CISC 327 - Software Quality Assurance

Lecture 20

Inspection
Inspections

• Today we begin our look at inspection as a quality assurance technique
 – Statistical Process Control
 – What is inspection?
 – Informal vs. formal inspection
 – Inspection in the software process
 – Inspection roles
 – Effectiveness of inspections vs. testing
Statistical Process Control

• Historical background: W.A. Shewhart
 – 1924: Bell wanted more reliable phone equipment
 ⇒ control chart
 – 1939: Statistical Method from the Viewpoint of Quality Control
 – Influential in US during the war → postwar Japan
First Law of Software Development

• Earlier is Cheaper
 – The later in the development cycle a fault is detected, the more expensive it is to fix
 • Methods that find faults earlier deliver more bang for the buck
Software Development Products

- What do we produce when making software?
 - Plans, procedures, requirements specifications, design specifications, source code, comments, test cases, test reports, user documentation, technical documentation

- Of all these, we can only test one of them (code), and only when we are already far along (at least partially runnable)

- So how can we discover and address quality and detect faults earlier?
Reviews, Walkthroughs, and Inspections

• Terminology
 – Unfortunately, there is no good agreement on precise definitions for these terms, but...

• Reviews
 – …are the management practice of meetings to informally consider state of the project at certain stages, to gain confidence in project direction
 • e.g., preliminary design review, critical design review
 – Used to provide confidence that the design is sound
 – Often attended by management and customers
Reviews, Walkthroughs, and Inspections

• Walkthrough
 – ...refers to an informal technical review, normally carried out by developers
 – Used by development teams to improve product quality by involving whole team in quality assurance at each stage
 – Focus is on critical analysis of artifacts, in an attempt to find or predict defects
Reviews, Walkthroughs, and Inspections

• **Inspection**
 – ...refers to a completely **formal** process of review, also known as **formal technical reviews**
 – A formal system used to identify and remove **defects**, and improve the overall **quality** of the development process
 – **Involves**: Formal written **reports**, defect data collection and **analysis**, required standards and measures
 • Emphasis on documenting process progress and defects
 – First introduced by **Fagan** (IBM) about **1976**, now **required** by some customers (e.g., U.S. military)
Inspections in the Software Process

- Requirements definition
- System and software design
- Implementation and unit testing
- Integration and system testing
- Operation and maintenance

Activities:
- Requirements Review
- Design Inspection
- Code Inspection
- Functional Audit

Methods:
- Review
- Inspection
- Code Inspection
- Functional Audit
Kinds of Inspections

• **A Generic Technique**
 - Inspections can assist at *every stage*, the earlier the better
 - E.g., U.S. Mil-Std-1521B, "Technical Reviews and Audits for ... Computer Software" identifies 10 separate kinds to be carried out

<table>
<thead>
<tr>
<th>System requirements review (SRR)</th>
<th>Test readiness review (TRR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System design review (SDR)</td>
<td>Functional configuration audit (FCA)</td>
</tr>
<tr>
<td>Software specification review (SSR)</td>
<td>Physical configuration audit (PCA)</td>
</tr>
<tr>
<td>Preliminary design review (PDR)</td>
<td>Formal qualification review (FQR)</td>
</tr>
<tr>
<td>Critical design review (CDR)</td>
<td>Production readiness review (PRR)</td>
</tr>
</tbody>
</table>
Example: PDR

3.4 Preliminary Design Review (PDR).

This review shall be conducted for each configuration item or aggregate of configuration items to:

1. evaluate the progress, technical adequacy, and risk resolution (on a technical, cost, and schedule basis) of the selected design approach,
2. determine its compatibility with performance and engineering specialty requirements of the Hardware Configuration Item (HWCI) development specification,
3. evaluate the degree of definition and assess the technical risk associated with the selected manufacturing methods/processes, and
4. establish the existence and compatibility of the physical and functional interfaces among the configuration item and other items of equipment, facilities, computer software, and personnel.
Example: PDR

• 3.4 Preliminary Design Review (PDR).

 – ...

 – For CSCIs, this review will focus on:

 • (1) the evaluation of the progress, consistency, and technical adequacy of the selected top-level design and test approach,

 • (2) compatibility between software requirements and preliminary design, and

 • (3) on the preliminary version of the operation and support documents.
The Prevention Principle

Prevention is better than cure.

OR

An ounce of prevention is worth a pound of cure.
Cost of Fixing Errors

<table>
<thead>
<tr>
<th>Point at which error is fixed</th>
<th>Requirements</th>
<th>Design</th>
<th>Coding</th>
<th>Development Testing</th>
<th>Acceptance Testing</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3-6X</td>
<td>10X</td>
<td>15-40X</td>
<td>30-70X</td>
<td>40-1000X</td>
</tr>
</tbody>
</table>
Inspection

• **IEEE Definition** of Inspection
 - "... a formal evaluation technique in which software requirements, design, or code are examined in detail by a person or group other than the author to detect faults, violations of development standards, and other problems..."

• **IEEE Objective** of Inspection
 - "... to detect and identify software element defects. This is a rigorous, formal peer examination..."
Inspection

- Verifies that the software elements satisfy its specifications
- Verifies that the software elements conform to applicable standards
- Identifies deviations from standards and specifications
- Collects software engineering data (for example, defect and effort data)
- Does not examine alternatives or stylistic issues
Inspection

• But **Inspection** (capital i) is a **formal process**!
 – One study found that **84%** of surveyed organizations performed reviews or inspections, but **0%** performed inspections entirely correctly.
 – Even a walkthrough or a poorly done Inspection can be **effective** at improving software quality.
 – Inspection is not only about **defect correction**, but also importantly about **defect prevention**.
Fagan Inspections (e.g., for Code)

- Source code listings
- Overview meeting
- Development documents
- Trained experts

Inspection meeting

Line-by-line paraphrasing at 150 lines/hour

Defect statistics

Prevention Database

Rework

Inspected source code for testing

(Phillips, RMC 1999)
Inspection Roles (Fagan, Code Inspection)

• **Moderator**
 – Chairs the meeting, *records* faults found
 – Helps others stick to paraphrasing code, at the right *pace*
 – Keeps proceedings *objective*, professional, friendly

• **Inspectors (2 or 3)**
 – Knowledgeable *peers* who paraphrase the code, line by line
 – Must have attended *overview* meeting, reviewed *requirements* and *design* documents, must understand *context* of code

• **Author**
 – Silent *observer* who assists or clarifies only when asked
Choosing Inspectors (Fagan)

• **Good Choices**
 – Review specialists (e.g., QA analysts)
 – Technical people from the same team as author
 – Technical people with special expertise in subject matter of code
 – People with a special interest in the product
 – People from other parts of the org. or outside it

• **Bad Choices** *(exclude!)*
 – Managers, supervisors, or appraisers of the author
 – Anyone with a personality clash with the author or other reviewers
 – All management
 – Anyone with a conflict of interest
Inspection Efficiency

(Phillips, RMC 1999)
Side Benefits of Inspection

• Cultural
 – Team members gain a broader perspective on the software system as they review each other’s work
 – Promotes a shared "quality culture", joint responsibility

• Organizational
 – Coding standards and practices are learned and enforced
 – Consistency improves

• Educational
 – Quality improves over time, as authors become more aware of the kinds of faults they are prone to make
Inspection in Context

Faults

Static faults

Inspection

Execution faults

Unit Test

Interaction faults

System Test
Summary

• Inspections, Walkthroughs, and Reviews
 – Designed to catch faults earlier than possible using testing, to reduce costs and increase quality
 – Informal or formal meetings in which reviewers examine work of authors in detail
 – Very effective in practice

• References
 – Gilb & Graham, Ch. 3, "Overview of Software Inspection"

• Next time
 – Inspection processes