Regular Approximations of Non-Regular Languages*

Brendan Cordy and Kai Salomaa
School of Computing, Queen’s University
Kingston, Ontario K7L 3N6, Canada
{brendan,ksalomaa}@cs.queensu.ca

Abstract

We approximate context-free, or more general, languages using finite automata.
The degree of approximation is measured, roughly speaking, by counting the number
of incorrect answers an automaton gives on inputs of length m and then looking how
the values behave for large m. More restrictive variants are obtained by requiring that
the automaton never accepts words outside the language (bottom approximation) or
that it accepts all words in the language (top approximation). A further distinction is
whether a given (context-free) language has a regular approximation which is optimal
under the measure of approximation degree or an approximation which is arbitrarily
close to optimal.

1 Introduction

Different ways of measuring levels of reliability of finite automata have been considered
in [7, 8]. By allowing a finite automaton to give incorrect answers on some inputs we
may obtain significant savings in the state-complexity of a language. Here, instead of
comparing state-complexity of representations with different reliability, we consider various
ways to give approximate representations of non-regular languages using finite automata.
Strong non-approximability results for certain non-regular languages have been previously
obtained in [5].

For the purpose of evaluating how well a language is approximated by another language,
we need a way to measure the similarity of two languages. The existence of “good”
approximations for non-regular languages naturally depends very much on the measures
used to compare languages. We present examples for different types of measurements
where good regular approximations exist or do not exist, respectively. We use variants of
the measures considered in [5, 7, 8]. The measures, roughly speaking, count the number of
inputs of a given length for which a finite automaton gives an incorrect answer, and then
look how this value behaves for long inputs in the limit. We make some modifications
to the earlier definitions, mainly, in order to avoid trivial good approximations. This
issue did not occur in [5, 7, 8], perhaps, because the work there was concerned on the
one hand with negative approximability results, that is results about the non-existence
of approximations, and on the other hand with worst-case results for the descriptional

*Research supported by the Natural Sciences and Engineering Research Council of Canada.

complexity of approximations having different reliability. Thus, the work in [5, 7, 8] was
for the main part not dealing with positive results on the existence of approximations.

Other types of regular approximations of languages have been considered e.g. in [1, 2,
3,4, 11, 12, 13]. The automaticity descriptional complexity measure [13] and the model of
cover automata [3] count the number of states of finite automata that recognize approx-
imations of the language to be represented. Automaticity is a descriptional complexity
measure for arbitrary languages whereas cover automata are used as an implementing
method to reduce the size of automata that represent finite languages. These models dif-
fer from our approach in that the approximations are required to be correct for all words
up to length n (with variable n) and do not consider the number of incorrect answers on
words longer than n. The paper [4] investigates minimal covers and the approach is quite
different from the measures considered here, as well. The metric used in [1] is somewhat
similar to the measure we consider here, however, in [1] the metrics are required to have
an additivity property with respect to catenation. This property guarantees that the met-
ric preserves regularity of languages which means it would not be useful for our current
purpose. The work [11, 12] investigates lower and upper rough set approximations that
converge to a given language L. It turns out that in most cases the lower and upper
approximations of context-free languages are regular.

Work along more practical lines on regular approximations of context-free languages
can be found in [9, 10].

2 Degree of approximation

In the following ¥ denotes a finite alphabet and ¥* is the set of all strings over 3. The
length of a string w is the number of occurrences of symbols of ¥ in w. The reversal (or
mirror-image) of w € ¥* is denoted wf. For L C ¥* and m > 0, we denote by |L|,, the
number of strings of length m in L. The symmetric difference of sets A and B is A A B.
The cardinality of a finite set is |A].

A deterministic finite automaton (DFA) is a tuple M = (%, Q, g0, QF,) where ¥ is
the input alphabet, @ is the finite set of states, gy € @) is the start state, Qr C Q@ is the
set of accepting states, and § : Q x X — @ is the state transition function. The function
¢ is extended in the natural way to a function @ X ¥* — @ and the language recognized
by the DFA M is L(M) = {w € £* | §(go,w) € Qr}. Note that a DFA as defined above
is complete, i.e., §(q, o) is defined for all ¢ € Q, o € ¥. The deterministic finite automata
recognize exactly all the regular languages. For all unexplained notions in language theory
we refer the reader e.g. to [6, 14].

For integers m,n > 0, we define the “non-zero minimum” of m and n as

min; (m, n) = max(min(m,n),1).

When a finite automaton A is used as an approximation of a language L, the value
| L(A) A L |, gives the number of strings of length m for which A gives an incorrect
answer. More generally, if R and L are two languages over X, we define the degree of
approzimation of L by R as the quantity

. | RAL |y,
App(R,L) =1 : 1
pp(R, L) msoe. ming (| L fmy | 2% — L |m) D

It can be noted that the degree-of-approximation relation is not symmetric. In our
terminology, a degree-of-approximation value (close to) zero means a “good approxima-
tion”.

The definition of App(R, L) does not require that R is regular, however, in the following
we are mainly concerned with cases where the language used as an approximation is
regular.

The relation (1) resembles the reliability measure of [8] or the approximation measure
used in [5]. These measures use the number of all words of length m, | £* |, (or equiva-
lently | 2 |™), as the denominator. The main reason for introducing the definition (1) is
that if we would use

. | RAL |y,
limsup ————

as the right side of (1) all very “dense” languages would always have ¥* as a good ap-
proximation and, similarly, all “sparse” languages could be approximated by (). Above
by a dense (respectively, sparse) language we mean a language L such that the limit of
| ¥* — L |, (rvespectively, | L |,) divided by |X|™ approaches zero when m approaches
infinity.

In fact, the degree of approximation can be thought of as a measure of how well some
language R approximates L relative to the best trivial approximation (§ or 3*). If we
were to use the maximum of | L |, and | ¥* — L |,, in the denominator in place of the
minimum, this could be viewed as comparing an approximation relative to the worse of
the two trivial approximations, (§ or ¥*).

In (1) it is possible that min(| L |,,,| ¥* — L |,,) in the denominator becomes zero. In
particular, if L contains no words of length m (or all words of length m) where m ranges
over infinitely many non-periodic values, this could cause the approximation degree to
become infinite for any regular language. This could happen even if L is always very
sparse, in which case () would intuitively be a “reasonably good” approximation of L. For
the above reason we use the “non-zero minimum” miny (-, -) in the denominator.

First we consider the question of what values the approximation degree can have.
The below example gives a construction showing that App(R, L) with R regular and L
context-free can have any rational value between 0 and 1.

Example 2.1 Let ¥ = {0,1,b,c}. For any integers 0 < ¢ < n we construct a regular
language R and a context-free language L over ¥ such that App(R,L) = .
Let f:{1,...,n} — {0,1}" be a bijective mapping where r = [logn|. We define

n

L= v’ |j#k, jk>0}

i=1
All strings in L begin with a sequence of r symbols 0 and 1, followed by a string of b’s and
C’s.
Let 0 < k£ <n and define
k
Rk = U f(z)b*c*
i=1
Let w = r 4+ 2m, m > 1. All strings of L having length u begin with a sequence of r
symbols 0 and 1, and followed by a string of ¢ symbols b and j symbols ¢ where i +j = 2m

and ¢ # j. Thus,
| Llu=n-(2m) 2)

The set | L A Ry, |, has all strings of L of length u beginning with f(i), k < i < n, and
for any 1 < ¢ < k it contains one string f(7)b’¢’, where j = m. Thus,

| Ry AL Jw=(n—k)-(2m) +k. (3)

Next let v = r 4+ 2m — 1, m > 1. Strings of L having length v again begin with a
sequence of r symbols 0 and 1, followed by all strings in b*c* having length 2m — 1. Thus,

| L |y =n-(2m) (4)
Also, similarly as above it is easy to see that
| Rg ALy = (n—k) - (2m). (5)

Always when ¢ > r, | L |; < | £¥* |;. Hence using (2), (3), (4), and (5), we see that the
(r + 2m)™ term in the limit on the right side of (1) is 222=5F% 414 the (r + 2m — 1)tk

2mn
term is % Thus as the limit we obtain

n—=k

App(Ry,L) = -

Since k can be an arbitrary integer between 0 and n, the claim follows. ®

Similar to Example 2.1 we can, of course, construct languages R and L such that
App(R, L) is any rational number greater than one. This can be done by making R — L
sufficiently large, and this would correspond to situations where R is a bad approximation
of L.

Next we define what we mean by “good” regular approximations of a language L. We
distinguish the notions of top approximation that contains L, bottom approximation that
is contained in L and mized approzimation (or just approximation) that can have any
relation with L.

Definition 2.1 Let L C X*. The language L has a (good) regular m-approximation
(mized approzimation) if there exists a regular language R such that App(R,L) = 0.
We say that L has a regular t-approximation, or top approzimation, (respectively, b-
approximation, or bottom approzimation) if above R can be chosen such that L C R
(respectively, R C L).

The language L is said to have a regular m-approximation in the limit if for any ¢ > 0
there ezists a regular language R, such that App(Re, L) < €. Again we say that L has a
regular t-approximation (respectively, b-approximation) in the limit if above R can always
be chosen such that L C R, (respectively, R, C L).

In the following, we call regular x-approximations simply x-approximations, where
z € {m,b,t}. Note that any t-approximation or b-approximation is by definition also an
m-approximation.

The following negative approximation result for the language
Lajority = {w € {a,b}" | w has more a’s than b’s }

has been established in [5]. We state the result using our definitions. Note that having
an m-approximation in the limit is the weakest type of approximability property given in
Definition 2.1.

Proposition 2.1 [5] The language Lygjority does not have an m-approzimation in the
limit.

Proof. Let ¥ = {a,b}. In [5] it is shown that for any regular language R C ¥*,

lim ‘ RA Lmajom'ty ‘n — 1
n—00 | 3 ‘n 2

Since for any n > 0,
| Z" |n
| Lmajority |n S 2

it follows that

lim sup | R A Lmajority |n
n—o0 | Lmajority |n
and by definition (1) it follows that App(R, Lymajority) > 1. This holds for any regular
language R and, consequently, Lqjority does not have an m-approximation even in the
limit. ®

> 1,

3 Results

First we illustrate that there exist languages having regular top approximations but no
regular bottom approximations and vice versa. We consider the linear context-free lan-
guage o

T ={a'¥ |4,j 2 0,i # j} (6)

Example 3.1 We show that R; = a*b* is a t-approximation of T'. We note that T' C R;

and
0 if m is odd,

|RtAT|m:{ 1 of m is even.

The number of strings in 7" of length m is either m or m+1 and clearly | T' |, < | &* =T |,
for all m > 2. Thus

1
App(Ry, T) = limsup ——— < limsup — = 0.

m—00 | ‘m m—oo TN

Lemma 3.1 The language T from (6) has no b-approzimation.

Proof. Let R, be any regular language such that R, C T'. It is sufficient to show that
App(Ry, T) > 0.

Let ¥ = {a,b} and M = (%,Q, g0, QF,0) be a complete DFA that recognizes R.

Consider computations of M on strings in a* and find the first state that repeats. That
is, we find 0 <4 < |Q| and 0 < j < |Q| such that 6(qo,a’) = p; and 6(p1,a’) = p1. Since
M is complete, the state p; always exists.

Now we consider computations of M starting from state p; on strings in b* and find
the first cycle. We find 0 < k < |Q| and 0 < m < |Q| such that d(p1,b*) = p, and
d(p2,0™) = pa.

We choose an integer r as follows. If k < ¢, then r =4 — k. If k£ > 4, then we choose r
to be the smallest integer such that

jlk—i+r (7)
The integer r can always be found such that r < |Q)|.
Now there exists ps €) such that for all z,y > 0, we have

8(qo, a'TEIBFTYTATY = po. (8)

By (7), we can choose z such that i + xj = kK + 7 + 0 - m. Thus if p3 is an accepting
state, Ry = L(M) contains some string not in 7" and R} is not a b-approximation.

Hence p3 cannot be an accepting state and from (8) we know that R}, does not contain
any strings of the form at*/pF+¥™m+7 where z,y > 0.

Let z be an arbitrary positive integer and denote

n=i+k+r+z-j-m.

We know that 7" contains, in total, n or n + 1 strings of length n. By (8) we know that
the following strings of length n cannot be in Ry:

azbk—f—r—f—ZJm’ az—f—]mbk-}—r—{—(z—l)jm, e az—f—Zmek:—l—r’

and it follows that | Ry AT |, > z + 1. Since for large n, | T |, < | ¥* =T |, we get

Ry AT Ry AT
App(Rb,T) = lim sup M Z lim sup M
n—00 | T | T 00
1 1
> limsup s >0

z00 L1+ Ek+r+2z-7-m+1 :jm
|

The above proof shows that the value of App(Ry,T) is positive, but does not give
for it any positive lower bound. Indeed it is easy to see that the language T has a b-
approximation in the limit. If a DFA M, checks that the input is of the form a’b’ where
i #Z j modulo some of the integers 2,...,k, then L(M}) C T and for large enough k,
App(L(My),T) becomes smaller than any given positive constant.

Above we have seen that the languge T' has a t-approximation but no b-approximation.
This naturally begs the question whether there exists a language with a b-approximation
but no t-approximation. The following correspondence between b- and t-approximations
turns out to be useful.

Proposition 3.1 Let L be a language over the alphabet 2.
(i) If L has a t-approzimation, then ¥* — L has a b-approzimation.

(ii) If L has a b-approximation, then ¥* — L has a t-approzimation.

Proof. Assume that R; is a regular language such that L C R; and App(R;, L) = 0.
We observe that (X* — L) A (¥* — Ry) = LA Ry = Ry — L. Thus,

- | " —R) A= L) |m
App(X* — Ry, X* — L) = limsu _
Pl !) o ming (| 2* — L |m, | L |m)

| Re AL |,

= — = App(R;, L) = 0.
ming (| L |, | 5 — L |m) pp(F, L)

This proves (i) since ¥* — Ry C ¥* — L and ¥* — R, is regular. The case (ii) is completely
symmetric. H

Now Example 3.1, Lemma 3.1 and Proposition 3.1 give the following.

Corollary 3.1 With T as in (6), the language ¥* — T has a b-approximation but no
t-approrimation.

Using a direct analysis it can be shown that also the language {a’b’ | i > 0} has no
t-approximation. This estimation will be done below in the proof of Lemma 3.2.

Next we address the question whether there exist languages with m-approximations
but no b- or t-approximations. In the following let ¥ = {a, b, ¢,d} and denote

X ={a* |i>0}u{cd |i#j, i,7>0} (9)

Example 3.2 The language c*d* is an m-approximation of X. To see this we observe that
for any even length 2n, ¢*d* contains all strings of X except a™b", and for any odd length
2n+ 1, ¢*d* contains all strings of X. Similarly, for any even length 2n, ¢*d* contains the
string ¢"d" not in X and for any odd length 2n 4+ 1, all strings of length 2n+ 1 in ¢*d* are
also in X. Since for all non-negative integers n, | X |, = n + 1, we get

2
App(c*d*, X) < limsup =0

n—oo N+1

Lemma 3.2 The language X as in (9) does not have a b-approximation or a
t-approzimation.

Proof. First we show that X does not have a b-approximation. Let R, be any regular
language such that Ry C X and let M be a complete DFA having ¢ states, that recognizes
R,. Exactly as in the proof of Lemma 3.1 we can find integers i, j, k,m,r < g, where
j divides (k — i 4+ r) such that M reaches the same state p after reading any string
eI gktym+r independently of the values z,y > 0, and it is then observed that p cannot
be an accepting state. Then similarly as in the proof of Lemma 3.1 we can calculate that

App(Rp, X) is at least]Lm The only difference in the estimation is that now, for any
length n, X contains exactly n + 1 strings of length n, and the value n + 1 was used in
the estimation for the lower bound in the proof of Lemma 3.1.

Next we show that the language X cannot have a t-approximation. Assume that R; is
a regular language, X C R; and let M = (%, Q, g0, QF,0) be a complete DFA recognizing
R;. We consider computations of M on strings of ¢* and find the first cycle. That is, we
find 0 < i < |Q|, 1 < m < |Q| such that for some p; € Q, 6(qo,a’) = p1 and §(p1,a™) = p1.

Then we consider computations of M starting in state p; on strings in b* and find the
first cycle. That is, we find 0 < j < |Q| and 1 < n < |Q| such that for some ps € Q,
6(p1,b’) = p2 and d(pz,b") = p2.

Thus for all z,y > 0,

3(qo, a™*mHIHI) = p,.

For large values of z, i +xm > j. Since X C L(M) and X contains all strings a"b", r > 0,
this implies that an accepting state must be reachable from py by reading a string of b’s.
Thus there exists k£ < |Q| and p3 € Qp such that for all z,y > 0,

5(q0’ai+mmbj+k+yn) = p3. (10)

Let z be a positive integer and denote
By (10) we know that M must accept the following strings of length n,,

azby—l—k—}—zmn’ az+mnb7+k+(z71)mn, az—|—zmnb]—|—k.

..y

At most one of the above z 4+ 1 strings can be in X and hence we conclude that for any
integer n,, | L(M) A X |,, > z. Now we get

App(R;, X) = limsu -
pp(By, X) et ming (| X |m, | * = X |m)
. | Ry A X |y,
> limsu - .
= Ay ming ([Lo [n., | B* — X |n,)
1
> limsup a =—>0.

zs00 1l+i+j+k+2zmn mn
|

For easier readability, the language X used in Example 3.2 and Lemma 3.2 is defined
over a four letter alphabet. By using a simple coding, exactly the same argument can be
used to show that there is a language over a binary alphabet having an m-approximation
but no b-approximation or t-approximation.

Next we show that there exist context-free languages that do not have m-approximations,
or even m-approximations in the limit. A convenient language for this purpose is the set
of marked palindromes:

Lo = {wSw® | w € {a,b}*}

Lemma 3.3 The language Ly does not have an m-approzimation in the limit.

Proof. Assume to the contrary that there exists a regular approximation R for Ly such
that RAL .
App(R, Ly) = limsup ﬂ < -

Hence, there exists an integer ng such that we have
L o1z
|RAL0|n<§-22 (11)

for all n > ny where n is odd. Since if not, there is an infinite subsequence (m;)2, of odd
lengths for which | RA Lg |m, > % - 213" and hence

1, 9l%t]
M > lim sup 247 — 1

ey

Ve ivoo 2l

Let M = (2,Q,q0,QF,0) be a DFA for R, and observe that, for odd n > ng, M must
accept at least half of the 2L/ strings of length n in Lg. For if not, then R will violate (11)
since M will reject at least half of the 2L31 strings of length n in L.

In the following we consider n to be an arbitrary odd integer greater or equal to ng.
Let ¢ be the number of states of). By the pigeonhole principle, for some state ¢5 € Q
there are at least %ZL%J_l strings of L that are accepted through computations of M of
the form

s § sB

Q@ — q3 — (f

where s € {a,b}lZ). We denote
Xn = {w € {a,b}!3) | 6(q0,w$) = g5, 5(gs,w™) € Qr}.

We have seen that X,, has at least %2L%J’1 strings and, for any s1,s2 € X, we know
that M accepts s;$s&. The number of new strings which can be created by combining
different s1’s and s9’s is

Loz s Lons
c c c?
(Recall that n is assumed to be odd.) For any particular string s; € X, there is only one
string s, € X, such that the string s;$s¥ is in Ly. Hence the number of strings not in Lg

which M accepts is at least

1 12—
2" 3_E2L2J ! (12)

Since c¢ is a constant depending on the number of states of M, it is clear that as n
increases, the ratio of (12) and 2l2! grows without bound, so since | R A Lg |,, is at least
as large as (12),

limsup |2 Loln _
n—oo 20n/2

We have produced a contradiction. B

The proof of Lemma 3.3 is less involved than the proof required to show that Liqjority
does not have an m-approximation in the limit [5]. This is due to the fact that Ly is chosen
to have, roughly, 2% words of length n which makes a density argument straightforward
to use.

Combining the results of Lemmas 3.1, 3.2 and 3.3, Corollary 3.1 and Examples 3.1
and 3.2 we can summarize the situation as follows.

Theorem 3.1 There exist context-free languages Ly, Ly, Ly, and Lo such that

(i) Lt has a t-approzimation but no b-approzimation.

(ii) Ly has a b-approzimation but no t-approzimation.

(iii) Ly, has an m-approzimation but no b-approrimation or t-approzimation.
(

iv) Lo does not have any m-approzimation, and not even an m-approrimation in the
limit.

Since t- and b-approximations are always also m-approximations, Theorem 3.1 says,
in particular, that for any combination of z,y € {¢,b,m} such that z # y and x-
approximations are not a special case of y-approximations, there exists a context-free
language L such that L has an x-approximation and L does not have an y-approximation.

In Lemma 3.1 we saw that the language T" from (6) does not have a b-approximation,
and after this result it was observed that T', on the other hand, has a b-approximation in
the limit. Using the correspondence between b- and t-approximations as in Proposition 3.1
it follows that there exist languages that do not have a t-approximation but do have a t-
approximation in the limit. Theorem 3.1 (iv) leaves open the question whether there exist
languages having an m-approximation in the limit and do not have an m-approximation.
When using a density argument, as in the proof of Lemma 3.3, to establish the non-
existence of an m-approximation, it is not clear whether the same languages can have an
m-approximation in the limit.

When considering the types of approximations introduced in Definition 2.1, a language
has the strongest approximation properties when it has both a t-approximation and a b-
approximation. The obvious question is then whether non-regular languages can have
both t- and b-approximations. This is answered affirmatively by the following example.

Example 3.3 Let ¥ = {a,b,c} and
Ly ={a¥ | i >0} U {b,c}* (13)

Denote Ly = {b,c}* and Ly = a* U {b, c}*. We show that Lo is a b-approximation and L3
is a t-approximation of L.
Since for all n, the value of | L |, is 2" or 2" + 1, and for n > 4,

| L1 [<2"+1<3"— (2" +1) < | S* — Ly |n.

As well, we have that because there is at most one string of the form a2 for any n, so
| Ly A Ly |, <1, and hence

LoAL 1
App(Lg, L1) < limsup [L2 ALy n < lim sup on = 0.

n—o0 2n n—00

10

We note that for all n > 0, | Ly A L; |, <1, and using the same estimation as above
we see that also App(L3,L;) =0. W

In Example 3.3, the language L; is not context-free. Let ¥ = {a,b, ¢,d} and define
Ly = {a"" | i > 0} U{c,d}*.

Using exactly the same estimation as in Example 3.3 we see that L, has both a t-
approximation and a b-approximation.

Corollary 3.2 There exist non-reqular context-free languages that have both a
t-approximation and a b-approzimation.

4 Conclusion

Here we have continued the work of [5, 7, 8] in attempting to classify different types of reg-
ular approximations for nonregular languages. Naturally much more remains to be done.
For example, our results leave open the question whether there exists a (context-free) lan-
guage L such that L does not have any m-approximation but L has an m-approximation in
the limit. We have shown that for b-approximations and t-approximations such examples
do exist.

Also, the corresponding decision problems would be of interest. Given a context-free
language L, can we decide whether or not L has an m-approximation (respectively, b- or
t-approximation)? It is likely that many of these questions are undecidable; nevertheless,
it would be interesting to find that some cases can be decided effectively.

References

[1] C. Calude, K. Salomaa and S. Yu. Additive distances and quasi-distances between
words. Journal of Universal Computer Science, 8 (2002), pp. 141-152.

[2] C. Campeanu and A. Paun. Tight bounds for the state complexity of determinis-
tic cover automata. In Proceedings of Descriptional Complexity of Formal Systems,
DCFS 2006, Las Cruces, NM, June 21-23, 2006.

[3] C. Campeanu, N. Sdntean and S. Yu. Minimal cover automata for finite languages.
Theoretical Computer Science, 267 (2001), pp. 3-16.

[4] M. Domaratzki, J. Shallit and S. Yu. Minimal covers of formal languages. In Devel-
opments in Language Theory, DLT 2001, Lecture Notes in Computer Science 2295,
Springer, 2001, pp. 319-329.

[5] G. Eisman and B. Ravikumar. Approximate recognition of non-regular languages by
finite automata. Australasian Computer Science Conference, ASCS 2005, pp. 219-
228.

[6] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, 1979.

11

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Kappes and C. Kintala. Tradeoffs between reliability and conciness of determin-
istic finite automata. Journal of Automata, Languages and Combinatorics, 9 (2004),
pp- 281-292.

M. Kappes and F. Niessner. Succinct representations of DFA with different levels of
reliability. Theoretical Computer Science, 330 (2005), pp. 299-310.

M. Mohri and M.-J. Nederhof. Regular approximation of context-free grammars
through transformation. In: Robustness in Language and Speech Processing, (J.-C.
Junqua and G. van Noord, Eds.) Kluwer Academic Publishers, 2001, pp. 153-163.

M.-J. Nederhof. Practical experiments with regular approximation of context-free
languages. Computational Linguistics, 26 (2000), pp. 17-44.

Gh. Paun, L. Polkowski and A. Skowron. Rough-set-like approximations of context-
free and regular languages. In: Proceedings of IPMU-96: Information Processing and
Management of Uncertainty on Knowledge Based Systems, July 1-5, 1996, Granada,
Spain, Universidad de Granada, vol. II, pp. 891-895.

Gh. Paun, L. Polkowski and A. Skowron. Rough set approximations of languages.
Fundamenta Informaticae, 32 (1997), pp. 149-162.

J. Shallit and Y. Breitbart. Automaticity I: Properties of a measure of descriptional
complexity. Journal of Computer and System Sciences, 53 (1996), pp. 10-25.

S. Yu. Regular languages. In: Handbook of Formal Languages, Vol. I (G. Rozenberg
and A. Salomaa, Eds.) Springer, 1997, pp. 41-110.

12

