CISC327 - Software Quality
Assurance

Lecture 9

Introduction to Systematic Testing,
part 2

CISC327 - © 2003-2016 J.R. Cordy, S. Grant, J.S. Bradbury



Introduction to Systematic Testing

e Qutline

— Last time we began with basic definitions,
validation & verification, the role of specifications,
and the levels of testing

— Today we continue with:
e Testing in the life cycle
e Test design and strategy
e Test plans and procedures
* Test results



What is Systematic Testing?

* An explicit discipline or procedure (a system)
for

— choosing and creating test cases

— executing the tests and documenting the results
— evaluating the results, possibly automatically

— deciding when we are done (enough testing)



Validation vs. Verification

e Verification
— Check that the software meets its stated
functional and non-functional requirements

e Validation

— More general than verification, ensure that the
software meets the customer's expectations

— Requirements specifications do not always reflect
the real wishes or needs of system customers and
users



Testing in the Life Cycle

e Kinds of Tests

— Testing has a role at every stage of the software life
cycle

— As we have seen, tests play a role in the development
of code (unit testing), the integration of the units into
subsystems (integration testing), and the acceptance
of the first version of the software system (system
testing)

— Black box testing methods are based on the
software's specifications

— White box (or glass box) testing methods are based
on the software's code



-ility Testing

* |dentify the -ilities
— General way of specifying system characteristics
for quality or testing

* Capability: Can the system perform the required
functions?

Reliability: Will it work well and resist failure in all
required situations?

Usability: How easy is it for a real user to use the
product?

Performance: How fast and responsive is the system?
Security: Is the system appropriately secure?



Testing in the Life Cycle

* Regression Tests

— In addition, as the system is maintained, other kinds
of tests based on past behaviour come into play

— Once a system is stable and in production, we build
and maintain a set of regression tests to ensure that
when a change is made, the existing behaviour has
not been broken

— These often consist of a set of actual observed
production inputs and their archived outputs from
past versions of the system



Testing in the Life Cycle

e Failure Tests

— As failures are discovered and fixed, we also
maintain a set of failure tests to make sure that
we have really fixed the observed failures and to
make sure that we don't cause them again

— These consist of a set of actual observed inputs
that caused the past failures and their archived
outputs after the system was fixed



Test Design

e Design of Tests

— The design of tests for a system is a difficult and tricky
engineering problem,
as important as design of the software itself

— The design of effective tests requires a set of stages
from an initial high level test strategy down to
detailed test procedures

— Typical test design stages are:
* test strategy
* test planning
* test case design
e test procedure



Test Strategy

* Test Strategy

— A test strategy is a statement of the overall
approach to testing for a software development
organization

— Specifies the levels of testing to be done as well as
the methods, techniques, and tools to be used

— Part of the project's overall quality plan, to be
followed and reported by all members of the
project



Test Plans

Test Plans

— A test plan for a development project specifies in
detail how the test strategy will be carried out for the
project

— In particular, it specifies:

* the items to be tested
* the level they will be tested at

* the order they will be tested in
* the test environment

— May be project-wide, or may be structured into

separate plans for unit, integration, system, and
acceptance testing



Test Case Design

* Test Case Design

— Once we have a plan, we need to specify a set of
test cases for each item to be tested at each level

— Each test case specifies how the implementation
of a particular functional requirement or design
unit is to be tested and how we will know if the
test is successful

— Usually a single step or small sequence of steps to
determine if a feature of an application is working
correctly



Test Case Design

 What might a test case look like?

Test: login command, agent
Purpose: check that login is accepted
Input:

login

agent

logout
Input files: Valid Services File with no accounts in it
Output files: Transaction Summary File with no
transactions
Output: none; possibly information messages in
response to commands



Test Case Design

* Test Case Design (continued)

— It is important to include test cases to test both
that the software does what it should (positive
testing, like the previous slide) and that it doesn't
do what it shouldn't (negative testing)

— Test cases are specified separately at each level:
unit, integration, system, and acceptance

— The test case documentation for each level form a
test specification for the level



Test Procedures

e Test Procedures

— The final stage of test design is the test procedure,
which specifies the process for conducting test cases

— For each item or set of items to be tested at each level
of testing, the test procedure specifies the process to

be followed in running and evaluating the test cases
for the item

— Often this includes the use of test harnesses
(programs written solely to exercise the software or
parts of it on the test cases), test scripts (automated
procedures for running sets of test cases), or
commercial testing tools



Test Reports

* Documenting Test Results

— Output of test execution should be saved in a test
results file, and summarized in a readable report

— Test reports should be designed to be concise,
easy to read, and to clearly point out failures or
unexpectedly changed results

— Test result files should be saved in a standardized
form for easy comparison with future test
executions



Summary

* |Introduction to Testing

— Testing is not just a one time task, it is a
continuous process that lasts throughout the
software life cycle

— Effective testing requires careful engineering,
similar and parallel to the process for design and
implementation of the software itself

— An overall test strategy drives test plans, test case
design, and test procedures for a project



Summary

 References
— Sommerville, ch. 8, "Software Testing"
— The Software Test Page (on the web)

* Next
— Introduction to Black Box Testing
— Assignment #1 due next Thursday




