E after ϵ1 ≡ E′

Γ ⊢M (e v) ⇒ E′
esyn-app

Γ ⊢ v ⇒ Thk[X] (C� ϵ)
Γ ⊢ ⟨∅;X⟩ then ϵ ≡ ϵ′

Γ ⊢M force(v) ⇒ C� ϵ′
esyn-force

Γ ⊢ v ⇒ Ref[X]A

Γ ⊢M get(v) ⇒ (FA)� ⟨∅;X⟩
esyn-get

Γ ⊢ vM ⇒ (Nm Nm→ Nm)[M] Γ ⊢ v ⇒ Nm[i]

Γ ⊢N (vM v) ⇒ F (Nm[M[i]])� ⟨∅; ∅⟩
esyn-name-app

Γ ⊢M e ⇒ (∀a : γ | P. E) Γ ⊢ i : γ extract(Γ) ⊩ [i/a]P

Γ ⊢M e[i] ⇒ [i/a]E
esyn-∀IndexElim

Γ ⊢M e ⇒ (∀α : K. E) Γ ⊢ A : K

Γ ⊢M e[A] ⇒ [A/α]E
esyn-∀Elim

Γ ⊢M e ⇐ E Under Γ , within namespace M,
computation e checks against type-with-effects E

Γ ⊢M e ⇒ E1 Γ ⊢ E1 ≤E E2

Γ ⊢M e ⇐ E2

echk-sub

Γ ⊢ v ⇒ (A1 ×A2)

Γ, x1 : A1, x2 : A2 ⊢M e ⇐ E

Γ ⊢M split(v, x1.x2.e) ⇐ E
echk-split

Γ ⊢ v ⇒ (A1 +A2)

Γ, x1 : A1 ⊢M e1 ⇐ E

Γ, x2 : A2 ⊢M e2 ⇐ E

Γ ⊢M case(v, x1.e1, x2.e2) ⇐ E
echk-case

Γ ⊢ v ⇐ A

Γ ⊢M ret(v) ⇐ (
(FA)� ⟨∅; ∅⟩

) echk-ret

Γ, x : A ⊢M e ⇐ E

Γ ⊢M (λx. e) ⇐ (
(A→E)� ⟨∅; ∅⟩

) echk-lam

Γ ⊢M e1 ⇒ (FA)� ϵ1
Γ, x : A ⊢M e2 ⇐ (C� ϵ2)
Γ ⊢ ϵ1 then ϵ2 ≡ ϵ

Γ ⊢M let(e1, x.e2) ⇐ C� ϵ
echk-let

Γ ⊢ v ⇐ Nm[X] Γ ⊢M e ⇐ E

Γ ⊢M thunk(v, e) ⇐ (
F (Thk[M[X]]E)

)
� ⟨M[X]; ∅⟩

echk-thunk

Γ ⊢ v1 ⇐ Nm[X] Γ ⊢ v2 ⇐ A

Γ ⊢M ref(v1, v2) ⇐ (
F (Ref[M[X]]A)

)
� ⟨M[X]; ∅⟩

echk-ref

Γ ⊢ v ⇒ (Nm Nm→ Nm)[N′] Γ ⊢N◦N′

e ⇐ (C� ⟨W;R⟩)

Γ ⊢N scope(v, e) ⇐ (C� ⟨W;R⟩)
echk-scope

Γ, a : γ, P ⊢M t ⇐ E

Γ ⊢M t ⇐ (∀a : γ | P. E)
echk-∀IndexIntro Γ, α : K ⊢M t ⇐ E

Γ ⊢M t ⇐ (∀α : K. E)
echk-∀Intro

Γ ⊢ v ⇒ (∃a : γ | P.A) Γ, a : γ, P, x : A ⊢M e ⇐ E

Γ ⊢M vunpack(v, a.x.e) ⇐ E
echk-∃IndexElim

Fig. 23. Bidirectional computation typing

(1) If Γ ⊢ v ⇒ A, then there exists a value v ′ such that Γ ⊢ v ′ : A and |v| = v ′.
(2) If Γ ⊢ v ⇐ A, then there exists a value v ′ such that Γ ⊢ v ′ : A and |v| = v ′.

Proof. By induction on the given derivation.
Part (1): Proceed by cases on the rule concluding Γ ⊢ v ⇒ A.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :47

• Case (x : A) ∈ Γ

Γ ⊢ x ⇒ A
vsyn-var

(x : A) ∈ Γ Given
Γ ⊢ x : A By rule var

|x| = x By definition of |−|

Z Γ ⊢ v ′ : A and |v| = v ′ where v ′ = x and v = x

• Case Γ ⊢ v1 ⇐ A

Γ ⊢ (v1 : A) ⇒ A
vsyn-anno

∃ v ′
1
such that Γ ⊢ v ′

1
: A and |v1| = v ′

1
By inductive hypothesis

|(v1 : A)| = |v1| = v ′
1

By definition of |−|

and |v1| = v ′
1

Z Γ ⊢ v ′ : A and |v| = v ′ where v ′ = v ′
1
and v = (v1 : A)

Part (2): Proceed by cases on the rule concluding Γ ⊢ v ⇐ A.
• Case

Γ ⊢ () ⇐ unit
vchk-unit

Γ ⊢ () : unit By rule unit
|()| = () By definition of |−|

Z Γ ⊢ v ′ : () and |v| = v ′ where v ′ = () and v = ()

• Case Γ ⊢ v1 ⇐ A1 Γ ⊢ v2 ⇐ A2

Γ ⊢ (v1, v2) ⇐ (A1 ×A2)
vchk-pair

∃ v ′
1
such that Γ ⊢ v ′

1
: A1 and |v1| = v ′

1
By inductive hypothesis

∃ v ′
2
such that Γ ⊢ v ′

2
: A2 and |v2| = v ′

2
By inductive hypothesis

Γ ⊢ (v ′
1
, v ′

2
) : (A1 ×A2) By rule pair

|(v1, v2)| = (|v1|, |v2|) = (v ′
1
, v ′

2
) By definition of |−|

|v1| = v ′
1
and |v2| = v ′

2

Z Γ ⊢ v ′ : (A1 ×A2) and |v| = v ′ where v ′ = (v ′
1
, v ′

2
)

and v = (v1, v2)

• Case Γ ⊢ n ∈ X

Γ ⊢ (name n) ⇐ Nm[X]
vchk-name

Γ ⊢n ∈ X Given
Γ ⊢ (name n) : Nm[X] By rule name

|(name n)| =(name n) By definition of |−|

Z Γ ⊢ v ′ : Nm[X] and |v| = v ′ where v ′ = (name n)

and v = (name n)

• Case
Γ ⊢ Mv ⇒ (Nm Nm→ Nm) Mv =β M

Γ ⊢ (nmfn Mv) ⇐ (Nm Nm→ Nm)[M]
vchk-namefn

, Vol. 1, No. 1, Article . Publication date: May 2021.



:48
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

∃ M ′
v such that Γ ⊢M ′

v : (Nm Nm→ Nm) and |Mv| = M ′
v By i.h.

Mv =β M Given
|Mv| =β M Type erasure does not affect convertibility
M ′

v =β M Since |Mv| = M ′
v

Γ ⊢ (nmfn M ′
v) : (Nm

Nm→ Nm)[M] By rule namefn
|(nmfn Mv)| =(nmfn |Mv|) = (nmfn M ′

v) By definition of |−|

and |Mv| = M ′
v

Z Γ ⊢ v ′ : (Nm Nm→ Nm)[M] and |v| = v ′ where v ′ = (nmfn M ′
v)

and v = (nmfn Mv)

• Case Γ ⊢ n ∈ X Γ(n) = A

Γ ⊢ (ref n) ⇐ Ref[X]A
vchk-ref

Γ ⊢n ∈ X Given
Γ(n) = A Given

Γ ⊢ (ref n) : Ref[X]A By rule ref
|(ref n)| = ref n By definition of |−|

Z Γ ⊢ v ′ : Ref[X]A and |v| = v ′ where v ′ = (ref n)
and v = (ref n)

• Case Γ ⊢ n ∈ X Γ(n) = E

Γ ⊢ (thunk n) ⇐ (
Thk[X]E

) vchk-thunk

Γ ⊢n ∈ X Given
Γ(n) = E Given

Γ ⊢ (thunk n) : Thk[X]E By rule thunk
|(thunk n)| = thunk n By definition of |−|

Z Γ ⊢ v ′ : Thk[X]E and |v| = v ′ where v ′ = (thunk n)

and v = (thunk n)

• Case Γ ⊢ v1 ⇒ A1 Γ ⊢ A1 ≤V A2

Γ ⊢ v1 ⇐ A2

vchk-sub

By i.h. and vtype-sub. □

Theorem D.2 (Completeness of Bidirectional Value Typing).
If Γ ⊢ v : A then there exist values v ′ and v ′′ such that

(1) Γ ⊢ v ′ ⇒ A and |v ′| = v
(2) Γ ⊢ v ′′ ⇐ A and |v ′′| = v

Proof. By induction on the derivation of Γ ⊢ v : A.
Case

Γ ⊢ () : unit
unit

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :49

Γ ⊢ () ⇐ unit By rule vchk-unit
|()| = () By definition of |−|

Z Γ ⊢ v ′′ ⇐ () and |v ′′| = v where v ′′ = () and v = ()
Γ ⊢ (() : unit) ⇒ unit By rule vsyn-anno

|(() : unit)| = () By definition of |−|

Z Γ ⊢ v ′ ⇒ () and |v ′| = v where v ′ = (() : unit) and v = ()

Case (x : A) ∈ Γ

Γ ⊢ x : A
var

(x : A) ∈ Γ Given
Γ ⊢ x ⇒ A By rule vsyn-var

|x| = x By definition of |−|

Z Γ ⊢ v ′ ⇒ A and |v ′| = v where v ′ = x and v = x

Γ ⊢ x ⇐ A By rule vchk-conv
Z Γ ⊢ v ′′ ⇐ A and |v ′′| = v where v ′′ = x and v = x

and |x| = x

Case Γ ⊢ v1 : A1 Γ ⊢ v2 : A2

Γ ⊢ (v1, v2) : (A1 ×A2)
pair

∃ v ′′
1
such that Γ ⊢ v ′′

1
⇐ A1 and |v ′′

1
| = v1 By inductive hypothesis

∃ v ′′
2
such that Γ ⊢ v ′′

2
⇐ A2 and |v ′′

2
| = v2 By inductive hypothesis

Γ ⊢ (v ′′
1
, v ′′

2
) ⇐ (A1 ×A2) By rule vchk-pair

|(v ′′
1
, v ′′

2
)| = (|v ′′

1
|, |v ′′

2
|) = (v1, v2) By definition of |−|; |v ′′

1
| = v1; |v ′′

2
| = v2

ZΓ ⊢ v ′′ ⇐ (A1 ×A2) and |v ′′| = v where v ′′ = (v ′′
1
, v ′′

2
) and v = (v1, v2)

Γ ⊢ ((v ′′
1
, v ′′

2
) : (A1 ×A2)) ⇒ (A1 ×A2) By rule vsyn-anno

|(v ′′
1
, v ′′

2
) : (A1 ×A2)| = |(v ′′

1
, v ′′

2
)| = (v1, v2) By definition of |−|; |(v ′′

1
, v ′′

2
)| = (v1, v2)

ZΓ ⊢ v ′ ⇒ (A1 ×A2) and |v ′| = v where v ′ = (v ′′
1
, v ′′

2
) and v = (v1, v2)

Case Γ ⊢ n ∈ X

Γ ⊢ (name n) : Nm[X]
name

Γ ⊢n ∈ X Given
Γ ⊢ (name n) ⇐ Nm[X] By rule vchk-name

|(name n)| =(name n) By definition of |−|

Z Γ ⊢ v ′′ ⇐ Nm[X] and |v ′′| = v where v ′′ = (name n) and v = (name n)

Γ ⊢ (name n : Nm[X]) ⇒ Nm[X] By rule vsyn-anno
|(name n : Nm[X])| = |(name n)| = (name n) By definition of |−|

Z Γ ⊢ v ′ ⇒ Nm[X] and |v ′| = v where v ′ = (name n : Nm[X]) and v = (name n)

Case
Γ ⊢ Mv : (Nm Nm→ Nm) Mv =β M

Γ ⊢ (nmfn Mv) : (Nm Nm→ Nm)[M]
namefn

, Vol. 1, No. 1, Article . Publication date: May 2021.



:50
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

∃ M ′
v such that

Γ ⊢M ′
v ⇒ (Nm Nm→ Nm) and |M ′

v| = Mv By inductive hypothesis
Mv =β M Given
|M ′

v| =β M Since |M ′
v| = Mv

M ′
v =β M Type annotation does not affect convertibility

Γ ⊢ (nmfn M ′
v) ⇐ (Nm Nm→ Nm)[M] By rule vchk-namefn

|(nmfn M ′
v)| = (nmfn |M ′

v|) = (nmfn Mv) By definition of |−|

and |M ′
v| = Mv

Z Γ ⊢ v ′′ ⇐ (Nm Nm→ Nm)[M] and |v ′′| = v where v ′′ = (nmfn M ′
v) and v = (nmfn Mv)

Γ ⊢ (nmfn M ′
v : (Nm Nm→ Nm)[M]) ⇒ (Nm Nm→ Nm)[M] By rule vsyn-anno

|(nmfn M ′
v : (Nm Nm→ Nm)[M])| = (nmfn Mv) By definition of |−|

Z Γ ⊢ v ′ ⇒ (Nm Nm→ Nm)[M] and |v ′| = v where v ′ = (nmfn M ′
v : (Nm Nm→ Nm)[M])

Case Γ ⊢ n ∈ X Γ(n) = A

Γ ⊢ (ref n) : Ref[X]A
ref

Γ ⊢n ∈ X Given
Γ(n) = A Given

Γ ⊢ (ref n) ⇐ Ref[X]A By rule vchk-ref
|(ref n)| = (ref n) By definition of |−|

Z Γ ⊢ v ′′ ⇐ Ref[X]A and |v ′′| = v where v ′′ = (ref n) and v = (ref n)
Γ ⊢ ((ref n) : Ref[X]A) ⇒ Ref[X]A By rule vsyn-anno

|(ref n : Ref[X]A)| = |(ref n)| = (ref n) By definition of |−|

Z Γ ⊢ v ′ ⇒ Ref[X]A and |v ′| = v where v ′ = (ref n : Ref[X]A)

and v = (ref n)

Case Γ ⊢ n ∈ X Γ(n) = E

Γ ⊢ (thunk n) :
(
Thk[X]E

) thunk

Γ ⊢n ∈ X Given
Γ(n) = E Given

Γ ⊢ (thunk n) ⇐ (
Thk[X]E

)
By rule vchk-thunk

|(thunk n)| = (thunk n) By definition of |−|

Z Γ ⊢ v ′′ ⇐ (
Thk[X]E

)
and |v ′′| = v where v ′′ = (thunk n)

and v = (thunk n)

Γ ⊢ (thunk n :
(
Thk[X]E

)
) ⇒ (

Thk[X]E
)

By rule vsyn-anno
|(thunk n :

(
Thk[X]E

)
)| = thunk n By definition of |−|

Z Γ ⊢ v ′ ⇒ (
Thk[X]E

)
and |v ′| = v where v ′ = (thunk n :

(
Thk[X]E

)
)

and v = (thunk n) □

Theorem D.3 (Soundness of Bidirectional Computation Typing).
(1) If Γ ⊢M e ⇒ E, then there exists a value e ′ such that Γ ⊢M e ′ : E and |e| = e ′

(2) If Γ ⊢M e ⇐ E, then there exists a value e ′ such that Γ ⊢M e ′ : E and |e| = e ′

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :51

Proof. By induction on the given derivation.
Part (1): Proceed by case analysis on the rule concluding Γ ⊢M e ⇒ E.

• Case
Γ ⊢M e1 ⇒ (

(A → E)� ϵ1
)

Γ ⊢ v ⇐ A

Γ ⊢M (e1 v) ⇒ (E after ϵ1)
esyn-app

Γ ⊢M e ′
1
:
(
(A → E)� ϵ1

)
and |e1| = e ′

1
By inductive hypothesis

Γ ⊢ v ′ : A and |v| = v ′ By Thm. D.1
Γ ⊢M (e ′

1
v ′) : (E after ϵ1) By rule app

|(e1 v)| = (|e1| |v|) = (e ′
1
v ′) By definition of |−|

Z Γ ⊢M e ′ : (E after ϵ1) and |e| = e ′ where e ′ = (e ′
1
v ′) and e = (e1 v)

• Case Γ ⊢ v ⇒ Thk[X] (C� ϵ)

Γ ⊢M force(v) ⇒ (
C� (⟨∅;X⟩ then ϵ)

) esyn-force

Γ ⊢ v ′ : Thk[X] (C� ϵ) and |v| = v ′ By Thm. D.1
Γ ⊢M force(v ′) :

(
C� (⟨∅;X⟩ then ϵ)

)
By rule force

|force(v)| = force(|v|) = force(v ′) By definition of |−|

and |v| = v ′

Z Γ ⊢M e ′ :
(
C� (⟨∅;X⟩ then ϵ)

)
and |e| = e ′ where e ′ = force(v ′) and e = force(v)

• Case Γ ⊢ v ⇒ Ref[X]A

Γ ⊢M get(v) ⇒ (
FA

)
� ⟨∅;X⟩

esyn-get

Γ ⊢ v ′ : Ref[X]A and |v| = v ′ By Thm. D.1
Γ ⊢M get(v ′) :

(
FA

)
� ⟨∅;X⟩ By rule get

|get(v)| = get(|v|) = get(v ′) By the definition of |−|

and |v| = v ′

Z Γ ⊢M e ′ :
(
FA

)
� ⟨∅;X⟩ and |e| = e ′ where e ′ = get(v ′) and e = get(v)

• Case
Γ ⊢ vM ⇒ (Nm Nm→ Nm)[M]
Γ ⊢ v ⇒ Nm[i]

Γ ⊢N (vM v) ⇒ F (Nm[M(i)])� ⟨∅; ∅⟩
esyn-name-app

Γ ⊢ v ′
M

: (Nm Nm→ Nm)[M] and |vM| = v ′
M

By Thm. D.1
Γ ⊢ v ′ : Nm[i] and |v| = v ′ By Thm. D.1
Γ ⊢N(v ′

M
v ′) : F (Nm[M(i)])� ⟨∅; ∅⟩ By rule name-app

|(vM v)| =(|vM| |v|) = (v ′
M

v ′) By definition of |−|; |vM| = v ′
M
; |v| = v ′

Z Γ ⊢M e ′ : F (Nm[M(i)])� ⟨∅; ∅⟩ and |e| = e ′ where e ′ = (v ′
M

v ′) and e = (vM v)

• Case
Γ ⊢M e ⇒ (∀a : γ. E) Γ ⊢ i : γ

Γ ⊢M e[i] ⇒ [i/a]E
esyn-∀IndexElim

, Vol. 1, No. 1, Article . Publication date: May 2021.



:52
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢M e ′ : (∀a : γ. E) and |e| = e ′ By inductive hypothesis
Γ ⊢ i : γ Given

Z e[i] = |e ′| By |e| = e ′

Z Γ ⊢M e ′ : [i/a]E By rule AllIndexElim

• Case
Γ ⊢M e ⇒ (∀α : K. E) Γ ⊢ A : K

Γ ⊢M e[A] ⇒ [A/α]E
esyn-∀Elim

Similar to the syn-AllIndexElim case.

• Case
Γ ⊢M e1 ⇐ E

Γ ⊢M (e1 : E) ⇒ E
esyn-anno

Γ ⊢M e ′
1
: E and |e1| = e ′

1
By inductive hypothesis

|e1 : E| = |e1| = e ′
1

By the definition of |−|

and |e1| = e ′
1

Z Γ ⊢M e ′ : E and |e| = e ′ where e ′ = e ′
1
and e = (e1 : E)

Part (2): Proceed by case analysis on the rule concluding Γ ⊢M e ⇐ E.

• Case
Γ ⊢M e ⇒ (C� ϵ1) ϵ1 ⪯ ϵ2

Γ ⊢M e ⇐ (C� ϵ2)
echk-sub

By i.h. and rule etype-sub.

• Case Γ ⊢ v ⇒ (A1 ×A2)

Γ, x1 : A1, x2 : A2 ⊢M e1 ⇐ E

Γ ⊢M split(v, x1.x2.e1) ⇐ E
echk-split

Γ ⊢ v ′ : (A1 ×A2) and |v| = v ′ By Thm. D.1
Γ, x1 : A1, x2 : A2 ⊢M e ′

1
: E and |e1| = e ′

1
By inductive hypothesis

Γ ⊢M split(v, x1.x2.e ′
1
) : E By rule split

|split(v, x1.x2.e1)| = split(|v|, x1.x2.|e1|)

= split(v ′, x1.x2.e
′
1
) By definition of |−|

and |v| = v ′, |e1| = e ′
1

Z Γ ⊢M e ′ : E and |e| = e ′ where e ′ = split(v ′, x1.x2.e
′
1
)

and e = split(v, x1.x2.e1)

• Case

Γ ⊢ v ⇒ (A1 +A2)

Γ, x1 : A1 ⊢M e1 ⇐ E

Γ, x2 : A2 ⊢M e2 ⇐ E

Γ ⊢M case(v, x1.e1, x2.e2) ⇐ E
echk-case

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :53

Γ ⊢ v ′ : (A1 +A2) and |v| = v ′ By Thm. D.1
Γ, x1 : A1 ⊢M e ′

1
: E and |e1| = e ′

1
By inductive hypothesis

Γ, x2 : A2 ⊢M e ′
2
: E and |e2| = e ′

2
By inductive hypothesis

Γ ⊢M case(v ′, x1.e
′
1
, x2.e

′
2
) : E By rule case

|case(v, x1.e1, x2.e2)| = case(|v|, x1.|e1|, x2.|e2|) By definition of |−|

= case(v ′, x1.e
′
1
, x2.e

′
2
) Since |v| = v ′, |e1| = e ′

1
, |e2| = e ′

2

Z Γ ⊢M e ′ : E and |e| = e ′ where e ′ = case(v ′, x1.e
′
1
, x2.e

′
2
)

and e = case(v, x1.e1, x2.e2)

• Case Γ ⊢ v ⇐ A

Γ ⊢M ret(v) ⇐ (
(FA)� ⟨∅; ∅⟩

) echk-ret

Γ ⊢ v ′ : A and |v| = v ′ By Thm. D.1
Γ ⊢M ret(v ′) :

(
(FA)� ⟨∅; ∅⟩

)
By rule ret

|ret(v)| = ret(|v|) = ret(v ′) By definition of |−|

and |v| = v ′

Z Γ ⊢M e ′ :
(
(FA)� ⟨∅; ∅⟩

)
and |e| = e ′ where e ′ = ret(v ′) and e = ret(v)

• Case
Γ ⊢M e1 ⇒ (FA)� ϵ1 Γ, x : A ⊢M e2 ⇐ (C� ϵ2)

Γ ⊢M let(e1, x.e2) ⇐ (
C� (ϵ1 then ϵ2)

) echk-let

Γ ⊢Me ′
1
: (FA)� ϵ1 and |e1| = e ′

1
By inductive hypothesis

Γ, x : A ⊢Me ′
2
: (C� ϵ2) and |e2| = e ′

2
By inductive hypothesis

Γ ⊢Mlet(e ′
1
, x.e ′

2
) :

(
C� (ϵ1 then ϵ2)

)
By rule let

|let(e1, x.e2)| = let(|e1|, x.|e2|) By definition of |−|

= let(e ′
1
, x.e ′

2
) Since |e1| = e ′

1
, |e2| = e ′

2

Z Γ ⊢M e ′ :
(
C� (ϵ1 then ϵ2)

)
and |e| = e ′ where e ′ = let(e ′

1
, x.e ′

2
)

and e = let(e1, x.e2)

• Case
Γ, x : A ⊢M e1 ⇐ E

Γ ⊢M (λx. e1) ⇐ (
(A → E)� ⟨∅; ∅⟩

) echk-lam

Γ, x : A ⊢M e ′
1
: E and |e1| = e ′

1
By inductive hypothesis

Γ ⊢M (λx. e ′
1
) :

(
(A → E)� ⟨∅; ∅⟩

)
By rule lam

|(λx. e1)| = (λx. |e1|) = (λx. e ′
1
) By definition of |−|

and |e1| = e ′
1

Z Γ ⊢M e ′ :
(
(A → E)� ⟨∅; ∅⟩

)
and |e| = e ′ where e ′ = (λx. e ′

1
) and e = (λx. e1)

• Case
Γ ⊢ v ⇐ Nm[X] Γ ⊢M e1 ⇐ E1

Γ ⊢M thunk(v, e1) ⇐ (
F (Thk[M(X)]E1)

)
� ⟨M(X); ∅⟩

echk-thunk

, Vol. 1, No. 1, Article . Publication date: May 2021.



:54
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Let E =
(
F (Thk[M(X)]E1)

)
� ⟨M(X); ∅⟩ Assumption

∃ v ′ such that Γ ⊢ v ′ : Nm[X] and |v| = v ′ By Thm. D.1
∃ e ′

1
such that Γ ⊢M e ′

1
: E and |e1| = e ′

1
By inductive hypothesis

Γ ⊢M thunk(v ′, e ′
1
) : E By rule thunk

|thunk(v, e1)| = thunk(|v|, |e1|) = thunk(v ′, e ′
1
) By definition of |−|

and |v| = v ′, |e1| = e ′
1

Z Γ ⊢M e ′ : E and |e| = e ′ where e ′ = thunk(v ′, e ′
1
) and e = thunk(v, e1)

• Case Γ ⊢ v1 ⇐ Nm[X] Γ ⊢ v2 ⇐ A

Γ ⊢M ref(v1, v2) ⇐ (
F (Ref[M(X)]A)

)
� ⟨M(X); ∅⟩

echk-ref

∃ v ′
1
such that Γ ⊢ v ′

1
: Nm[X] and |v1| = v ′

1
By Thm. D.1

∃ v ′
2
such that Γ ⊢ v ′

2
: A and |v2| = v ′

2
By Thm. D.1

Γ ⊢M ref(v ′
1
, v ′

2
) :

(
F (Ref[M(X)]A)

)
� ⟨M(X); ∅⟩ By rule ref

|ref(v1, v2)| = ref(|v1|, |v2|) = ref(v ′
1
, v ′

2
) By definition of |−|

Z Γ ⊢M e ′ :
(
F (Ref[M(X)]A)

)
� ⟨M(X); ∅⟩

and |e| = e ′ where e ′ = ref(v ′
1
, v ′

2
) and e = ref(v1, v2)

• Case
Γ ⊢ v ⇒ (Nm Nm→ Nm)[N ′] Γ ⊢N◦N′

e1 ⇐ C� ⟨W;R⟩

Γ ⊢N scope(v, e1) ⇐ C� ⟨W;R⟩
echk-scope

Γ ⊢ v ′ : Nm Nm→ Nm and |N ′| = v ′ By inductive hypothesis
Γ ⊢N◦N′

e ′
1
: C� ⟨W;R⟩ and |e1| = e ′

1
By inductive hypothesis

Γ ⊢N scope(v ′, e ′
1
) : C� ⟨W;R⟩ By rule scope

|scope(v, e1)| = scope(|v|, |e1|) = scope(v ′, e ′
1
) By definition of |−|; |v| = v ′; |e ′

1
| = e1

Z Γ ⊢M e ′ : C� ⟨W;R⟩ and |e| = e ′ where e ′ = scope(v ′, e ′
1
) and e = scope(v, e1)

• Case
Γ, a : γ ⊢M t ⇐ E

Γ ⊢M t ⇐ (∀a : γ. E)
echk-∀IndexIntro

Γ, a : γ ⊢M t ′ : E and |t| = t ′ By inductive hypothesis
Γ ⊢M t ′ : (∀a : γ. E) By rule AllIndexIntro

Z Γ ⊢M e ′ : (∀a : γ. E) and |e| = e ′ where e ′ = t ′ and e = t

• Case
Γ, a : γ ⊢M t ⇐ E

Γ ⊢M t ⇐ (∀α : K. E)
echk-∀Intro

∃ t ′ such that Γ, a : γ ⊢M t ′ : E and |t| = t ′ By inductive hypothesis
Γ ⊢M t ′ : (∀α : K. E) By rule AllIntro

Z Γ ⊢M e ′ : (∀α : K. E) and |e| = e ′ where e ′ = t ′ and e = t

• Case
Γ ⊢M e ⇒ E1 E1 = E2

Γ ⊢M e ⇐ E2

echk-sub

By i.h. and etype-sub. □

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :55

Theorem D.4 (Completeness of Bidirectional Computation Typing).
If Γ ⊢M e : E, then there exist computations e ′, e ′′ such that

(1) Γ ⊢M e ′ ⇒ E and |e ′| = e

(2) Γ ⊢M e ′′ ⇐ E and |e ′′| = e

Proof. By induction on the derivation of Γ ⊢M e : E.
• Case etype-sub: By i.h. and echk-sub.
• Case Γ ⊢ v : (A1 ×A2)

Γ, x1 : A1, x2 : A2 ⊢M e1 : E

Γ ⊢M split(v, x1.x2.e1) : E
split

Γ, x1 : A1, x2 : A2 ⊢ e ′
1
⇐ E and e1 = |e ′

1
| By inductive hypothesis

Γ ⊢ v ′ ⇒ (A1 ×A2) and v1 = |v ′
1
| By Thm. D.2

Γ ⊢M split(v ′, x1.x2.e
′
1
) ⇐ E By chk-split

Γ ⊢M (split(v ′, x1.x2.e
′
1
) : E) ⇒ E By syn-anno

|(split(v ′, x1.x2.e
′
1
) : E)| = |split(v ′, x1.x2.e

′
1
)| By definition of |−|

|split(v ′, x1.x2.e
′
1
)| = split(|v ′|, x1.x2.|e

′
1
|) By definition of |−|

split(|v ′|, x1.x2.|e
′
1
|) = split(v, x1.x2.e1) Since |v ′| = v, |e ′

1
| = e1

Z Γ ⊢ e ′ ⇒ E and |e ′| = e where e ′ = split(v ′, x1.x2.e
′
1
)

and e = split(v, x1.x2.e1)
Z Γ ⊢ e ′′ ⇐ E and |e ′′| = e where e ′′ = (split(v ′, x1.x2.e

′
1
) : E)

and e = split(v, x1.x2.e1)

• Case

Γ ⊢ v : (A1 +A2)

Γ, x1 : A1 ⊢M e1 : E

Γ, x2 : A2 ⊢M e2 : E

Γ ⊢M case(v, x1.e1, x2.e2) : E
case

Γ ⊢ v ′ ⇒ (A1 +A2) and |v ′| = v By Thm. D.2
Γ, x1 : A1 ⊢M e ′′

1
⇐ E and |e ′′

1
| = e1 By inductive hypothesis

Γ, x2 : A2 ⊢M e ′′
2
⇐ E and |e ′′

2
| = |e2| By inductive hypothesis

Γ ⊢M case(v ′, x1.e
′′
1
, x2.e

′′
2
) ⇐ E By rule chk-case

Γ ⊢M (case(v ′, x1.e
′′
1
, x2.e

′′
2
) : E) ⇒ E By rule chk-conv

|(case(v ′, x1.e
′′
1
, x2.e

′′
2
) : E)| = |case(v ′, x1.e

′′
1
, x2.e

′′
2
)| By definition of |−|

|case(v ′, x1.e
′′
1
, x2.e

′′
2
)| = case(|v ′|, x1.|e

′′
1
|, x2.|e

′′
2
|) By definition of |−|

case(|v ′|, x1.|e
′′
1
|, x2.|e

′′
2
|) = case(v, x1.e1, x2.e2)

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = (case(v ′, x1.e
′′
1
, x2.e

′′
2
) : E)

and e = case(v, x1.e1, x2.e2)
Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = case(v ′, x1.e

′′
1
, x2.e

′′
2
)

and e = case(v, x1.e1, x2.e2)

• Case Γ ⊢ v : A

Γ ⊢M ret(v) :
(
(FA)� ⟨∅; ∅⟩

) ret

, Vol. 1, No. 1, Article . Publication date: May 2021.



:56
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Let E =
(
(FA)� ⟨∅; ∅⟩

)
Assumption

∃ v ′′ such that Γ ⊢ v ′′ ⇐ A and |v ′′| = v By Thm. D.2
Γ ⊢M ret(v ′′) ⇐ E By rule chk-ret
Γ ⊢M (ret(v ′′) : E) ⇒ E By syn-anno

|(ret(v ′′) : E)| = |ret(v ′′)| By definition of |−|

|ret(v ′′)| = ret(|v ′′|) = ret(v) By definition of |−|

and |v ′′| = v

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = (ret(v ′′) : E) and e = ret(v)
Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = ret(v ′′) and e = ret(v)

• Case
Γ ⊢M e1 : (FA)� ϵ1 Γ, x : A ⊢M e2 : (C� ϵ2)

Γ ⊢M let(e1, x.e2) :
(
C� (ϵ1 then ϵ2)

) let

Let E =
(
C� (ϵ1 then ϵ2)

)
Assumption

Γ ⊢Me ′
1
⇒ (FA)� ϵ1 and |e ′

1
| = e1 By inductive hypothesis

Γ, x : A ⊢Me ′′
2
⇐ (C� ϵ2) and |e ′′

2
| = e2 By inductive hypothesis

Γ ⊢Mlet(e ′
1
, x.e ′′

2
) ⇐ E By rule chk-let

Γ ⊢M(let(e ′
1
, x.e ′′

2
) : E) ⇒ E By rule chk-conv

|(let(e ′
1
, x.e ′′

2
) : E)| = |let(e ′

1
, x.e ′′

2
)| By definition of |−|

|let(e ′
1
, x.e ′′

2
)| = let(|e ′

1
|, x.|e ′′

2
|) = let(e1, x.e2) By definition of |−|

and |e ′
1
| = e1, |e ′′

2
| = e2

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = (let(e ′
1
, x.e ′′

2
) : E) and e = let(e1, x.e2)

Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = let(e ′
1
, x.e ′′

2
) and e = let(e1, x.e2)

• Case
Γ, x : A ⊢M e1 : E1

Γ ⊢M (λx. e1) :
(
(A → E1)� ⟨∅; ∅⟩

) lam

Let E =
(
(A → E1)� ⟨∅; ∅⟩

)
Assumption

∃ e ′′
1
such that Γ, x : A ⊢M e ′′

1
⇐ E1 and |e ′′

1
| = e1 By inductive hypothesis

Γ ⊢M (λx. e ′′
1
) ⇐ E By rule chk-lam

Γ ⊢M ((λx. e ′′
1
) : E) ⇒ E By syn-anno

|(λx. e ′′
1
)| =(λx. |e ′′

1
|) = (λx. e1) By definition of |−|

and |e ′′
1
| = e1

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = ((λx. e ′′
1
) : E) and e = (λx. e1)

Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = (λx. e ′′
1
) and e = (λx. e1)

• Case
Γ ⊢M e1 :

(
(A → E)� ϵ1

)
Γ ⊢ v : A

Γ ⊢M (e1 v) : (E after ϵ1)
app

∃ e ′
1
such that Γ ⊢M e ′

1
⇒ (

(A → E)� ϵ1
)
and |e ′

1
| = e1 By inductive hypothesis

∃ v ′′ such that Γ ⊢ v ′′ ⇐ A and |v ′′| = v By Thm. D.2
Γ ⊢M (e ′

1
v ′′) ⇒ (E after ϵ1) By rule syn-app

Γ ⊢M (e ′
1
v ′′) ⇐ (E after ϵ1) By rule chk-conv

|(e ′
1
v ′′)| =(|e ′

1
| |v ′′|) = (e1 v) By the definition of |−|

and |e ′
1
| = e1, |v ′′| = v

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :57

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = (e ′
1
v ′′) and e = (e1 v)

Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = (e ′
1
v ′′) and e = (e1 v)

• Case
Γ ⊢ v : Nm[X] Γ ⊢M e1 : E

Γ ⊢M thunk(v, e1) :
(
F (Thk[M(X)]E)

)
� ⟨M(X); ∅⟩

thunk

Let E =
(
F (Thk[M(X)]E)

)
� ⟨M(X); ∅⟩ Assumption

∃ v ′′ such that Γ ⊢ v ′′ ⇐ Nm[X] and |v ′′| = v By Thm. D.2
∃ e ′′

1
such that Γ ⊢M e ′′

1
⇐ E and |e ′′

1
| = e1 By inductive hypothesis

Γ ⊢M thunk(v ′′, e ′′
1
) ⇐ E By rule chk-thunk

Γ ⊢M (thunk(v ′′, e ′′
1
) : E) ⇒ E By rule syn-anno

|(thunk(v ′′, e ′′
1
) : E)| = |thunk(v ′′, e ′′

1
)| By definition of |−|

|thunk(v ′′, e ′′
1
)| = thunk(|v ′′|, |e ′′

1
|) = thunk(v, e1) By definition of |−|

and |v ′′| = v, |e ′′
1
| = e1

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = (thunk(v ′′, e ′′
1
) : E) and e = thunk(v, e1)

Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = thunk(v ′′, e ′′
1
) and e = thunk(v, e1)

• Case Γ ⊢ v : Thk[X] (C� ϵ)

Γ ⊢M force(v) :
(
C� (⟨∅;X⟩ then ϵ)

) force

Let E =
(
C� (⟨∅;X⟩ then ϵ)

)
Assumption

Γ ⊢ v ′ ⇒ Thk[X] (C� ϵ) and |v ′| = v By Thm. D.2
Γ ⊢M force(v ′) ⇒ E By rule syn-force
Γ ⊢M force(v ′) ⇐ E By chk-conv

|force(v ′)| = force(|v ′|) = force(v) By definition of |−|

and |v ′| = v

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = force(v ′) and e = force(v)
Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = force(v ′) and e = force(v)

• Case Γ ⊢ v1 : Nm[X] Γ ⊢ v2 : A

Γ ⊢M ref(v1, v2) :
(
F (Ref[M(X)]A)

)
� ⟨M(X); ∅⟩

ref

Let E =
(
F (Ref[M(X)]A)

)
� ⟨M(X); ∅⟩ Assumption

Γ ⊢ v ′′
1
⇐ Nm[X] and |v ′′

1
| = v1 By Thm. D.2

Γ ⊢ v ′′
2
⇐ A and |v ′′

2
| = v2 By Thm. D.2

Γ ⊢M ref(v ′′
1
, v ′′

2
) ⇐ E By rule chk-ref

Γ ⊢M (ref(v ′′
1
, v ′′

2
) : E) ⇒ E By rule syn-anno

|(ref(v ′′
1
, v ′′

2
) : E)| = |ref(v ′′

1
, v ′′

2
)| By definition of |−|

|ref(v ′′
1
, v ′′

2
)| = ref(|v ′′

1
|, |v ′′

2
|) = ref(v1, v2) By definition of |−|

and |v ′′
1
| = v1, |v ′′

2
| = v2

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = (ref(v ′′
1
, v ′′

2
) : E) and e = ref(v1, v2)

Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = ref(v ′′
1
, v ′′

2
) and e = ref(v1, v2)

, Vol. 1, No. 1, Article . Publication date: May 2021.



:58
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

• Case Γ ⊢ v : Ref[X]A

Γ ⊢M get(v) :
(
FA

)
� ⟨∅;X⟩

get

Γ ⊢ v ′ ⇒ Ref[X]A and |v ′| = v By Thm. D.2
Γ ⊢M get(v ′) ⇒ (

FA
)
� ⟨∅;X⟩ By rule syn-get

Γ ⊢M get(v ′) ⇐ (
FA

)
� ⟨∅;X⟩ By rule chk-conv

|get(v ′)| = get(|v ′|) = get(v) By definition of |−|

and |v ′| = v

Z Γ ⊢M e ′ ⇒ (
FA

)
� ⟨∅;X⟩ and |e ′| = e where e ′ = get(v ′) and e = get(v)

Z Γ ⊢M e ′′ ⇐ (
FA

)
� ⟨∅;X⟩ and |e ′′| = e where e ′′ = get(v ′) and e = get(v)

• Case
Γ ⊢ vM : (Nm Nm→ Nm)[M]
Γ ⊢ v : Nm[i]

Γ ⊢N (vM v) : F (Nm[M(i)])� ⟨∅; ∅⟩
name-app

Γ ⊢ v ′
M

⇒ (Nm Nm→ Nm)[M] and |v ′
M
| = vM By Thm. D.2

Γ ⊢ v ′ ⇒ Nm[i] and |v ′| = v By Thm. D.2
Γ ⊢N(v ′

M
v ′) ⇒ F (Nm[M(i)])� ⟨∅; ∅⟩ By rule syn-name-app

Γ ⊢N(v ′
M

v ′) ⇐ F (Nm[M(i)])� ⟨∅; ∅⟩ By rule chk-conv
|(v ′

M
v ′)| =(|v ′

M
| |v ′|) = (vM v) By definition of |−|

and |v ′
M
| = vM, |v ′| = v

Z Γ ⊢N e ′ ⇒ F (Nm[M(i)])� ⟨∅; ∅⟩ and |e ′| = e where e ′ = (v ′
M

v ′) and e = (vM v)

Z Γ ⊢N e ′′ ⇐ F (Nm[M(i)])� ⟨∅; ∅⟩ and |e ′′| = e where e ′′ = (v ′
M

v ′) and e = (vM v)

• Case
Γ ⊢ v : (Nm Nm→ Nm)[N ′] Γ ⊢N◦N′

e1 : C� ⟨W;R⟩

Γ ⊢N scope(v, e1) : C� ⟨W;R⟩
scope

Let E =C� ⟨W;R⟩ Assumption
∃v ′′ such that , Γ ⊢ v ′′ ⇒ (Nm Nm→ Nm)[N ′] and |v ′′| = v By Thm. D.2

∃e ′
1
such that , Γ ⊢N◦N′

e ′
1
⇐ E and |e ′

1
| = e1 By inductive hypothesis

Γ ⊢N scope(v ′′, e ′
1
) ⇐ E By rule chk-scope

Γ ⊢N (scope(v ′′, e ′
1
) : E) ⇒ E By rule syn-anno

|(scope(v ′′, e ′
1
) : E)|= |(scope(v ′′, e ′

1
)| By definition of |−|

|(scope(v ′′, e ′
1
)| = scope(|v ′′|, |e ′

1
|)= scope(v, e1) By definition of |−|

Z Γ ⊢M e ′ ⇒ E and |e ′| = e where e ′ = (scope(v ′′, e ′
1
) : E) and e = scope(v, e1)

Z Γ ⊢M e ′′ ⇐ E and |e ′′| = e where e ′′ = scope(v ′′, e ′
1
) and e = scope(v, e1)

• Case
Γ, a : γ ⊢M t : E

Γ ⊢M t : (∀a : γ. E)
etype-∀IndexIntro

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :59

∃ t ′′ such that Γ, a : γ ⊢M t ′′ ⇐ E and |t ′′| = t By inductive hypothesis
Γ ⊢M t ′′ ⇐ (∀a : γ. E) By rule chk-AllIndexIntro
Γ ⊢M (t ′′ : (∀a : γ. E)) ⇒ (∀a : γ. E) By rule syn-anno

|(t ′′ : (∀a : γ. E))| = |t ′′| = t By definition of |−|

and |t ′′| = t

Z Γ ⊢M e ′ ⇒ (∀a : γ. E) and |e ′| = e where e ′ = (t ′′ : (∀a : γ. E)) and e = t

Z Γ ⊢M e ′′ ⇐ (∀a : γ. E) and |e ′′| = e where e ′′ = t ′′ and e = t

• Case
Γ ⊢M e : (∀a : γ. E) Γ ⊢ i : γ

Γ ⊢M e : [i/a]E
etype-∀IndexElim

∃ e ′ such that Γ ⊢M e ′ ⇒ (∀a : γ. E) and |e ′| = e By inductive hypothesis
Γ ⊢ i : γ Given

Γ ⊢M e ′ ⇒ [i/a]E By rule syn-AllIndexElim
Γ ⊢M e ′ ⇐ [i/a]E By rule chk-conv

Z Γ ⊢M e ′[i] ⇒ [i/a]E and |e ′[i]| = e

Z Γ ⊢M e ′[i] ⇐ [i/a]E and |e ′[i]| = e

• Case
Γ, a : γ ⊢M t : E

Γ ⊢M t : (∀α : K. E)
etype-∀Intro

Similar to the AllIndexIntro case.
• Case

Γ ⊢M e : (∀α : K. E) Γ ⊢ A : K

Γ ⊢M e : [A/α]E
etype-∀Elim

Similar to the AllIndexElim case.
• Case etype-∃IndexElim: By i.h. and echk-∃IndexElim. □

E NAME TERM LANGUAGE
We define a restricted name term language for computing larger names from smaller names. This
language consists of the following:

• Syntax for names, name terms and sorts (Fig. 8 in Sec. 3.2).
• Name term sorting: A judgment that assigns sorts to name terms (Fig. 9 in Sec. 3.2).
• Big-step evaluation for name terms: A judgment that assigns name term values to name terms
(Fig. 9 in Sec. 3.2).

• Semantic definition of equivalent and disjoint name terms (Sec. E.1).
• Logical proof rules for equivalent and disjoint name terms: Two judgements that should be
sound with respect to the semantic definitions of equivalence and disjointness (Fig. 24 and
Fig. 25).

The first three items are each described in Sec. 3.2. We define the last two items in this section.

E.1 Semantic equivalence and disjointness
Below, we define semantic equivalence and disjointness of (sorted) name terms. We define these
semantic properties inductively, based on the common sort of the name terms. In this sense, these
definitions can be viewed as instances of logical relations.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:60
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

We define contexts Γ that relate two variables; each declaration either asserts that a and b are
equivalent, or disjoint. We write Γ.1 and Γ.2 for the projection of a relational Γ into an ordinary Γ
suitable for the left-hand (Γ.1) or right-hand (Γ.2) sides. Also, we write flip(Γ) for the operation of
exchanging a and b in each declaration: flip((a ⊥ b : γ)) = (b ⊥ a : γ), so that flip(Γ).1 = Γ.2
and flip(Γ).2 = Γ.1.

Substitutions σ ::= · | σ,N/a
Relational sorting contexts Γ ::= ·

(Hypothetical variable equivalence) | Γ, (a ≡ b : γ)
(Hypothetical variable apartness) | Γ, (a ⊥ b : γ)

(·).1 = ·

(Γ, a ≡ b : γ).1 = (Γ).1, a : γ
(Γ, a ⊥ b : γ).1 = (Γ).1, a : γ

(·).2 = ·

(Γ, a ≡ b : γ).2 = (Γ).2, b : γ
(Γ, a ⊥ b : γ).2 = (Γ).2, b : γ

Definition E.1 (Closing substitutions).
We define closing substitution pairs related by equivalence and disjointness assumptions in a context Γ .
These definitions use and are used by the definitions below for equivalence and apartness of open terms.

• ⊩ σ1 ≡ σ2 : Γ means that (x ≡ y : γ) ∈ Γ implies
(
σ1(x) = N and σ2(y) = M and

· ⊩ N ≡ M : γ
)

• ⊩ σ1 ⊥ σ2 : Γ means that (x ⊥ y : γ) ∈ Γ implies
(
σ1(x) = N and σ2(y) = M and

· ⊩ N ⊥ M : γ
)

• ⊩ σ1 ∼ σ2 : Γ means that ⊩ σ1 ≡ σ2 : Γ and ⊩ σ1 ⊥ σ2 : Γ

Definition E.2 (Semantic equivalence). We define Γ ⊩ M1 ≡ M2 : γ as follows:
(Γ).1 ⊢ M1 : γ and (Γ).2 ⊢ M2 : γ and,
for all σ1, σ2 such that ⊩ σ1 ≡ σ2 : Γ and [σ1]M1 ⇓ V1 and [σ2]M2 ⇓ V2,
we have the following about V1 and V2:

Sort (γ) Values V1 and V2 of sort γ are equivalent, written ⊩ V1 ≡ V2 : γ
1 Always

Nm When V1 = n1 and V2 = n2 and n1 = n2 (identical binary trees)
γ1 ∗ γ2 When V1 = (V11, V12) and V1 = (V21, V22)

and ⊩ V11 ≡ V21 : γ1 and ⊩ V21 ≡ V22 : γ2

γ1
Nm→ γ2 When V1 = λa1.M1 and V2 = λa2.M2,

and for all name terms ⊩ N1 ≡ N2 : γ1,
[N1/a1]M1 ⇓ W1 and [N2/a2]M2 ⇓ W2 implies ⊩ W1 ≡ W2 : γ2

Definition E.3 (Semantic apartness). We define Γ ⊩ M1 ⊥ M2 : γ as follows:
(Γ).1 ⊢ M1 : γ and (Γ).2 ⊢ M2 : γ and,
for all σ1, σ2 such that ⊩ σ1 ∼ σ2 : Γ and [σ1]M1 ⇓ V1 and [σ2]M2 ⇓ V2,
we have the following about V1 and V2:

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :61

Γ ⊢ M ≡ N : γ The name terms M and N are equivalent at sort γ

(M ≡ N : γ) ∈ Γ

Γ ⊢ M ≡ N : γ
Eq-Var

(Γ).1 ⊢ M : γ
(Γ).2 ⊢ M : γ

Γ ⊢ M ≡ M : γ
E-Refl

flip(Γ) ⊢ N ≡ M : γ

Γ ⊢ M ≡ N : γ
E-Sym

Γ ⊢ M1 ≡ M2 : γ Γ ⊢ M2 ≡ M3 : γ

Γ ⊢ M1 ≡ M3 : γ
Eq-Trans

Γ ⊢ M1 ≡ N1 : γ1 Γ ⊢ M2 ≡ N2 : γ2

Γ ⊢ (M1,M2) ≡ (N1, N2) : γ1 ∗ γ2

Eq-Pair

Γ ⊢ M1 ≡ N1 : Nm Γ ⊢ M2 ≡ N2 : Nm
Γ ⊢ ⟨⟨M1, M2⟩⟩ ≡ ⟨⟨N1, N2⟩⟩ : Nm

Eq-Bin

Γ,
(
a ≡ b : γ1

)
⊢ M ≡ N : γ2

Γ ⊢ λa.M ≡ λb.N : γ1
Nm→ γ2

Eq-Lam

Γ ⊢ M1 ≡ N1 : γ1
Nm→ γ2

Γ ⊢ M2 ≡ N2 : γ1

Γ ⊢ M1(M2) ≡ N1(N2) : γ2

Eq-App

Γ ⊢ M2 ≡ M ′
2 : γ1 Γ, a ≡ a : γ1 ⊢ M1 ≡ M ′

1 : γ2

Γ ⊢ (λa.M1)M2 ≡ [M ′
2/a]M

′
1 : γ2

Eq-β

Fig. 24. Deductive rules for showing that two name terms are equivalent

Sort (γ) Values V1 and V2 of sort γ are apart, written ⊩ V1 ⊥ V2 : γ
1 Always

Nm When V1 = n1 and V2 = n2 and n1 , n2 (distinct binary trees)
γ1 ∗ γ2 When V1 = (V11, V12) and V1 = (V21, V22)

and ⊩ V11 ⊥ V21 : γ1 and ⊩ V21 ⊥ V22 : γ2

γ1
Nm→ γ2 When V1 = λa1.M1 and V2 = λa2.M2,

and for all name terms ⊢ N1 : γ1 and ⊢ N2 : γ1,
[N1/a1]M1 ⇓ W1 and [N2/a2]M2 ⇓ W2 implies ⊩ W1 ⊥ W2 : γ2

E.2 Metatheory of name term language
Some lemmas in this section are missing complete proofs and should be considered conjectures
(Lemma E.1 (Projections of syntactic equivalence)–Lemma E.8 (Reflexivity of name term evalua-
tion)).

Lemma E.1 (Projections of syntactic eqivalence).
If Γ ⊢ M1 ≡ M2 : γ, then Γ.1 ⊢ M1 : γ and Γ.2 ⊢ M2 : γ.

Lemma E.2 (Determinism of evaluation up to substitution).
If Γ.1 ⊢ M : γ and Γ.2 ⊢ M : γ and ⊩ σ1 ≡ σ2 : Γ and [σ1]M ⇓ V1 and [σ2]M ⇓ V2

then there exists V such that V1 = [σ1]V and V2 = [σ2]V .

Lemma E.3 (Reflexivity of semantic eqivalence).
(1) If ⊢ M : γ then ⊩ M ≡ M : γ.
(2) If Γ.1 ⊢ V : γ and Γ.2 ⊢ V : γ and ⊩ σ1 ≡ σ2 : Γ and V1 = [σ1]V and V2 = [σ2]V

then ⊩ V1 ≡ V2 : γ.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:62
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢ M ⊥ N : γ The name terms M and N are apart at sort γ

(a ⊥ b : γ) ∈ Γ

Γ ⊢ a ⊥ b : γ
Var

flip(Γ) ⊢ N ⊥ M : γ

Γ ⊢ M ⊥ N : γ
D-Sym

Γ ⊢ M1 ≡ M2 : γ Γ ⊢ M2 ⊥ M3 : γ

Γ ⊢ M1 ⊥ M3 : γ
D-trans

Γ ⊢ M1 ⊥ N1 : Nm
Γ ⊢ ⟨⟨M1, M2⟩⟩ ⊥ ⟨⟨N1, N2⟩⟩ : Nm

D-Bin1
Γ ⊢ M2 ⊥ N2 : Nm

Γ ⊢ ⟨⟨M1, M2⟩⟩ ⊥ ⟨⟨N1, N2⟩⟩ : Nm
D-Bin2

Γ ⊢ M1 ≡ M2 : Nm
Γ ⊢ ⟨⟨M2, N⟩⟩ ⊥ M1 : Nm

D-EqTag1
Γ ⊢ N1 ≡ N2 : Nm

Γ ⊢ ⟨⟨M, N1⟩⟩ ⊥ N2 : Nm
D-EqTag2

Γ ⊢ M ⊥ N : γ2

Γ ⊢ λa.M ⊥ λb.N : γ1
Nm→ γ2

D-Lam
Γ ⊢ M1 ⊥ N1 : γ1

Nm→ γ2

Γ ⊢ M1(M2) ⊥ N1(N2) : γ2

D-App

Γ.1 ⊢ M2 : γ2 Γ.1, a : γ2 ⊢ M1 : γ Γ ⊢ [M2/a]M1 ⊥ N : γ

Γ ⊢ (λa.M1) M2 ⊥ N : γ
D-β

Fig. 25. Deductive rules for showing that two name terms are apart

Lemma E.4 (Type safety). If Γ ⊢ M : γ and [σ]M ⇓ [σ]V then Γ ⊢ V : γ.

Lemma E.5 (Symmetry of semantic eqivalence).
(1) If ⊩ σ1 ≡ σ2 : Γ then ⊩ σ2 ≡ σ1 : flip(Γ).
(2) If ⊩ V1 ≡ V2 : γ then ⊩ V2 ≡ V1 : γ.
(3) If · ⊩ M1 ≡ M2 : γ then · ⊩ M2 ≡ M1 : γ.
(4) If Γ ⊩ M1 ≡ M2 : γ then flip(Γ) ⊩ M2 ≡ M1 : γ.

Lemma E.6 (Evaluation respects semantic eqivalence).
If Γ ⊩ M ≡ N : γ and ⊩ σ1 ≡ σ2 : Γ and [σ1]M ⇓ V1 then there exists V2 such that [σ2]N ⇓ V2

and ⊩ V1 ≡ V2 : γ.

Lemma E.7 (Closing substitutions respect syntactic eqivalence).
If ⊩ σ1 ≡ σ2 : Γ and Γ ⊢ M1 ≡ M2 : γ then · ⊩ [σ1]M1 ≡ [σ2]M2 : γ.

Lemma E.8 (Reflexivity of name term evaluation).
If Γ.1 ⊢ M : γ and Γ.2 ⊢ M : γ and ⊩ σ1 ≡ σ2 : Γ and [σ1]M ⇓ V1 and [σ2]M ⇓ V2

then ⊩ V1 ≡ V2 : γ.

Lemma E.9 (Transitivity of value eqivalence).
If ⊢ V1 : γ and ⊢ V2 : γ and ⊩ V1 ≡ V2 : γ and ⊩ V2 ≡ V3 : γ then ⊩ V1 ≡ V3 : γ.

Proof. Uses strong normalization. □

Conjecture E.10 (Soundness of deductive eqivalence).
If Γ ⊢ M1 ≡ M2 : γ then Γ ⊩ M1 ≡ M2 : γ.

Proof. By induction on the given derivation.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :63

Case (a ≡ b : γ) ∈ Γ

Γ ⊢ a ≡ b : γ
Eq-Var

By definition of closing substitutions.
Case (Γ).1 ⊢ M : γ (Γ).2 ⊢ M : γ

Γ ⊢ M ≡ M : γ
Eq-Refl

By Lemma E.2 (Determinism of evaluation up to substitution), Lemma E.4 (Type safety), and
Lemma E.3 (Reflexivity of semantic equivalence).
Case Γ ⊢ N ≡ M : γ

Γ ⊢ M ≡ N : γ
Eq-Sym

By Lemma E.5 (Symmetry of semantic equivalence).
Case Γ ⊢ M1 ≡ M2 : γ Γ ⊢ M2 ≡ M3 : γ

Γ ⊢ M1 ≡ M3 : γ
Eq-Trans

By idempotency of flipping relational contexts, Lemma E.6 (Evaluation respects semantic equiva-
lence), inductive hypotheses on the two given subderivations, Lemma E.5 (Symmetry of semantic
equivalence), and Lemma E.9 (Transitivity of value equivalence).
Case Γ ⊢ M1 ≡ N1 : γ1 Γ ⊢ M2 ≡ N2 : γ2

Γ ⊢ (M1,M2) ≡ (N1, N2) : γ1 ∗ γ2

Eq-Pair

By the definition of substitution and the i.h.
Case Γ ⊢ M1 ≡ N1 : Nm Γ ⊢ M2 ≡ N2 : Nm

Γ ⊢ ⟨⟨M1, M2⟩⟩ ≡ ⟨⟨N1, N2⟩⟩ : Nm
Eq-Bin

By the definition of substitution and the i.h.
Case Γ,

(
a ≡ b : γ1

)
⊢ M ≡ N : γ2

Γ ⊢ λa.M ≡ λb.N : γ1
Nm→ γ2

Eq-Lam

By transposition of substitutions and the i.h.
Case

Γ ⊢ M1 ≡ N1 : γ1
Nm→ γ2

Γ ⊢ M2 ≡ N2 : γ1

Γ ⊢ M1(M2) ≡ N1(N2) : γ2

Eq-App

By definition of substitution and inversion (teval-app) of resulting derivations, the inductive
hypothesis on the two given syntactic equivalence subderivations (of Eq-App), and definition of
semantic equivalence of arrow-sorted values, we get the result.
Case Γ ⊢ M2 ≡ M ′

2 : γ1 Γ, a ≡ a : γ1 ⊢ M1 ≡ M ′
1 : γ2

Γ ⊢ (λa.M1)M2 ≡ [M ′
2/a]M

′
1 : γ2

Eq-β

Fix ⊩ σ1 ≡ σ2 : Γ . Suppose [σ1]((λa.M1)M2) ⇓ V1 and [σ2]([M
′
2
/a]M ′

1
) ⇓ V2. We need to

show ⊩ V1 ≡ V2 : γ2. By the definition of substitution and inversion of teval-app, [σ1]M2 ⇓ V
and [V/a]([σ1]M1) ⇓ V1 for some V . Hence, because Γ, a ≡ a : γ1, we have [σ1, V/a]M1 ⇓ V1.

, Vol. 1, No. 1, Article . Publication date: May 2021.



:64
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Rewrite [σ2]([M
′
2
/a]M ′

1
) ⇓ V2 as [σ2, [σ2]M

′
2
/a]M ′

1
⇓ V2. By Lemma E.7 (Closing substitutions

respect syntactic equivalence), · ⊢ V ≡ [σ2]M
′
2
: γ1. Therefore,

⊩ (σ1, V/a) ≡ (σ2, [σ2]M
′
2/a) : (Γ, a ≡ a : γ1)

By the inductive hypothesis on Γ, a ≡ a : γ1 ⊢ M1 ≡ M ′
1
: γ2, we get ⊩ V1 ≡ V2 : γ2. □

Conjecture E.11 (Soundness of deductive disjointness). If Γ ⊢ M1 ⊥ M2 : γ then Γ ⊩
M1 ⊥ M2 : γ.

Conjecture E.12 (Completeness of deductive eqivalence). If Γ ⊩ M1 ≡ M2 : γ then
Γ ⊢ M1 ≡ M2 : γ.

Conjecture E.13 (Completeness of deductive disjointness). If Γ ⊩ M1 ⊥ M2 : γ then
Γ ⊢ M1 ⊥ M2 : γ.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :65

i →β j Index i reduces to index j

prjb(j1, j2) →β jb
reduce-proj

(λa. i)(j) →β [j/a]i
reduce-app

M[∅] ; ∅
reduce-map-empty

M(N) ⇓M V

M[{N}] →β {V}
reduce-map-single

M injective
M[X1 ⊥ X2] →β M[X1] ⊥ M[X2]

reduce-map-⊥

M[X1 ∪ X2] →β M[X1] ∪M[X2]
reduce-map-∪

M∗[j] →β M[M∗[j]]
reduce-kleene-outer

M∗[j] →β M∗[M[j]]
reduce-kleene-inner

Fig. 26. Reduction rules for indices

F INDEX TERM LANGUAGE
We define a restricted index term language for describing name sets and functions that relate them.
This language consists of the following:

• Syntax for index terms, and (additional) sorts (Fig. 10 in Sec. 4.1).
• Index term sorting, which assigns sorts to index terms (Fig. 12 in Sec. 4.1).
• Reduction rules for index terms, deriving the judgment i →β j (Fig. 26).
• Semantic definitions of equivalent and disjoint index terms (Sec. F.2).
• Deductive rules for equivalent and disjoint index terms, which should be sound with respect
to the semantic definitions of equivalence and disjointness (Fig. 29 and Fig. 30).

The first two items are defined in Sec. 4.1. The remaining items are defined here.

F.1 Index reduction
We write i →β j for the one-step head reduction of index i to j, defined in Fig. 26. This is essentially
β-reduction for functions, products, and mapping name sets (with mapM[X] distributing over
union operators).
Based on one-step head reduction, we define one-step reduction i →CC j (reducing anywhere

within an index, not only at the head) and multi-step reduction i ↠ j:

Definition F.1 (Reduction for indices).
(1) Let→CC be the congruence closure of →β.
(2) Let↠ be the reflexive-transitive closure of →CC.

F.2 Semantic equivalence and apartness of index terms
Definition F.2 (Closing substitutions for index terms).
We define closing substitution pairs related by equivalence and disjointness assumptions in a context Γ .
These definitions use and are used by the definitions below for equivalence and apartness of open terms.

• ⊩ σ1 ≡ σ2 : Γ iff (x ≡ y : γ) ∈ Γ implies
(
σ1(x) = i and σ2(y) = j and · ⊩ i ≡ j : γ

)
• ⊩ σ1 ⊥ σ2 : Γ iff (x ⊥ y : γ) ∈ Γ implies

(
σ1(x) = i and σ2(y) = j and · ⊩ i ⊥ j : γ

)
• ⊩ σ1 ∼ σ2 : Γ iff

(
⊩ σ1 ≡ σ2 : Γ and ⊩ σ1 ⊥ σ2 : Γ

)
, Vol. 1, No. 1, Article . Publication date: May 2021.



:66
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢ M ∈ X Name term M is a member of name set X, assuming X val

Γ ⊢ ({M} ⊥ Y) ≡ X : NmSet
Γ ⊢ M ∈ X

Membership1
Γ ⊢ ({M} ∪ Y) ≡ X : NmSet

Γ ⊢ M ∈ X
Membership2

Γ ⊩ M ∈ X Name term M is a member of name set X, assuming X val

Γ ⊩ ({M} ⊥ Y) ≡ X : NmSet
Γ ⊩ M ∈ X

Membership1
Γ ⊩ ({M} ∪ Y) ≡ X : NmSet

Γ ⊩ M ∈ X
Membership2

Γ ⊢ M < X The name of name term M is not a member of name set X, assuming X val

Γ ⊢ ({M} ⊥ X) ≡ Y : NmSet
Γ ⊢ M < X

NonMembership

Γ ⊩ M < X The name of name term M is not a member of name set X, assuming X val

Γ ⊩ ({M} ⊥ X) ≡ Y : NmSet
Γ ⊩ M < X

NonMembership

Fig. 27. Name term membership

Definition F.3 (Index normal form). An index i is in index normal form iff none of the rules

reduce-proj, reduce-app, reduce-map{-empty, -single, -⊥, -∪}

can be applied (anywhere within i).

Under this definition, normal forms are not unique: the rules reduce-kleene-inner and reduce-
kleene-outer can reduce normal forms. In effect, these are normal forms “modulo Kleene closure”.

Definition F.4 (Semantic equivalence of index terms). We define Γ ⊩ i1 ≡ i2 : γ as follows:
(Γ).1 ⊢ i1 : γ and (Γ).2 ⊢ i2 : γ and,
for all σ1, σ2, and j1 such that ⊩ σ1 ≡ σ2 : Γ and [σ1]i1 ↠ j1 where j1 is in index normal form,
there exists j2 such that j2 is in index normal form and [σ2]i2 ↠ j2,
we have the following about j1 and j2:

Sort γ Indices j1 and j2 of sort γ are equivalent, written ⊩ j1 ≡ j2 : γ
1 Always

NmSet When
(
⊩ M ∈ j1 if and only if ⊩ M ∈ j2

)
γ1 ∗ γ2 When j1 = (j11, j12) and j2 = (j21, j22)

and ⊩ j11 ≡ j21 : γ1

and ⊩ j12 ≡ j22 : γ2

γ1
idx→ γ2 When j1 = λa1. X1 and j2 = λa2. X2,

and for all name terms ⊩ Y1 ≡ Y2 : γ1,
(λa1. X1)(Y1) ↠ Z1 and (λa2. X2)(Y2) ↠ Z2

implies ⊩ Z1 ≡ Z2 : γ2

Definition F.5 (Semantic apartness of index terms). We define Γ ⊩ i1 ⊥ i2 : γ as follows:
(Γ).1 ⊢ i1 : γ and (Γ).2 ⊢ i2 : γ and,
for all σ1, σ2, and j1 such that ⊩ σ1 ≡ σ2 : Γ and [σ1]i1 ↠ j1 where j1 is in index normal form,

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :67

there exists j2 such that j2 is in index normal form and [σ2]i2 ↠ j2,
we have the following about j1 and j2:

Sort (γ) Index values j1 and j2 of sort γ are apart, written ⊩ j1 ⊥ j2 : γ
1 Always

NmSet When
(
⊩ M ∈ j1 implies ⊩ M < j2

)
and

(
⊩ M ∈ j2 implies ⊩ M < j1

)
γ1 ∗ γ2 When j1 = (j11, j12) and j2 = (j21, j22)

and ⊩ j11 ⊥ j21 : γ1 and ⊩ j12 ⊥ j22 : γ2

γ1
idx→ γ2 When j1 = λa1. X1 and V2 = λa2. X2,

and for all name terms ⊢ Y1 : γ1 and ⊢ Y2 : γ1,
(λa1. X1)(Y1) ↠ Z1 and (λa2. X2)(Y2) ↠ Z2

implies ⊩ Z1 ⊥ Z2 : γ2

extract-assns(·) = ·

extract-assns(Γ, P) = extract-assns(Γ), P

extract-assns(Γ,tt) = extract-assns(Γ)

extract-assns(Γ, (P1 and · · · and Pn)) = extract-assns(Γ), P1, . . . , Pn
for n ≥ 1, where each Pk

has the form i ⊥ j : γ or i ≡ j : γ

extract-assns(Γ,Z) = extract-assns(Γ) whereZ is not a proposition

extract-ctx(·) = ·

extract-ctx(Γ, a : γ) = extract-ctx(Γ), (a ≡ a : γ)

extract-ctx(Γ, α : type) = extract-ctx(Γ)

extract-ctx(Γ, d : K) = extract-ctx(Γ)

extract-ctx(Γ, p : · · ·) = extract-ctx(Γ)

extract-ctx(Γ, x : A) = extract-ctx(Γ)

extract-ctx(Γ, P) = extract-ctx(Γ)

extract(Γ) = (extract-assns(Γ); extract-ctx(Γ))

Fig. 28. Extraction function on typing contexts

The next two definitions bridge the gap with the type system, in which contexts ΓT also include
propositions P. It is defined assuming that extract(ΓT ) (defined in Figure 28) has given us some
propositions P1, . . . , Pn and a relational context Γ .

Definition F.6 (Extended semantic equivalence of index terms).
We define P1, . . . , Pn; Γ ⊩ i ≡ j : γ to hold if and only if

J (P1) and · · · and J (Pn) implies Γ ⊩ i ≡ j : γ

where J (i Θ j : γ) = (Γ ⊩ i Θ j : γ).

Definition F.7 (Extended semantic apartness of index terms).
We define P1, . . . , Pn; Γ ⊩ i ⊥ j : γ to hold if and only if

J (P1) and · · · and J (Pn) implies Γ ⊩ i ⊥ j : γ

, Vol. 1, No. 1, Article . Publication date: May 2021.



:68
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

where J (i Θ j : γ) = (Γ ⊩ i Θ j : γ).

When a typing context is weakened, semantic equivalence and apartness under the extracted
context continue to hold:

Lemma F.1 (Weakening of semantic eqivalence and apartness).
If extract(ΓT ) ⊩ i1 ≡ i2 : γ (respectively i1 ⊥ i2 : γ) then extract(ΓT , Γ ′

T
) ⊩ i1 ≡ i2 : γ (respectively

i1 ⊥ i2 : γ.

Proof. By induction on Γ ′
T
.

We prove the ≡ part; the ⊥ part is similar.
• If Γ ′

T
= ·, we already have the result.

• If Γ ′
T
= (Γ ′, P) then:

By i.h., extract(ΓT , Γ ′) ⊩ i1 ≡ i2 : γ.
That is, extract-assns(ΓT , Γ ′); extract-ctx(ΓT , Γ ′) ⊩ i1 ≡ i2 : γ.
By its definition, extract-ctx(ΓT , Γ ′, P) = extract-ctx(ΓT , Γ ′, P).
Therefore, we have extract-assns(ΓT , Γ ′); extract-ctx(ΓT , Γ ′, P) ⊩ i1 ≡ i2 : γ.
Adding an assumption before the semicolon only supplements the antecedent in Def. F.6, so

extract-assns(ΓT , Γ ′, P); extract-ctx(ΓT , Γ ′, P) ⊩ i1 ≡ i2 : γ

which was to be shown.
• If Γ ′

T
= (Γ ′, a : γ) then by i.h.,

extract(ΓT , Γ ′) ⊩ i1 ≡ i2 : γ

By definition of extract-ctx,
extract-ctx(ΓT , Γ ′, a : γ) = extract-ctx(ΓT , Γ ′), a ≡ a : γ

By the i.h. and Def. F.4,
(extract-ctx(ΓT , Γ ′)).1 ⊢ i1 : γ

We need to show that (extract-ctx(ΓT , Γ ′, a : γ)).1 ⊢ i1 : γ, which follows by weakening on
sorting. The “.2” part is similar.
Since a does not occur in i1 and i2, applying longer substitutions that include a to i1 and i2
does not change them; thus, we get the same j1 and j2 as for ΓT , Γ ′.

• In the remaining cases of Z for Γ ′
T
= (Γ ′,Z), neither extract-assns nor extract-ctx change,

and the i.h. immediately gives the result. □

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :69

F.3 Deductive equivalence and apartness for index terms

Γ ⊢ i ≡ j : γ The index terms i and j are equivalent at sort γ

(i ≡ j : γ) ∈ Γ

Γ ⊢ i ≡ j : γ
Eq-Var

(Γ).1 ⊢ i : γ (Γ).2 ⊢ i : γ

Γ ⊢ i ≡ i : γ
E-Refl

flip(Γ) ⊢ j ≡ i : γ

Γ ⊢ i ≡ j : γ
E-Sym

Γ ⊢ i1 ≡ j1 : γ1 Γ ⊢ i2 ≡ j2 : γ2

Γ ⊢ (i1, i2) ≡ (j1, j2) : γ1 ∗ γ2

Eq-Pair
Γ,
(
a ≡ b : γ1

)
⊢ i ≡ j : γ2

Γ ⊢ λa. i ≡ λb. j : γ1
idx→ γ2

Eq-Lam

Γ ⊢ i1 ≡ j1 : γ1
idx→ γ2

Γ ⊢ i2 ≡ j2 : γ1

Γ ⊢ i1(i2) ≡ j1(j2) : γ2

Eq-App

(Γ).1, a : γ2 ⊢ i1 : γ
(Γ).1 ⊢ i2 : γ2

Γ ⊢ [i2/a]i1 ≡ j : γ

Γ ⊢ (λa. i1)i2 ≡ j : γ
Eq-β

Γ ⊢ ∅ ≡ ∅ : NmSet
Eq-Empty

Γ ⊢ M ≡ N : Nm
Γ ⊢ {M} ≡ {N} : NmSet

Eq-Single

Γ ⊢ X1 ≡ X2 : NmSet Γ ⊢ Y1 ≡ Y2 : NmSet
Γ ⊢ (X1 ⊥ Y1) ≡ (X2 ⊥ Y2) : NmSet

Eq-Apart

Γ ⊢ (X2 ⊥ X1) ≡ Y : NmSet
Γ ⊢ (X1 ⊥ X2) ≡ Y : NmSet

Eq-Perm

Γ ⊢ M ≡ N : Nm Nm→ Nm Γ ⊢ X ≡ Y : NmSet
Γ ⊢ M[X] ≡ N[Y] : NmSet

Eq-Map

Γ ⊢ i ≡ j : Nm idx→ NmSet Γ ⊢ X ≡ Y : NmSet
Γ ⊢ i[X] ≡ j[Y] : NmSet

Eq-FlatMap

Γ ⊢ i ≡ j : Nm idx→ NmSet Γ ⊢ X ≡ Y : NmSet
Γ ⊢ i∗[X] ≡ j∗[Y] : NmSet

Eq-Star

Fig. 29. Deductive rules for showing that two index terms are equivalent

, Vol. 1, No. 1, Article . Publication date: May 2021.



:70
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

Γ ⊢ i ⊥ j : γ The index terms i and j are apart at sort γ

(a ⊥ b : γ) ∈ Γ

Γ ⊢ a ⊥ b : γ
Var

flip(Γ) ⊢ j ⊥ i : γ

Γ ⊢ i ⊥ j : γ
D-Sym

Γ ⊢ i1 ⊥ j1 : γ1

Γ ⊢ (i1, i2) ⊥ (j1, j2) : γ1 ∗ γ2

D-Proj1
Γ ⊢ i2 ⊥ j2 : γ2

Γ ⊢ (i1, i2) ⊥ (j1, j2) : γ1 ∗ γ2

D-Proj2

Γ ⊢ i ⊥ j : γ2

Γ ⊢ λa. i ⊥ λb. j : γ1
idx→ γ2

D-Lam
Γ ⊢ i1 ⊥ j1 : γ1

idx→ γ2

Γ ⊢ i1(i2) ⊥ j1(j2) : γ2

D-App

Γ ⊢ [i2/a]i1 ⊥ j : γ
(Γ).1 ⊢ i2 : γ2

(Γ).1, a : γ2 ⊢ i1 : γ

Γ ⊢ (λa. i1)i2 ⊥ j : γ
D-β

(Γ).2 ⊢ X : NmSet
Γ ⊢ ∅ ⊥ X : NmSet

D-Empty
Γ ⊢ M ⊥ N : Nm

Γ ⊢ {M} ⊥ {N} : NmSet
D-Single

Γ ⊢ X1 ⊥ Y : NmSet Γ ⊢ X2 ⊥ Y : NmSet
Γ ⊢ (X1 ⊥ X2) ⊥ Y : NmSet

D-Apart
Γ ⊢ M ⊥ N : Nm Nm→ Nm

Γ ⊢ M[X] ⊥ N[Y] : NmSet
D-Map

Γ ⊢ i ⊥ j : Nm idx→ NmSet
Γ ⊢ i[X] ⊥ j[Y] : NmSet

D-FlatMap1

Γ ⊢ i ≡ j : Nm idx→ NmSet Γ ⊢ X ⊥ Y : NmSet
Γ ⊢ i[X] ⊥ j[Y] : NmSet

D-FlatMap2

Γ ⊢ i ⊥ j : Nm idx→ NmSet Γ ⊢ X ⊥ Y : NmSet
Γ ⊢ i∗[X] ⊥ j∗[Y] : NmSet

D-Star

Fig. 30. Deductive rules for showing that two index terms are apart

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :71

G NORMALIZATION FOR NAME TERMS
We write “M halts” when there exists V such that M ⇓M V .

We write σ : Γ when, for all a ∈ dom(Γ), we have · ⊢ σ(a) : Γ(a). It follows that σ(a) is closed.

Definition G.1 (Rγ(M)).

(1) Rγ(M) if and only if γ , (γ1
Nm→ γ2) andM halts.

(2) R
(γ1

Nm→γ2)
(M) if and only if (i) M halts and

(ii) for all closed M ′, if Rγ1
(M ′) then Rγ2

(MM ′).

Lemma G.2 (Substitution). If Γ, a : γa ⊢ M : γ and Γ ⊢ Ma : γa then Γ ⊢ [Ma/a]M : γ.

Proof. By induction on the derivation of Γ, a : γa ⊢ M : γ. □

Lemma G.3 (Closedness). If M is closed andM ⇓M V then V is closed.

Proof. By induction on the derivation of M ⇓M V . □

Lemma G.4 (Canonical Forms). Suppose ⊢ V : γ.
(1) If γ = Nm then V = n.
(2) If γ = (γ1

Nm→ γ2) then V = (λa.M0) and a : γ1 ⊢ M0 : γ2.

Proof. By inspection of the given derivation. □

Lemma G.5 (Multiple Substitution). If Γ ⊢ M : γ and σ : Γ then ⊢ [σ]M : γ.

Proof. By induction on the length of σ, using Lemma G.2 (Substitution). □

Lemma G.6 (Type Preservation). If ⊢ M : γ and M ⇓M V then ⊢ V : γ.

Lemma G.7 (Preservation). If Rγ(M) and M ⇓M V then Rγ(V).

Proof. By induction on γ.
If γ does not have the form (γ1

Nm→ γ2), then the only requirement is to show there exists V ′

such that V ⇓M V ′. Let V ′ = V . Then V ⇓M V ′ by teval-value.
Otherwise, γ = (γ1

Nm→ γ2), and we also have to show that for all closedM1 such that Rγ1
(M1),

it is the case that Rγ2
(M M1).

By definition of R, there exists V1 such that M1 ⇓M V1. By i.h., Rγ1
(V1).

M ⇓M V Above
V = (λa.M0) By Lemma G.4 (Canonical Forms)

M1 ⇓M V1 Above
[V1/a]M0 ⇓M V2 By i.h.

M M1 ⇓M V2 By teval-app □

Lemma G.8 (Normalization).
If Γ ⊢ M : γ and σ : Γ and, for all a ∈ dom(Γ), we have RΓ(a)(σ(a)),
then Rγ([σ]M).

Proof. By induction on the derivation of Γ ⊢ M : γ.

• Case

Γ ⊢ n : Nm
M-const

, Vol. 1, No. 1, Article . Publication date: May 2021.



:72
Matthew A. Hammer, Jana Dunfield, Kyle Headley, Monal Narasimhamurthy, and Dimitrios J.

Economou

[σ]n = n By definition of [σ](−)

n ⇓M n By rule teval-value
[σ]n ⇓M n By above equation

n is a value
Z RNm([σ]M) By definition of R

• Case (a : γ) ∈ Γ

Γ ⊢ a : γ
M-var

We have Γ(a) = γ. It is given that RΓ(a)(σ(a)). Since σ(a) = [σ]a, we have Rγ[σ]a, which
was to be shown.

• Case Γ, a : γ1 ⊢ M0 : γ2

Γ ⊢ (λa.M0) : (γ1
Nm→ γ2)

M-abs

Suppose that, for some closed M ′, we have Rγ1
(M ′). By the definition of R, that means

there exists V ′ such that M ′ ⇓M V ′.
We need to show Rγ2

(
[σ]((λa.M0)M

′)
)
.

Let σa = (σ, V ′/a).
Rγ1

(V ′) By Lemma G.7 (Preservation)
Γ, a : γ1 ⊢ M0 : γ2 Subderivation

Rγ2
([σa]M0) By i.h. with σa as σ

(λa. [σ]M0) ⇓M λa. [σ]M0 By teval-value
M ′ ⇓M V ′ Above

[σa]M0 ⇓M V By definition of R
[σa]M0 = [V ′/a][σ]M0 By def. of subst.

[V ′/a][σ]M0 ⇓M V By above equation
(λa. [σ]M0)M

′ ⇓M V By teval-app
M ′ = [σ]M ′ M ′ closed

(λa. [σ]M0) [σ]M
′ ⇓M V By above equation

(λa. [σ]M0) [σ]M
′ = ([σ]λa.M0) [σ]M

′ By def. of subst.
= [σ]

(
(λa.M0)M

′
)

By def. of subst.
[σ]

(
(λa.M0)M

′
) ⇓M V By above equations

Z Rγ2

(
[σ]((λa.M0)M

′)
)

By definition of R
• Case

Γ ⊢ M1 : (γ ′ Nm→ γ) Γ ⊢ M2 : γ ′

Γ ⊢ (M1 M2) : γ
M-app

R
(γ′Nm→γ)

([σ]M1) By i.h.
Rγ′([σ]M2) By i.h.
Rγ(([σ]M1) [σ]M2) By definition of R

Z Rγ([σ](M1 M2)) By def. of subst.
• Case Γ ⊢ M1 : Nm Γ ⊢ M2 : Nm

Γ ⊢ ⟨⟨M1, M2⟩⟩ : Nm
M-bin

, Vol. 1, No. 1, Article . Publication date: May 2021.



Fungi: Typed incremental computation with names :73

RNm([σ]M1) By i.h.
RNm([σ]M2) By i.h.

[σ]M1 ⇓M V1 By RNm([σ]M1)

Γ ⊢ M1 : Nm Subderivation
⊢ [σ]M1 : Nm By Lemma G.5 (Multiple Substitution)

V1 = n1 By Lemma G.6 (Type Preservation)
and Lemma G.4 (Canonical Forms)

[σ]M2 ⇓M n2 Similar
⟨⟨[σ]M1, [σ]M2⟩⟩ ⇓M ⟨⟨n1, n2⟩⟩ By rule teval-bin

[σ]⟨⟨M1, M2⟩⟩ ⇓M ⟨⟨n1, n2⟩⟩ By definition of [σ](−)

Z RNm([σ]⟨⟨M1, M2⟩⟩) By definition of R □

Theorem G.9 (Normalization). If ⊢ M : γ then there exists V such that M ⇓M V .

Proof. By Lemma G.8 (Normalization), Rγ(M).
By definition of R, there exists V such that M ⇓M V . □

, Vol. 1, No. 1, Article . Publication date: May 2021.


	Abstract
	1 Introduction
	2 Overview
	2.1 Naming properties
	2.2 The program listing and dynamic semantics of [basicstyle=]|dedup|
	2.3 Apartness for names, name sets and name functions
	2.4 Static effects and types for dedup
	2.5 Helper function [basicstyle=]|insert|
	2.6 Apartness failures violate global uniqueness
	2.7 Global uniqueness implies correct change propagation

	3 Program Syntax
	3.1 Values and Expressions
	3.2 Names

	4 Type System
	4.1 Index Level
	4.2 Kinds
	4.3 Effects
	4.4 Types
	4.5 Subtyping
	4.6 Bidirectional Version

	5 Dynamic Semantics
	6 Metatheory: Type Soundness and Unique Names
	7 Implementation
	7.1 Prototype in Rust
	7.2 Ongoing and Future Work

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Omitted Definitions, Figures, and Remarks
	A.1 Subtyping
	A.2 Dynamic semantics, read and write sets, sorting and kinding
	A.3 Remarks

	B Omitted Lemmas and Proofs
	C Bidirectional Typing
	C.1 Syntax
	C.2 Bidirectional Typing Rules

	D Bidirectional Typing Proofs
	E Name Term Language
	E.1 Semantic equivalence and disjointness
	E.2 Metatheory of name term language

	F Index term language
	F.1 Index reduction
	F.2 Semantic equivalence and apartness of index terms
	F.3 Deductive equivalence and apartness for index terms

	G Normalization for Name Terms

