Assignment 2

Joshua Dunfield
due: Tuesday, 5 February 2019

Name: Estimated time spent:

Submit your modified a2.rkt by email (joshuad@cs.queensu.ca) as a2-yourname.rkt.
Please fill in the “Estimated time spent” (above). Your answer will not change your mark, but helps me to design reasonable assignments.

1 Language Extension

Consider the following language, defined by a grammar and a big-step evaluation judgment. The big-step evaluation given is incomplete, in the informal sense that it has no rules saying how to evaluate \((\text{Abs } e)\).

integers \ n
values \ v ::= \ n
expressions \ e ::= \ n
| \ (+ \ e_1 \ e_2)
| \ (\text{Abs } e)

\(e \downarrow v\) expression \ e \) evaluates to value \ v

\[\begin{align*}
 n \downarrow n & \quad \text{eval-const} & & \quad \text{eval-add} \\
 e_1 \downarrow n_1 & & e_2 \downarrow n_2
\end{align*} \]

Question 1(a). Roughly following the structure of eval-add, design a rule “eval-abs” such that \((\text{Abs } e)\) will compute the absolute value of \(e\). Similar to how we used the standard notation for addition, \(n_1 + n_2\), in eval-add, you may use the notation \(|n|\) for the absolute value of \(n\).

\[\begin{align*}
 (\text{Abs } e) \downarrow & \quad \text{eval-abs}
\end{align*} \]

Question 1(b). Extend the Racket code a2.rkt (which is nearly identical to the expr1.rkt file that I showed in lecture) to support the construct \((\text{Abs } e)\):

(i) Add a “variant” (also called a “constructor”) for \((\text{Abs } e)\) to the \texttt{define-type} declaration.

This will cause Racket to yell at you, because \texttt{EXPR} will then have three variants instead of two, which makes the \texttt{type-case} in \texttt{big-step} become incomplete. The simplest fix (until you extend \texttt{big-step}, below) is to add an \texttt{else} branch to the \texttt{type-case} that uses \texttt{error}.

(ii) Extend the procedure \texttt{parse} so that it accepts S-expressions that match the production \((\text{Abs } e)\) in our grammar, and returns your Abs variant. Write at least two test cases for \texttt{parse} that involve absolute value.
(iii) Extend the procedure big-step to support absolute value, following your rule eval-abs. Note that the Racket standard library has a procedure abs. Write at least three test cases for big-step that involve absolute value.
§1 Language Extension

2 Proof techniques

These questions are not about complete proofs. In some of the questions, the conjecture is not even true, or you have not been given enough information to do a complete proof. Instead, they ask you to make progress on several different proofs by using a specific proof technique.

In all of these questions, the grammar of expressions is the extended grammar (Section ??), and the system of rules deriving $e \Downarrow v$ includes the three rules eval-const, eval-add, eval-abs.

Question 2(a). Using the extended grammar of expressions (Section ??), list the cases produced by case analysis on e. The cases must correspond to the grammar. Do not attempt to complete the cases to show $e' = e''$.

Conjecture.

For all expressions e, e' and e'',

if $e \rightarrow e'$ and $e \rightarrow e''$

then $e' = e''$.

Proof. Consider cases of e.

- Case

Question 2(b). In this question, your goal is to derive

$$(+ 0 (+ e_{21} e_{22})) \Downarrow 0$$

The following are given. Use equations (and the fact that $0 + 0 = 0$) and apply the rules eval-const, eval-add to derive the goal.

- $e_{21} \Downarrow n_{21}$ Given
- $e_{22} \Downarrow n_{22}$ Given
- $n_{21} = 0$ Given
- $n_{22} = 0$ Given
§2 Proof techniques

Question 2(c). In this question, use *inversion*: write down all the facts given by inverting on rule eval-abs. (I can’t give you a specific goal because what you get depends on your rule, eval-abs.)

\[(\text{Abs } e_1) \downarrow n_1 \quad \text{Given}\]

Question 2(d). This question uses notation you have never seen, but it can still be answered.

Conjecture.
For all \(C, M_1, M_2\) and \(D_1\) such that \(D_1\) derives \(M_1 \rightarrow_R M_2\),
there exists \(D_2\) such that \(D_2\) derives \(C[M_1] \rightarrow_R C[M_2]\).

- Suppose that I suggest you use structural induction on \(D_1\). Write the appropriate induction hypothesis:

- Suppose that I suggest you use structural induction on \(M_1\). Write the appropriate induction hypothesis (using the subexpression ordering \(\prec\) for \(M_1\)):
§2 Proof techniques

§3 Typing

\[
\text{types } \quad \Lambda ::= \text{int}
\]

<table>
<thead>
<tr>
<th>expression e has type (\Lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e : \Lambda)</td>
</tr>
<tr>
<td>type-const (n : \text{int})</td>
</tr>
<tr>
<td>type-abs ((\text{Abs } e) : \text{int})</td>
</tr>
<tr>
<td>type-add (e_1 : \text{int}), (e_2 : \text{int})</td>
</tr>
<tr>
<td>((+ e_1 e_2) : \text{int})</td>
</tr>
</tbody>
</table>

This is not a terribly interesting type system: every possible expression has the same type, \(\text{int} \).

Prove the following conjecture:

Conjecture 3.1.

For all expressions \(e \), it is the case that \(e : \text{int} \).

Proof. By structural induction on \(e \). [The only thing given is \(e \); we are trying to construct the derivation of \(e : \text{int} \), but it doesn’t exist yet. So we have to induct on \(e \).

Induction hypothesis: For all expressions \(e' \) such that \(e' \prec e \), it is the case that \(e' : \text{int} \).