1 Grammars

Suppose we have the following grammar.

Integers	n	
Variables	x, y, z	
Statements	s ::= var x init n in s	
		print x
		set x to n
		s; s

Part (a). According to the above grammar, which of the following strings can be produced from the nonterminal (meta-variable) s? (List their numbers, or put a checkmark next to those that can be produced.)

1. print x ✓
2. print z ✓
3. print 3 X[3 is not a variable]
4. 4 X[an n by itself is not a production]
5. var z init 3 in print z ✓
6. var z init 3 in print y ✓ [y doesn’t look like it’s in scope, but that isn’t enforced by grammars]
7. var y init 3 z init 4 in print z X [can’t repeat “init...”]
8. set y to 5; print z; print z ✓

Part (b). Below, I have drawn one of two possible parse trees for the statement

\[
\text{print } x; \text{print } y; \text{print } z
\]

Draw the other possible parse tree.
§1 Grammars

Part (c). Lisp-style syntax, like \((+ \ 1 \ (+ \ 2 \ 3))\), eliminates the possibility of multiple parse trees for the same string. Rewrite the above grammar of \(s\) to use Lisp-style syntax: every production should look like \((\text{word} \ \ldots)\), where \text{word} is unique to that production (e.g. don’t write two productions that both start with \text{set}) and \ldots contains only meta-variables \((n, x, s)\).

I have given you the first production; for the last production, my intent was that \(s; s\) represents a sequence of statements, so the word seq would be a reasonable choice.

\[
\begin{align*}
\text{integers} & \quad n \\
\text{variables} & \quad x, y, z \\
\text{statements} & \quad s ::= \ (\text{var} \ x \ n \ s) \\
& \quad | \ (\text{print} \ x) \\
& \quad | \ (\text{set} \ x \ n) \\
& \quad | \ (\text{seq} \ s \ s)
\end{align*}
\]

2 Grammars as inductive definitions

Following the example at the beginning of lec2 §4 for arithmetic expressions, write an inductive definition that corresponds to the original grammar for statements (*not* your grammar with Lisp-like syntax). I have given you the first part.

(a) If \(x\) is a variable and \(n\) is an integer and \(s\) is a statement, then \(\text{var} \ x \ n \ \text{init} \ n \ \text{in} \ s\) is a statement.
(b) If \(x\) is a variable then \(\text{print} \ x\) is a statement.
(c) If \(x\) is a variable and \(n\) is an integer, then \(\text{set} \ x \ \text{to} \ n\) is a statement.
(d) If \(s_1\) is a statement and \(s_2\) is a statement, then \(s_1; \ s_2\) is a statement.

Now, for the Lisp-style grammar, write the part of the inductive definition that corresponds to the first production, \(\text{(var} \ x \ n \ s)\).

(a) If \(x\) is a variable and \(n\) is an integer and \(s\) is a statement, then \(\text{(var} \ x \ n \ s)\) is a statement.
Since recognizing when things are wrong is just as important as recognizing when things are right, let’s consider some “joke” semantics. We define a judgment, $e \Downarrow_0 v$, that resembles our big-step semantics but “likes zero”.

$$e \Downarrow_0 v$$
expression e evaluates to value v, but likes zero

- evalzero-const
 $n \Downarrow_0 0$
- (+ $e_1 e_2$) $\Downarrow_0 n_1 + n_2$

Prove the following conjecture. You may choose whether to induct on the expression or the derivation, and whether to do case analysis on the expression or the derivation; for this proof, either approach should work.

Write out every step in detail. Use additional pages if necessary.

Conjecture 3.1 (Always zero).
For all expressions e and derivations D such that D derives $e \Downarrow_0 v$, it is the case that $v = 0$.

Proof. By structural induction on e. [Also possible to use structural induction on D.]

[Note: This proof looks much longer than what was required, because I have added a lot of explanation. Only the highlighted parts were required.]

Induction hypothesis: [To obtain the IH, always follow this process:]

1. Copy the statement of the conjecture. [Statement of conjecture: For all expressions e and derivations D such that D derives $e \Downarrow_0 v$, it is the case that $v = 0$.]

2. Rename all the meta-variables. Since the current meta-variables (e, D, v) don’t have prime marks, we can systematically rename by adding prime marks.1

3. Add a restriction that the renamed meta-variable of the thing we’re inducting on is smaller than the thing we’re inducting on. In this case, we’re inducting on e and the renamed e is called e', so the restriction is $e' \prec e$.

Every step is required. Step 1 ensures the IH has the same structure as the conjecture. Step 2 ensures that the IH is sufficiently general, in case we need that generality, and makes Step 3 possible. Step 3 ensures that we don’t fall into circular reasoning.

Step 2 produces:
For all expressions e' and derivations D' such that D' derives $e' \Downarrow_0 v'$, it is the case that $v' = 0$. Step 3 produces the IH.

For all expressions e' and derivations D' such that $e' \prec e$ and D' derives $e' \Downarrow_0 v'$, it is the case that $v' = 0$.

Consider cases of e.

- Case $e = n$:

1We can sometimes complete an inductive proof without renaming every meta-variable in the IH. However, we must rename the meta-variable of the thing we’re induction on—e in this example; if we don’t rename it, we can’t add the restriction in step 2.
In logic, there are no morals.

\[e = n \quad \text{Given [assumption within this case]} \]
\[e \Downarrow_{0} v \quad \text{Given} \]
\[n \Downarrow_{0} v \quad \text{By above equation } [e = n] \]
\[v = 0 \quad \text{By inversion on rule evalzero-const} \]

[Our goal was } v = 0, \text{ so we're done with this case.]\]

• Case } e = (+ e_1 e_2):

<table>
<thead>
<tr>
<th>(e = (+ e_1 e_2))</th>
<th>Given [assumption within this case]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e \Downarrow_{0} v)</td>
<td>Given</td>
</tr>
<tr>
<td>((+ e_1 e_2) \Downarrow_{0} v)</td>
<td>By above equation ([e = (+ e_1 e_2)])</td>
</tr>
<tr>
<td>(v = n_1 + n_2)</td>
<td>By inversion on rule evalzero-add</td>
</tr>
<tr>
<td>(e_1 \Downarrow_{0} n_1)</td>
<td>"</td>
</tr>
<tr>
<td>(e_2 \Downarrow_{0} n_2)</td>
<td>"</td>
</tr>
</tbody>
</table>

\(e_1 \prec e \quad \text{By above equation } [e = (+ e_1 e_2)] \)
\(e_1 \Downarrow_{0} n_1 \quad \text{Above} \)
\(n_1 = 0 \quad \text{By IH [with } e_1 \text{ as } e' \text{ and } n_1 \text{ as } v' \] \)
\(e_2 \prec e \quad \text{By above equation } [e = (+ e_1 e_2)] \)
\(e_2 \Downarrow_{0} n_2 \quad \text{Above} \)
\(n_2 = 0 \quad \text{By IH [with } e_2 \text{ as } e' \text{ and } n_2 \text{ as } v' \) \]
\(v = n_1 + n_2 \quad \text{Above} \)
\(v = 0 + 0 \quad \text{By above equations } [n_1 = 0 \text{ and } n_2 = 0] \)
\(v = 0 \quad \text{By arithmetic} \)

[Our goal was } v = 0, \text{ so we're done with this case.]\]

[Some of the above steps can be omitted, such as the lines justified by “Above”: these cases are not that long, so the reader can quickly find the fact marked “Above”.]

[Uses of the IH can never be omitted.]

[Writing something like “Hence proved” is okay, but not required.]
Now consider yet another judgment, which also likes zero: to evaluate an integer expression, it must be zero.

\[
eg e \Downarrow_0 v \quad \text{expression } e \text{ evaluates to value } v, \text{ but only works for zero}\]

\[
\begin{align*}
\text{zeroevalzero-const} & : (e_1 \Downarrow_0 n_1 \quad e_2 \Downarrow_0 n_2) \quad \text{zeroevalzero-add} \\
\text{eval-const} & : n \Downarrow n \\
\text{eval-add} & : (+ e_1 e_2) \Downarrow n_1 + n_2
\end{align*}
\]

We now have three different definitions of big-step evaluation: the “real” definition \(e \Downarrow v \), and two “joke” definitions, \(e \Downarrow_0 v \) and \(e \Downarrow_0 0 \). Let’s compare these definitions in the framework of soundness and completeness. Since we have (I hope) some faith in the validity of \(e \Downarrow v \), we will consider that to be our “ground truth”, and compare the joke definitions with respect to \(e \Downarrow v \).

\[
\begin{align*}
\text{expression } e \text{ evaluates to value } v \\
e_1 \Downarrow n_1 \\
e_2 \Downarrow n_2 \\
(+ e_1 e_2) \Downarrow n_1 + n_2
\end{align*}
\]

(a) The theory \(e \Downarrow_0 v \) is not sound with respect to \(e \Downarrow v \). Give a counterexample:

This question was unclear: I didn’t specify whether I wanted the \(v \) that we get from \(\Downarrow_0 \) or the \(v \) that we get from \(\Downarrow \). I intended the \(v \) from \(\Downarrow_0 \), but I accepted both.

\[
e = 1 \quad v = 0
\]

[We can derive \(1 \Downarrow_0 0 \), but not \(1 \Downarrow 0 \).]

(b) The theory \(e \Downarrow_0 v \) is not complete with respect to \(e \Downarrow v \). Again, give a counterexample. [This question was unclear: I didn’t specify whether I wanted the \(v \) that we get from \(\Downarrow_0 \) or the \(v \) that we get from \(\Downarrow \). I intended the \(v \) from \(\Downarrow \), but I accepted both.]

\[
e = 1 \quad v = 1
\]

[We can derive \(1 \Downarrow 1 \), but not \(1 \Downarrow_0 1 \).]

(c) Is \(e \Downarrow_0 v \) sound with respect to \(e \Downarrow v \)? To approach this question, you may want to spend a little time looking for a counterexample—if you find one, you’re done; if not, doing so should help you understand how the \(\Downarrow_0 \) rules work. If you don’t find a counterexample, state and prove that \(e \Downarrow_0 v \) is sound with respect to \(e \Downarrow v \)!

There’s room on the next page.

\[
e \Downarrow_0 v \text{ is sound w.r.t. } \Downarrow. \text{ See the sample proof below.}
\]

(d) The theory \(e \Downarrow_0 v \) is not complete with respect to \(e \Downarrow v \). Give a counterexample.

\[
e = 1 \quad v = 1
\]

[We can derive \(1 \Downarrow 1 \), but not \(1 \Downarrow_0 1 \).]

[These are the shortest answers to (a), (b), and (d). The expression \(e = (+ 1 1) \) works too.]

Your answers should give you a picture of the soundness/completeness connections (if any) that our two joke systems have to \(e \Downarrow v \). Now let’s consider their relationships with each other. (Yes, this is a very long question.)
(e) Is $e \uparrow_0 v$ sound with respect to $e \downarrow_0 v$? (Note: not with respect to $e \downarrow v$!) Start by following the approach of part (c), but if you can’t find a counterexample, explain in 1 or 2 sentences whether you think it is sound (or unsound) and why you think it is sound (or unsound).

I think it’s sound, because $0 \uparrow_0$ only works (gives a value) when all the numbers in e are 0, either because $e = 0$ or $e = (+ (0 0) 0)$, etc. In those situations, \uparrow_0 also gives 0, so $0 \uparrow_0$ is sound w.r.t. \downarrow_0.

(f) Is $e 0 \uparrow_0 v$ complete with respect to $e \downarrow_0 v$? Give a counterexample.

$$e = 1 \quad v = 0$$

[We can derive $1 \downarrow_0 0$, but not $1 0 \uparrow_0 0$.]

(g) After completing part (f), argue in one sentence why $e \downarrow_0 v$ is not sound with respect to $e 0 \uparrow_0 v$.

Completeness is soundness in reverse: $0 \uparrow_0$ isn’t complete w.r.t. \downarrow_0, so \downarrow_0 isn’t sound w.r.t. $0 \uparrow_0$.

Finally, consider the following rule, which is exactly the same as zeroevalzero-const, except that it derives the “good” big-step judgment rather than the joke judgment:

$$0 \downarrow 0 \quad \text{proposed-eval-const-zero}$$

(h) Is proposed-eval-const-zero an admissible rule? That is, if proposed-eval-const-zero can derive a judgment, could we also derive that judgment using our two existing rules for \downarrow? Briefly explain.

Rule proposed-eval-const-zero can derive only one judgment: $0 \downarrow 0$. We can derive $0 \downarrow 0$ using the existing rule eval-const. So proposed-eval-const-zero is admissible.
§3 "In logic, there are no morals."

Conjecture 3.2 (Proof of soundness for part (c)—if you don’t find a counterexample).

For all \(e \) and \(v \)
such that \(e \not\downarrow_0 v \) [system whose soundness is being examined]
it is the case that \(e \downarrow v \). [“ground truth” system]

Proof. By structural induction on \(e \).

[I didn’t leave room to write the IH here, but:
IH: For all \(e' \) and \(v' \) such that \(e' \prec e \) and \(e' \not\downarrow_0 v' \), it is the case that \(e' \not\downarrow v' \).]

Consider cases of \(e \).

- Case \(e = n \):

\[
\begin{align*}
e &= n & \text{Given [assumption within this case]} \\
e \not\downarrow_0 v & \text{Given} \\
n \not\downarrow_0 v & \text{By above equation [} e = n \text{]} \\
n &= 0 & \text{By inversion on rule zeroevalzero-const} \\
v &= 0 & " \\
0 \not\downarrow 0 & \text{By rule eval-const} \\
e \downarrow v & \text{By above equations [} e = n \text{ and } n = 0 \text{ and } v = 0 \text{]} \\
\end{align*}
\]

[Our goal was \(e \downarrow v \), so we’re done with this case.]

- Case \(e = (+ e_1 e_2) \):

\[
\begin{align*}
e &= (+ e_1 e_2) & \text{Given [assumption within this case]} \\
e \not\downarrow_0 v & \text{Given} \\
(+ e_1 e_2) \not\downarrow_0 v & \text{By above equation [} e = (+ e_1 e_2) \text{]} \\
v &= n_1 + n_2 & \text{By inversion on rule zeroevalzero-add} \\
e_1 \not\downarrow_0 n_1 & " \\
e_2 \not\downarrow_0 n_2 & " \\
e_1 \prec e & \text{By above equation [} e = (+ e_1 e_2) \text{]} \\
e_1 \not\downarrow_0 n_1 & \text{Above} \\
e_1 \downarrow n_1 & \text{By IH [with } e_1 \text{ as } e' \text{ and } n_1 \text{ as } v' \text{]} \\
e_2 \prec e & \text{By above equation [} e = (+ e_1 e_2) \text{]} \\
e_2 \not\downarrow_0 n_2 & \text{Above} \\
e_2 \downarrow n_2 & \text{By IH [with } e_2 \text{ as } e' \text{ and } n_2 \text{ as } v' \text{]} \\
(+ e_1 e_2) \downarrow n_1 + n_2 & \text{By rule eval-add} \\
e \downarrow v & \text{By above equations [} e = (+ e_1 e_2) \text{ and } v = n_1 + n_2 \text{]} \\
\end{align*}
\]

[Our goal was \(e \downarrow v \), so we’re done with this case.]