CISC 327
Software Quality Assurance

Lecture 17/

White Box Testing:
Mutation Testing

CISC327 - © 2003-2018 J.R. Cordy, S. Grant, J.S. Bradbury, J. Dunfield

White Box Testing

* Today we continue our look at white box testing
methods with mutation testing

* Definition and role of mutation testing
— What is a mutation?
— What is a mutant?

— How is mutation testing used?
 Mutation testing methods
— Value mutations

— Decision mutations
— Other mutations

Mutation Testing

Mutation testing is a white box method for
checking the adequacy of a test suite

As you have already discovered,
creating a test suite can be an expensive and
time consuming effort

No matter what test method is used,
discovering if test suites are adequate to uncover
faults is itself an even more difficult task

Mutation testing offers an almost completely
automated way to check the adequacy of a set of
tests in uncovering faults in the software

Mutation Testing

e How does it work?

— To test the adequacy of a test suite,
we run the software on the suite and fix problems
until the software passes every test

— We then save the results in a set of files to serve
as the correct output to compare to

— We then use mutation on the source code to
create a set of mutants (this step is automated)

— A mutant is a program that is slightly different
from the original

Mutation Testing

 For each mutant, we run the test suite on the
mutant and compare the results to the saved
results from the original

* |f the results differ, then the mutant has been
“killed” (detected) by the test suite

* |If the results do not differ, then the test suite
is inadequate to detect the mutant, and a new
test must be added to the suite to kill that
mutant

Systematic Mutation

For mutation testing to be systematic, there must
be (1) a system for creating mutants,

(2) a completion criterion (knowing when you
have enough mutants)

The system is a set of kinds of syntactic changes
to the program source, generally expected to
cause errors

Each mutant has exactly one change in it

We are done when every possible single change

mutant of the system has been generated and
“killed”

Visualizing Mutation

The
un-mutated
program

Each arrow represents one small change, such as replacing a
constant 1 with O, or exchanging addition for subtraction

Radioactivity Chain reaction and mutation
It’s in the air for you and me Contaminated population (Kraftwerk)

Kinds of Systematic Mutation

* Value mutations (changing constants,
subscripts, or parameters by adding or
subtracting one, etc.)

* Decision mutations (inverting or otherwise
modifying the sense of each decision
condition in the program)

e Statement mutation (deleting or exchanging
individual statements in the program)

Why does this make sense?

* As we discussed weeks ago:
quality is not accidental

* Almost any change to a high-quality program,
or even a middling-quality program, will
create a bug

* (Analogies: math, literature...)

Example 1: Value Mutation

e System: Mutate the value of each constant
(or more generally, each integer expression)
in the program by adding or subtracting 1

 Completion criterion:
One mutant for each constant in the program

* Note that there are many other possible
value mutations:
— Constants modified in some other way, e.g. off by -1

— All integer expressions modified (not just constants)
e.g. X changed to x+1, etc.

— Floating-point: off by 0.00001, ...

Example 1: Value Mutation

// calculate numbers less than x
// which are divisible by y

int x, y; Example test suite (statement coverage)
x = c.readInt ();

if (y == 0) VB
c.println ("y is 0"); T 0 1 "y is 0"
else if (x == 0)
c.println ("x is 0"); 13 1 1 1
else {

for (int i = 1; i <= x; i++) {
if (i % v == 0)
c.println (i) ;

Visualizing Mutation

0=1 1=0

0=1 0=1
The

un-mutated
program

Each arrow represents one small change, such as replacing a
constant 1 with O, or exchanging addition for subtraction

Example 1: Value Mutation

// calculate numbers less than x
// which are divisible by vy

output of | output of

int x, v original mutant

x = c.readInt ();

y = c.readInt ();

if (y == 1) T1T 0 0 ‘"yis0" "xisO"
c.println ("y is 0");

else if (x == 0) ny, 1] ne, : n
c.println ("x is 0™); T2 0 1 xisO yisO

else {

for (int 1 = 1; 1 <= x; i++) |
if (1 $ y == 0) "n,, : n
c.println (1i); T3 1 1 1 y |S O
}

// calculate numbers less than x

// which are divisible by y output of output of
int x, yi original mutant

x = c.readInt ();
y = c.readInt ();

if (v == 0)

c.println ("y is 0"); Tl O 0 "y iS 0" ”y iS 0"
else if (x == 1)
c.println ("x is 0"); T2 O 1 IIX |S OII

else {
for (int 1 = 1; 1 <= x; 1i++) {

if (1 %y == 0)

c.println (1i); T3 1 1 1 "X iS O"

Example 1: Value Mutation

output of | output of

// calculate numbers less than x

// which are divisible by y original mutant
int x, vy;
x = c.readInt ();

= c.readInt (); i i
! o T1 0 O "y is 0" "y is 0"
if (y == 0)

c.println ("y is 0");

else if (x == 0) T2 0 1 ”X is 0” llX is 0"
c.println ("x is 0");
else {

for (int i = 2; i <. i+ o T3 1 1 1

if (1 $y == 0)
c.println (i);

}

// calculate numbers less than x
// which are divisible by vy

output of | output of

int x, vy; .
% = c.resdint () original mutant

y = c.readInt ();

if (y == 0)
c.println ("y is 0"); n = n n Q n

else if (x == 0) Tl 0 O y IS 0 y IS 0
c.println ("x is 0");

etoe : s : — : n H n 1" H 1"
for (int i = 1; 1 <= x; i++) { T2 O 1 X IS O X is O

if (i %y == 1)

c.println (i);

Example 2: Decision Mutation

e System: Invert the sense of each decision
condition in the program

— e.g., change > to < (or <=), ==to !=, and so on
 Completion criterion:

One mutant for each decision condition
in the program

Example 2: Decision Mutation

// calculate numbers less than x
// which are divisible by y

int x, y;: Example test suite (statement coverage)

y = c.readInt (),

"y is 0"
if (y == 0)
c.println ("y is 0"); T2 0 1 "x is 0"
else if (x == 0)
T3 1 1 1

c.println ("x is 0");
else {
for (int 1 = 1; i <= x; i++) {
if (1 5 y == 0)
c.println (i);

Example 2: Decision Mutation

// calculate numbers less than x Output Of Output Of

// which are divisible by vy

original mutant

int x, vy;
X c.readInt ();

y = c.readInt (); T1 0 0 "y is 0" "xis Q"

if (y '= 0)
c.println ("y is 0"); T2 0 1 IIX |S OII ||y |S Oll

else if (x == 0)
c.println ("x is 0");
else {
for (int 1 = 1; 1 <= x; 1i++) {

if (1 $ y == 0) T3 1 1 1 IIy |S OII

c.println (i);

}

// calculate numbers less than x

// which are divisible by y output of output of
int x, i original mutant
x = c.readInt ();

y = c.readInt ();

TT 0 0 'yisO" "y is 0"

if (y == 0)
c.println ("y is 0").;

else if (x '= 0)

c.println ("x is “0O"™)7
else {
for (int 1 = 1; 1 <= x; 1i++) {
if (1 & y == 0)

c.println (i); T3 1 1 1 "x is 0"

12 o 1 "xis 0"

Example 2: Decision Mutation

// calculate numbers less than x
// which are divisible by vy

int x, vy;

x = c.readInt ();
y = c.readInt ()
if (y == 0)
c.println ("y is 0");
else 1if (x == 0)
c.println ("x is 0");
else {

for (int i =1; L1 > X, i+ |
if (1 %y == 0)
c.println (i);

}

// calculate numbers less than x
// which are divisible by vy

int x, vy;
x = c.readInt ();
y = c.readInt ();

if (v == 0)
c.println ("y is 0");
else if (x == 0)
c.println ("x is 0");
else {
for (int 1 = 1; 1 <= x; 1i++){

if (i &y !'= 0)

c.println (i);

T1
T2
T3

T1

12

T3

output of

original

lly iS OII

"xis 0"

output or

original

lly is OII

"xis 0"

output of
mutant

lly is OII

"x is 0"

output of
mutant

Ily iS Oll

"x is 0"

Example 3: Statement Mutation

e System: Delete each statement in the program

 Completion criterion:
One mutant for each statement

* Many other possible statement mutations:

— Interchanging adjacent statements

— Reordering sequences of statements
— Doubling statements

Example 3: Statement Mutation

// calculate numbers less than x
// which are divisible by y

int x, vy;
X = c.readInt (),
y = c.readInt ();

if (y == 0)
c.println ("y is 0");
else if (x == 0)
c.println ("x is 0");
else {

for (int 1 =1; i1 <= x;

if (1 5 y == 0)
c.println (i) ;

Example test suite (statement coverage)

n-m

"y is 0"
T2 0 1 "X is 0"
T3 1 1 1

i++) {

Example 3: Statement Mutation

// calculate numbers less than x Output Of Output Of
original mutant

// which are divisible by y

int x, y;
X = c.readInt ();
y = c.readInt ();

oy == 0) T1 0O O "y is 0"
else if (x == 0)

.println ("x is 0"); o o
elsec{P (S) Tz O 1 "X IS 0" "X IS 0"

for (int i = 1; i <= x; i++) {
if (i & y == 0)
c.println (i);

} T3 1 1 1 1

}

e This time, we show only one example - you can
make the rest!

e All statement mutants of this program turn out to
be “killed” by our simple test set

Determining Test Suite Adequacy

* If D is the number of dead mutants
(program variations that were caught by our

existing test suite),
and M is the total number of mutants

mutation adequacy score =D / M

Some Observations

In practice, simple statement coverage will
suffice to “kill” most kinds of mutants

Thus they can detect most kinds of accidental
faults that might be introduced into a working
program

— Quality is not accidental; this is why coverage tests
are worth doing

However, mutation can catch missing test cases
even in coverage tests

Since most projects use primarily black box
techniques, automated mutation testing can be
valuable in making test suites more effective

Advantages and Disadvantages

* Advantages

— Provides a good check for quality of a test suite,
however created

— Once “baseline” of correct results of a test suite
has been checked, testing adequacy of the suite
using mutation can be automated

* Disadvantages

— Expensive - generates a huge number of mutants,
many really checking the same cases

— Detecting mutant equivalence is a big problem

Summary

Mutation Testing

— Mutation testing is a white box method for
automatically checking test suites for
completeness

— Mutations are simple, syntactic variants of
programs that can be generated automatically

— Typical mutations are value mutations, decision
mutations, statement mutations

— Mutation can find missing test cases in a test suite

— Statement coverage is a strong testing system,
usually “kills” most kinds of mutants

Summary

e References
— Van Vliet ch. 13.6

* Next Time

— Continuous testing methods

e Then
— Mini-Exam #2, Mon. October 22nd

