
lec1: Course overview; syntax

Joshua Dunfield

January 6, 2019

This first lecture discusses course goals and logistics, gives some flavour of what this course is
about, and introduces a few essential technical ideas.

Website: dunfieldlab.ca/865

Email: joshuad@cs.queensu.ca

Me, previously: UBC, MPI-SWS, McGill, CMU

1 Course goals

Let’s start with some questions of practical importance:

• How do we know that a given program is correct?

• How do we know that two programs behave the same way?

• How do we know that a program doesn’t leak private data?

• How do we know that a program doesn’t crash?

To know something, we need to prove it, so we can amend these questions: “How do we prove
that a given program is correct?”

These questions suggest more general questions.

• How do we design languages to make it easier to prove that programs are correct, or behave
the same way, or don’t leak private data?

• How do we prove that all programs in a particular language don’t1 crash?

To answer these questions, we need to know what programs mean—and what programming
languages mean. That is, we need to know their semantics.

You will learn how to

• read and write formal definitions of what programming languages mean;

• relate those formal definitions to informally defined language features;

• apply formal definitions (e.g. applying inference rules to construct derivations);

• reason about derivations, including proving that languages satisfy specific properties, such as
type soundness.

1Subject to reasonable assumptions about several other parts of a computer system, including the CPU’s speculative
execution. . .

lec1, J. Dunfield, CISC 865, Winter 2019 1 2019/1/6

http://dunfieldlab.ca/865


§1 Course goals

You will also learn how to

• read and write formal definitions of logics;

• relate those formal definitions to informal logical features, such as proof by contradiction;

• relate general aspects of logic to aspects of programming (formulas ∼ types, proofs ∼ pro-
grams, truth ∼ inhabitation);

• relate specific features of logics to features of programming languages: conjunction ∼ pair-
ing (a record or struct with two fields), existential formulas ∼ abstract data types/modules
(there exists an implementation with an interface, but you can’t look at the implementations),
negation ∼ first-class continuations).

As a consequence of the above skills, you will be able to understand substantial parts of current
research papers in the field of programming languages.

(You will not learn how to write a compiler—that’s CISC 858, being taught this term by James
Cordy—though much of what you’ll learn in this course is relevant.)

2 Logistics

2.1 Prerequisites

There are no specific formal prerequisites. However, some background in at least some of the
following topics is helpful:

• basic set theory (e.g. set notation, subset, power set)

• mathematical proof techniques, particularly proof by induction

• functional programming languages

• logic programming (e.g. Prolog)

If you have not been exposed to these topics, expect to put extra time into catching up. I am
happy to discuss any concerns and advise you as to whether this course is a good fit.

2.2 Assessment

Your course grade will be determined by a combination of assignments, an in-class exam, and a
course project.

• 45% Assignments (approximately 6): some or all will be written assignments, some may
involve programming

• 20% Exam (in class)

• 35% Project:

– 5% Proposal

lec1, J. Dunfield, CISC 865, Winter 2019 2 2019/1/6



§2 Logistics

– 20% Report

– 10% Presentation

I do not plan to use onQ. Instead, we will use Piazza—you should “enroll” via the link on the
web page. If you decide you don’t want to take this course, you can easily “un-enroll” from Piazza.
Announcements will be posted only to Piazza.

2.3 Lectures

I will use some combination of traditional (but participatory) lecturing and (brief) in-class exercises.
I will try to take a 5- to 10-minute break midway through each lecture. If I forget, remind me!
If you don’t understand something, or you aren’t sure if you understand it, ask! It is very likely

that other students want to ask the same question.
I sometimes have trouble understanding spoken English, especially in an unfamiliar accent. You

may need to repeat or reword a question for me to understand.
I have trouble remembering names, but I find it much easier to remember a name if I know how

it’s spelled—even if it’s a “difficult” name—so don’t be surprised if I ask you to spell your name
(maybe repeatedly).

If you miss a lecture, read my posted notes, get other students’ notes, and/or come to my office
hours. (If you are ill with something that seems contagious, please miss the lecture!)

Even if you attend every lecture, you need to read the lecture notes! My lecture notes are
usually more complete than the lectures.

3 Semantics of Programming Languages

Semantics: “the branch of linguistics and logic concerned with meaning” (Oxford Dictionary of
English). More specifically, the semantics of a thing is the meaning of the thing.

The semantics of programming languages includes the semantics of programs. So, this course
is about what programming languages mean, and what programs mean. How can we say what
programs mean?

3.1 Denotational semantics

In denotational semantics (a questionable name, since denotation means meaning, so denotational
semantics is “meaning-based meaning”. . . ), we give a denotation to each program. For example, if
a program P always returns the number zero, we might write The hollow

square brackets
are called
semantic
brackets.

JPK = {0}

to say that “the denotation of P is the set containing only zero”. Or, if a program R sometimes
returns zero and sometimes returns one, we might write

JRK = {0, 1}

to say that “the denotation of R is the set containing zero and one”. Actual denotational semantics
are more interesting: for example, we may care about a program’s effect on memory and not just

lec1, J. Dunfield, CISC 865, Winter 2019 3 2019/1/6



§3 Semantics of Programming Languages

what it “returns”, in which case the denotation of a program might be a (mathematical) function.
Instead of the meaning of P being a set of integers (a subset of the power set of the integers)

JPK ⊆ Z or JPK : P(Z)

the meaning of P might be a function

JPK : Mem → P(Mem× Z)

where Mem is a set of descriptions of memory (such as a sequence of word values). If P never
changes memory and always returns zero, then

JPK = f

where f(s) = 〈s, 0〉. (We could say the same thing by writing JPK(s) = 〈s, 0〉.)

3.2 Operational semantics

Denotational semantics, at least in the style hinted at above, is a little like a novel that only has
its last page: it tells you where you ended up, but not what happened along the way. Operational
semantics gives you the whole story. In operational semantics, the meaning of a program is how it
affects the world at each “time step”. The question then is: what counts as the world?

In the simplest form of operational semantics, the program is the world, so operational seman-
tics is a program transforming itself. In this form of operational semantics, the program P could in
fact be the number zero, which does not do anything. On the other hand, the program R might be
a program that flips a coin, so that we have two possible transformations, called steps:

R 7→ 0 “R steps to zero”

R 7→ 1 “R steps to one”

More generally, in this form of operational semantics, the meaning of a program e is a series of
expressions:

e 7→ e1 7→ e2 7→ · · · 7→ v

where v is a value, an expression of a particular kind, perhaps the integers. If e is already a value,
as in our program P, then e = v and we have a “sequence” with no steps. In the λ-calculus, the
“stepping function” 7→ is given by something called β-reduction, which models a single function
call. Each step then corresponds to a single function call.

This may remind you of Turing machines, where (given a fixed “program”, that is, a transition
function) we can model a configuration as a tuple 〈q, t, p〉 where q is the current “state”, t describes
the symbols written on the tape, and p is the position of the head on the tape. (Many alternatives
exist, such as 〈q, tL, tR〉 where tL describes the tape to the left of the head, and tR describes the tape
underneath and to the right of the head.) When a Turing machine is in a halting state, the program
is finished; when the current expression is a value, the program is finished.

In fact, the λ-calculus corresponds to a universal Turing machine, and just as the number of
transitions a Turing machine takes to is a model of running time (not a particularly realistic model,
since Turing machines spend a lot of time “commuting” from one part of the tape to another), the
number of steps needed to turn an expression into a value gives us a model of running time. In
that model, the program P takes no time at all, and the program R takes a little time but not very
much.

lec1, J. Dunfield, CISC 865, Winter 2019 4 2019/1/6



§3 Semantics of Programming Languages

3.3 Dynamic semantics

Both denotational and operational semantics are concerned with the dynamic semantics of pro-
grams: what programs do. A programming languages researcher might say “for the dynamic se-
mantics, I prefer operational approaches” or “for the dynamics, I prefer the operational style.”

Different approaches can be used for the same language. Each style has advantages and disad-
vantages, some of which will become evident later in the course. The kind of reasoning I need to
do in my research usually seems easier to do in the operational style. (As usual in research, this
assessment of which style is easier should be treated with skepticism. A researcher’s methods and
techniques are self-perpetuating: the more you work with a technique T , the more effective it seems
to be—because you’re better at using it. You also become more adept at noticing opportunities to
apply technique T .)

3.4 Static semantics

In addition to “the dynamics”, we have “the statics”. Static semantics are about what programs are.
The most successful approach to static semantics is based on type systems.

4 Syntax

Of the three parts of a language definition—syntax, dynamic semantics, and static semantics—
syntax is often the easiest to define, understand, and process. (Languages descended from Lisp,
like Racket, make it even easier than usual. This was an accident: the inventors of Lisp designed a
more complex syntax, but the simple syntax had already spread. For once, simplicity won.)

We won’t spend much time on syntax.

4.1 Grammars

A grammar is a set of nonterminals (usually called meta-variables in this course), each with a list of
their possible syntactic forms.

You may have seen grammars in formal languages and automata theory. Our treatment of
them is, intentionally, concrete and example-driven. (Later in the course, there will be plenty of
opportunities to be excessively abstract!)

Each nonterminal generates a language. A language, in this sense, is a set of strings: all the
strings that match one of the listed syntactic forms.

For example, we can define a nonterminal B that has exactly two syntactic forms, 0 and 1. Read
this definition as “B can have two forms: 0 and 1”; equivalently, “a B is either 0 or 1”.

B ::= 0

| 1

This is a “BNF grammar” (identifiable by the “::=”); it is equivalent to the more traditional
notation with two productions:

B → 0

B → 1

lec1, J. Dunfield, CISC 865, Winter 2019 5 2019/1/6



§4 Syntax

In a BNF grammar, productions are often called alternatives, and can be written on separate
lines (as above) or squashed together:

B ::= 0 | 1

Such a small grammar is not so interesting; it seems to be only a clumsier way of writing the set
{0, 1}. The power of grammars comes from using nonterminals within alternatives. For example,
the following grammar describes sequences of one or more bits:

B ::= 0 | 1

S ::= B

| B S

B → 0

B → 1

S → B

S → B S

(We put a space between B and S to avoid confusion with a potential nonterminal called BS. You
may not have seen nonterminals that are more than one letter long, but they occasionally pop up
in programming languages.)

We can use this grammar to produce the string 0 1 1, as follows:

S → B S→ 0 S→ 0 B S→ 0 1 S→ 0 1 B→ 0 1 1

Exercise 1. Design a grammar for sequences of bits without leading zeroes: for example, 0 and
1 are included, but not 00 and 01.

Now we can add to our grammar above, to define arithmetic expressions E over bitstrings:

E ::= S

| E + E

| E - E

[Do some examples. Note that in a production, the first E doesn’t need to be the same as the
second E.]

This grammar is ambiguous: the nonterminal S can produce the same string of symbols in more
than one way.

We can resolve this ambiguity in several different ways: for example, we could change the
alternatives E + E and E - E to S + E and S - E. Now we have only one way of producing 0 + 1 + 1.
While we may not care whether 0 + 1 + 1 is interpreted as (0 + 1) + 1 or 0 + (1 + 1), it is possible
that in the semantics of this tiny language, + will not be associative and commutative. In any case,
we probably do care whether 0 - 1 - 1 is interpreted as (0− 1) − 1 or as 0− (1− 1). . .

Continuing in this vein leads to some headaches: multiplication usually has higher precedence
than addition, so we would want to make sure our grammar interprets 0 * 1 + 1 as (0 ∗ 1) + 1—
presumably 2 (binary 10)—and not as 0 ∗ (1 + 1)—presumably 0. We could do that by making a
new nonterminal F. However, since the focus of this course is on semantics and not syntax, I plan

lec1, J. Dunfield, CISC 865, Winter 2019 6 2019/1/6



§4 Syntax

to take the easier route. If we use prefix notation (like “+ 1 0”) instead of infix notation, and require
parentheses around all arithmetic operations, we avoid ambiguities. (Lisp fans will argue that the
resulting notation is actually superior.)

E ::= S

| (+ E E)

| (- E E)

[Discuss parse trees.]

Exercise 2. Similar to how we “produced” the string 0 1 1, use the above grammar for E and S
to produce the string

(+ 10 1)

Producing 10 and 1 is tedious, so we’ll make a distinction between “smaller” parts of syntax, like
S, and “larger” parts of syntax, like E. (Many real programming languages make this distinction,
too.) The small parts will be called tokens (sometimes terminal symbols). Instead of thinking in
terms of the individual characters in “10”, we’ll consider 10 to be a single token.

Exercise 3. Produce the string
(+ 10 1)

without breaking down individual tokens.

Exercise 4. Draw the parse tree for

(+ (- (+ 10 1) 11) 0)

without breaking down individual tokens. (I don’t think there’s a standard convention for how to
draw the broken-down parse trees anyway!)

lec1, J. Dunfield, CISC 865, Winter 2019 7 2019/1/6


	
	
	Prerequisites
	Assessment
	Lectures

	
	Denotational semantics
	Operational semantics
	Dynamic semantics
	Static semantics

	
	Grammars


