1 Grammars

Suppose we have the following grammar.

\[
\begin{align*}
\text{integers} & \quad n \\
\text{variables} & \quad x, y, z \\
\text{statements} & \quad s \quad ::= \\
& \quad \text{new } x \text{ init } n \text{ in } s \\
& \quad \text{print } x \\
& \quad \text{set } x \text{ to } n \\
& \quad s ; s
\end{align*}
\]

Part (a). According to the above grammar, which of the following strings can be produced from the nonterminal (meta-variable) \(s\)? (List their numbers, or put a checkmark next to those that can be produced.)

1. print 3 [3 is not a variable]
2. print x ✓
3. print z ✓
4. 4 [an n by itself is not a production]
5. new z init 3 in print z ✓
6. new z init 3 in print z ✓ (I erroneously repeated this, but no one complained)
7. new z init 3 in print y ✓ [y doesn’t look like it’s in scope, but that isn’t enforced by grammars]
8. new y, z init 3, 4 in print y X [grammar doesn’t allow lists like y, z]
9. set y to 5 ; print z ; print z ✓

Part (b). Below, I have drawn one of two possible parse trees for the statement

\[
\text{print x ; print y ; print z}
\]

Draw the other possible parse tree.

```
\\\ / \ /
\\ / \ /
print ; \ / \ /
| / \ /
x / \ /
print print print
| | |
y z x y
```

a1 solution, J. Dunfield, CISC 865, Winter 2019 1 2019/1/29
§1 Grammars

Part (c). Lisp-style syntax, like (+ 1 (+ 2 3)), eliminates the possibility of multiple parse trees for the same string. Rewrite the above grammar of s to use Lisp-style syntax: every production should look like (word ...), where word is unique to that production (e.g. don’t write two productions that both start with set) and ... contains only meta-variables (n, x, s).

I have given you the first production; for the last production, my intent was that s ; s represents a sequence of statements, so the word seq would be a reasonable choice.

```
integers n
variables x, y, z
statements
s ::= (new x n s)
  | (print x)
  | (set x n)
  | (seq s s)
```

2 Grammars as inductive definitions

Following the example at the beginning of lec2 §4 for arithmetic expressions, write an inductive definition that corresponds to the original grammar for statements (not your grammar with Lisp-like syntax). I have given you the first part.

(a) If x is a variable and n is an integer and s is a statement, then new x init n in s is a statement.
(b) If x is a variable then print x is a statement.
(c) If x is a variable and n is an integer, then set x to n is a statement.
(d) If s₁ is a statement and s₂ is a statement, then s₁ ; s₂ is a statement.

Now, for the Lisp-style grammar, write the part of the inductive definition that corresponds to the first production, (new x n s).

(a) If x is a variable and n is an integer and s is a statement, then (new x n s) is a statement.
Chapter 2: Grammars as inductive definitions

3 “In logic, there are no morals.”

Since recognizing when things are wrong is just as important as recognizing when things are right, let's consider some “joke” semantics. We define a judgment, $e \Downarrow_0 v$, that resembles our big-step semantics but “likes zero”.

$e \Downarrow_0 v$ expression e evaluates to value v, but likes zero

$\begin{align*}
\text{evalzero-const} & \quad n \Downarrow_0 0 \\
\text{evalzero-add} & \quad e_1 \Downarrow_0 n_1 \quad e_2 \Downarrow_0 n_2 \quad (+ e_1 e_2) \Downarrow_0 n_1 + n_2
\end{align*}$

Prove the following conjecture. You may choose whether to induct on the expression or the derivation, and whether to do case analysis on the expression or the derivation; for this proof, either approach should work.

Write out every step in detail. Use additional pages if necessary.

Conjecture 3.1 (Always zero).
For all expressions e and derivations D such that D derives $e \Downarrow_0 v$, it is the case that $v = 0$.

Proof. By structural induction on e. [Also possible to use structural induction on D.]

[Note: This proof looks much longer than what was required, because I have added a lot of explanation. Only the highlighted parts were required.]

Induction hypothesis: [To obtain the IH, always follow this process:

1. Copy the statement of the conjecture. [Statement of conjecture: For all expressions e and derivations D such that D derives $e \Downarrow_0 v$, it is the case that $v = 0$.]
2. Rename all the meta-variables. Since the current meta-variables (e, D, v) don't have prime marks, we can systematically rename by adding prime marks.]
3. Add a restriction that the renamed meta-variable of the thing we're inducting on is smaller than the thing we're inducting on. In this case, we're inducting on e and the renamed e is called e', so the restriction is $e' \prec e$.

Every step is required. Step 1 ensures the IH has the same structure as the conjecture. Step 2 ensures that the IH is sufficiently general, in case we need that generality, and makes Step 3 possible. Step 3 ensures that we don't fall into circular reasoning.

Step 2 produces:
For all expressions e' and derivations D' such that D' derives $e' \Downarrow_0 v'$, it is the case that $v' = 0$.
Step 3 produces the IH.]

For all expressions e' and derivations D' such that $e' \prec e$ and D' derives $e' \Downarrow_0 v'$, it is the case that $v' = 0$.

Consider cases of e.

• Case $e = n$:

We can sometimes complete an inductive proof without renaming every meta-variable in the IH. However, we must rename the meta-variable of the thing we're induction on—e in this example; if we don't rename it, we can't add the restriction in step 2.
§3 “In logic, there are no morals.”

\[e = n \quad \text{Given [assumption within this case]} \]
\[e \Downarrow_0 v \quad \text{Given} \]
\[n \Downarrow_0 v \quad \text{By above equation \([e = n]\)} \]
\[v = 0 \quad \text{By inversion on rule evalzero-const} \]

[Our goal was \(v = 0\), so we're done with this case.]

- Case \(e = (+ e_1 e_2)\):

 \[e = (+ e_1 e_2) \quad \text{Given [assumption within this case]} \]
 \[e \Downarrow_0 v \quad \text{Given} \]
 \[(+ e_1 e_2) \Downarrow_0 v \quad \text{By above equation \([e = (+ e_1 e_2)]\)} \]
 \[v = n_1 + n_2 \quad \text{By inversion on rule evalzero-add} \]
 \[e_1 \Downarrow_0 n_1 \quad " \]
 \[e_2 \Downarrow_0 n_2 \quad " \]

 \[e_1 \prec e \quad \text{By above equation \([e = (+ e_1 e_2)]\)} \]
 \[e_1 \Downarrow_0 n_1 \quad \text{Above} \]
 \[n_1 = 0 \quad \text{By IH [with \(e_1\) as \(e'\) and \(n_1\) as \(v'\)]} \]

 \[e_2 \prec e \quad \text{By above equation \([e = (+ e_1 e_2)]\)} \]
 \[e_2 \Downarrow_0 n_2 \quad \text{Above} \]
 \[n_2 = 0 \quad \text{By IH [with \(e_2\) as \(e'\) and \(n_2\) as \(v'\)]} \]

 \[v = n_1 + n_2 \quad \text{Above} \]
 \[v = 0 + 0 \quad \text{By above equations \([n_1 = 0 \text{ and } n_2 = 0]\)} \]
 \[v = 0 \quad \text{By arithmetic} \]

[Our goal was \(v = 0\), so we're done with this case.]

[Some of the above steps can be omitted, such as the lines justified by “Above”: these cases are not that long, so the reader can quickly find the fact marked “Above”.]
[Uses of the IH can never be omitted.]

[Writing something like “Hence proved” is okay, but not required.]
§3 “In logic, there are no morals.”

Now consider yet another judgment, which also likes zero: to evaluate an integer expression, it must be zero.

\[e \downarrow_0 v \quad \text{expression } e \text{ evaluates to } v, \text{ but only works for zero} \]

\[\begin{array}{c}
\text{zeroeval-zero-const} \\
\hline
0 \downarrow_0 0
\end{array} \]

\[\begin{array}{c}
\hline
\text{eval-zero-add} \\
(+ e_1 e_2) \downarrow_0 n_1 + n_2
\end{array} \]

We now have three different definitions of big-step evaluation: the “real” definition \(e \downarrow v \), and two “joke” definitions, \(e \downarrow_0 v \) and \(e \downarrow_0 0 \). Let’s compare these definitions in the framework of soundness and completeness. Since we have (I hope) some faith in the validity of \(e \downarrow v \), we will consider that to be our “ground truth”, and compare the joke definitions with respect to \(e \downarrow v \).

\[e \downarrow v \quad \text{expression } e \text{ evaluates to } v \]

\[\begin{array}{c}
\text{eval-const} \\
\hline
n \downarrow n
\end{array} \quad \begin{array}{c}
\text{eval-add} \\
\hline
(+ e_1 e_2) \downarrow n_1 + n_2
\end{array} \]

(a) The theory \(e \downarrow_0 v \) is not sound with respect to \(e \downarrow v \). Give a counterexample:

[This question was unclear: I didn’t specify whether I wanted the \(v \) that we get from \(\downarrow_0 \) or the \(v \) that we get from \(\downarrow \). I intended the \(v \) from \(\downarrow_0 \), but I accepted both.]

\[e = 1 \quad v = 0 \]

[We can derive \(1 \downarrow_0 0 \), but not \(1 \downarrow 0 \).]

(b) The theory \(e \downarrow_0 v \) is not complete with respect to \(e \downarrow v \). Again, give a counterexample. [This question was unclear: I didn’t specify whether I wanted the \(v \) that we get from \(\downarrow_0 \) or the \(v \) that we get from \(\downarrow \). I intended the \(v \) from \(\downarrow \), but I accepted both.]

\[e = 1 \quad v = 1 \]

[We can derive \(1 \downarrow 1 \), but not \(1 \downarrow_0 1 \).]

(c) Is \(e \downarrow_0 v \) sound with respect to \(e \downarrow v \)? To approach this question, you may want to spend a little time looking for a counterexample—if you find one, you’re done; if not, doing so should help you understand how the \(\downarrow_0 \) rules work. If you don’t find a counterexample, state and prove that \(e \downarrow_0 v \) is sound with respect to \(e \downarrow v \)!

There’s room on the next page.

\[e \downarrow_0 v \text{ is sound w.r.t. } \downarrow. \text{ See the sample proof below.} \]

(d) The theory \(e \downarrow_0 v \) is not complete with respect to \(e \downarrow v \). Give a counterexample.

\[e = 1 \quad v = 1 \]

[We can derive \(1 \downarrow 1 \), but not \(1 \downarrow_0 1 \).]

[These are the shortest answers to (a), (b), and (d). The expression \(e = (+ 1 1) \) works too.]

Your answers should give you a picture of the soundness/completeness connections (if any) that our two joke systems have to \(e \downarrow v \). Now let’s consider their relationships with each other. (Yes, this is a very long question.)
In logic, there are no morals.

(e) Is $e \downarrow_0 v$ sound with respect to $e \downarrow_0 v$? (Note: not with respect to $e \downarrow v$!) Start by following the approach of part (c), but if you can’t find a counterexample, explain in 1 or 2 sentences whether you think it is sound (or unsound) and why you think it is sound (or unsound).

I think it’s sound, because \downarrow_0 only works (gives a value) when all the numbers in e are 0, either because $e = 0$ or $e = (+ (+ 0 0) 0)$, etc. In those situations, \downarrow_0 also gives 0, so $0 \downarrow_0$ is sound w.r.t. \downarrow_0.

(f) Is $e \downarrow_0 v$ complete with respect to $e \downarrow_0 v$? Give a counterexample.

$e = 1 \quad v = 0$

[We can derive $1 \downarrow_0 0$, but not $0 \downarrow_0 0$.]

(g) After completing part (f), argue in one sentence why $e \downarrow_0 v$ is not sound with respect to $e \downarrow_0 v$.

Completeness is soundness in reverse: $0 \downarrow_0$ isn’t complete w.r.t. \downarrow_0, so \downarrow_0 isn’t sound w.r.t. $0 \downarrow_0$.

Finally, consider the following rule, which is exactly the same as zerovalzero-const, except that it derives the “good” big-step judgment rather than the joke judgment:

$0 \downarrow_0 \quad$ proposed-eval-const-zero

(h) Is proposed-eval-const-zero an admissible rule? That is, if proposed-eval-const-zero can derive a judgment, could we also derive that judgment using our two existing rules for \downarrow_0? Briefly explain.

Rule proposed-eval-const-zero can derive only one judgment: $0 \downarrow_0$. We can derive $0 \downarrow 0$ using the existing rule eval-const. So proposed-eval-const-zero is admissible.
§3 “In logic, there are no morals.”

Conjecture 3.2 (Proof of soundness for part (c)—if you don’t find a counterexample).
For all e and v
such that $e \Downarrow_0 v$ [system whose soundness is being examined]
it is the case that $e \Downarrow v$. [“ground truth” system]

Proof. By structural induction on e.

[I didn’t leave room to write the IH here, but:
IH: For all e' and v' such that $e' \prec e$ and $e' \Downarrow_0 v'$, it is the case that $e' \Downarrow v'$.]

Consider cases of e.

• Case $e = n$:

$e = n$	Given [assumption within this case]
$e \Downarrow_0 v$	Given
$n \Downarrow_0 v$	By above equation [$e = n$]
$n = 0$	By inversion on rule zeroevalzero-const
$v = 0$	”
$0 \Downarrow 0$	By rule eval-const
$e \Downarrow v$	By above equations [$e = n$ and $n = 0$ and $v = 0$]

[Our goal was $e \Downarrow v$, so we’re done with this case.]

• Case $e = (+e_1 e_2)$:

$e = (+e_1 e_2)$	Given [assumption within this case]
$e \Downarrow_0 v$	Given
$(+e_1 e_2) \Downarrow_0 v$	By above equation [$e = (+e_1 e_2)$]
$v = n_1 + n_2$	By inversion on rule zeroevalzero-add
$e_1 \Downarrow_0 n_1$	”
$e_2 \Downarrow_0 n_2$	”
$e_1 \prec e$	By above equation [$e = (+e_1 e_2)$]
$e_1 \Downarrow n_1$	Above
$e_1 \Downarrow n_1$	By IH [with e_1 as e' and n_1 as v']
$e_2 \prec e$	By above equation [$e = (+e_1 e_2)$]
$e_2 \Downarrow n_2$	Above
$e_2 \Downarrow n_2$	By IH [with e_2 as e' and n_2 as v']
$(+e_1 e_2) \Downarrow n_1 + n_2$	By rule eval-add
$e \Downarrow v$	By above equations [$e = (+e_1 e_2)$ and $v = n_1 + n_2$]

[Our goal was $e \Downarrow v$, so we’re done with this case.]