Q1: Grammars, Inductive Definitions and Induction

Consider the following grammar:

Variables \(x, y, z \)

Terms \(M, N \) ::= \(x \) variable
\| \((\lambda x. N) \) abstraction
\| \(M (M) \) application

Definition for Questions 1(c)–(d). The rules below define an unused variable judgment:

\(V \) unused-in \(M \) means that the variables listed in \(V \) are not used in \(M \)

For example:

\(z \) unused-in \(x(y) \)
\(z, y \) unused-in \(x \)
\(z, y \) unused-in \(\lambda z. z \)

Note that in \(\lambda z. z \), the use of \(z \) refers to the \(z \) bound by the \(\lambda \), so \(z \) is considered to be unused. The list of variables does not have to be complete, so \(\emptyset \) unused-in \(M \) is derivable for every \(M \).

However, if a variable is listed in \(V \) it must really be unused, so \(x \) unused-in \(x \) is not derivable.

Variable lists \(V ::= \emptyset \mid V, x \)

\(V \) unused-in \(M \) Variables listed in \(V \) are not used in \(M \)

\[\frac{x \notin V}{V \text{ unused-in } x} \quad \frac{V \setminus \{x\} \text{ unused-in } N}{V \text{ unused-in } (\lambda x. N)} \quad \frac{V \text{ unused-in } M}{V \text{ unused-in } M(N)} \]

In rule ui-abs, \(V \setminus \{x\} \) removes \(x \) from \(V \). For example, if \(V = \emptyset, y, x, z \) then \(V \setminus \{x\} = \emptyset, y, z \).
§1 Q1: Grammars, Inductive Definitions and Induction

2 Q2: Type Preservation

The language of terms from Q1 is essentially the original \(\lambda\)-calculus. In this question, we add integer constants, but no operations on integers.

For this question, you will complete a proof of type preservation. Instead of the call-by-value semantics used in the assignments and most of the lecture notes, in this question we will use a call-by-name semantics—obtained by adjusting the syntax of evaluation contexts.

First, we give a call-by-name semantics for the language of terms from Q1. We write \(Q\) for evaluation contexts to emphasize that the evaluation contexts in this question are not the same as call-by-value evaluation contexts \(C\), which would include a production \(v(C)\).

Values
\[v ::= x \mid n \mid (\lambda x. N) \]

Evaluation contexts
\[Q ::= \square \mid Q(M) \]

\(M \mapsto_R M'\) Term \(M\) reduces to \(M'\)
\[(\lambda x. M)(N) \mapsto_R [N/x]M \quad \text{red-app} \]

\(M \mapsto M'\) Term \(M\) takes one step to \(M'\)
\[Q[M] \mapsto Q[M'] \quad \text{step-context} \]

Second, we define a type system for the language of terms:

Types
\[S, T ::= \text{int} \mid S \to S \]

Typing contexts
\[\Gamma ::= \emptyset \mid \Gamma, x : S \]

\(\Gamma \vdash M : S\) Under typing context \(\Gamma\), term \(M\) has type \(S\)
\[(x : S) \in \Gamma \quad \text{ty-assum} \quad \Gamma \vdash x : S \quad \text{ty-int} \quad \Gamma, x : S \vdash N : T \quad \text{ty-abs} \quad \Gamma \vdash M : S \to T \quad \text{ty-app} \quad \Gamma \vdash N : S \quad \Gamma \vdash M(N) : T \]
Q3: Choice and Progress

Consider the language of terms extended with a choice operator \(\text{choose}(M_1, M_2) \), which steps to either \(M_1 \) or \(M_2 \), unpredictably. The new grammar is:

\[
\text{Variables} \quad x, y, z \\
\text{(Q3) Terms} \quad M, N ::= x \quad \text{variable} \\
\quad \quad \quad | (\lambda x. N) \quad \text{abstraction} \\
\quad \quad \quad | M(M) \quad \text{application} \\
\quad \quad \quad | n \quad \text{integer constant} \\
\quad \quad \quad | \text{choose}(M, M) \quad \text{choice}
\]

Adding the choice operator to the small-step semantics requires only that we add two reduction rules. The evaluation contexts don’t change: think of \(\text{choose}(M_1, M_2) \) as “if \(\text{random-bit}() \) is 0 then \(M_1 \) else \(M_2 \)”. We didn’t reduce inside an \(\text{Ite} \), so we don’t reduce inside \(\text{choose} \).

\[
\begin{align*}
\text{(Same as Q2) Values} & \quad v ::= x \mid n \mid (\lambda x. N) \\
\text{(Same as Q2) Evaluation contexts} & \quad Q ::= [] \\
& \quad \quad \quad | Q(M)
\end{align*}
\]

\[M \rightarrow_R M'\] Term \(M \) reduces to \(M' \)

\[
\begin{align*}
(\lambda x. M)(N) & \rightarrow_R [N/x]M & \text{red-app} \\
\text{choose}(M_1, M_2) & \rightarrow_R M_1 & \text{red-choose1} \\
\text{choose}(M_1, M_2) & \rightarrow_R M_2 & \text{red-choose2}
\end{align*}
\]