CISC 327
Software Quality Assurance

Lecture “review3”
Review for Mini-Exam #3
Likely topics/questions on mini-exam #3

• From Lecture 17:
 – Mutation testing
 • Is mutation testing systematic?
 • What is the system (if there is one)?
 • How is mutation testing different from other white-box methods?
Likely topics/questions on mini-exam #3

• From Lecture 18:
 – Maintenance and continuous testing methods
 • Corrective, perfective, adaptive maintenance
 • The relevant exam question will involve Bogosys
Likely topics/questions on mini-exam #3

• From Lectures 18–19 (Maintenance, continuous testing, regression testing)
 – Corrective, perfective, adaptive maintenance
 – EVIL TIME from Lecture 18 won’t be on the exam
 – Regression testing
 • Know the 3 kinds of tests in a regression test suite
 • Know why some regression tests get “retired”
Likely topics/questions on mini-exam #3

• From Lecture 19-1:
 – general idea of backdoors, including Thompson’s compiler backdoor
 – know some of the many password attacks, e.g.: “man-in-the-middle”; guessing common passwords; timing attacks
 – buffer overruns:
 • what are the necessary elements of an attack?
 – overflowing a buffer
 – knowing or guessing the buffer’s location in memory, so that the return address can be overwritten with a pointer to the “payload”
 • why does address space layout randomization help?
Likely topics/questions on mini-exam #3

• From Lecture 19-1:
 – Morris worm: depended on buffer overruns, so it needed to know where buffers would be stored in memory
 • requires a relatively **homogeneous** network
 – the worm also exploited the fact that `finger` did not follow the Principle of Least Privilege
Likely topics/questions on mini-exam #3

• From Lecture 19-1:
 – early Macintosh and macro viruses:
 • extremely virulent, thanks to the willingness of the early Mac OS and early Word, Excel, etc. to automatically run whatever code they found
Likely topics/questions on mini-exam #3

• From Lecture 19-1:
 – Heartbleed and information leaks
 • not a buffer overrun, but related
 • OpenSSL bug that leaked extremely private information
 • potentially addressed through information-flow type systems
Likely topics/questions on mini-exam #3

• From Lecture 19-2:
 – Language-based security
 • why is C so vulnerable to buffer overruns?
 • why are Java, Python, Haskell much less vulnerable?
Likely topics/questions on mini-exam #3

• From Lecture 19-2:
 – Language-based security
 • why is C so vulnerable to buffer overruns?
 • why are Java, Python, Haskell much less vulnerable?
 – memory safety / type safety
Likely topics/questions on mini-exam #3

• From Lecture 19-2:
 – Language-based security
 • why is C so vulnerable to buffer overruns?
 – no array bounds checking
 – casts between pointers and non-pointers
 – casts between different pointer types
 • why are Java, Python, Haskell much less vulnerable?
 – memory safety / type safety
Likely topics/questions on mini-exam #3

• From Lecture 19-2:
 – Language-based security
 • why is C so vulnerable to buffer overruns?
 – no array bounds checking:
 breaks memory & type safety
 – casts between pointers and non-pointers:
 breaks memory & type safety
 – casts between different pointer types:
 breaks memory & type safety
 • why are Java, Python, Haskell much less vulnerable?
 – memory safety / type safety
Likely topics/questions on mini-exam #3

- From Lecture 19-2:
 - more generally, however, there are few clear connections between implementation language and quality
Likely topics/questions on mini-exam #3

• From Lecture 19-3:
 – SQL code injection
 • how it works
 • how to stop it
 – URL manipulation
 • how it works
 • how to stop it
Bonus question

• involves Bogosys, security, and PDF files