
Quantifying Nondeterminism in Finite Automata

Alexandros Palioudakis, Kai Salomaa and Selim G. Akl

Abstract - Various ways of quantifying the nondeterminism in finite au-
tomata have been considered since the 1970’s. Roughly speaking, a nonde-
terminism measure can count the number of accepting computations (ambi-
guity), the number of all computations (computation width) or the amount
of nondeterminism on a single best (or worst) computation on a given input.
This paper surveys results on the growth rate of the nondeterminism mea-
sures and the descriptional complexity of nondeterministic finite automata
with limited nondeterminism.

Key words and phrases : finite automata, limited nondeterminism,
state complexity

1 Introduction

As finite automata are not equipped with external memory, for a quanti-
tative understanding of regular languages the commonly used descriptional
complexity measures count the number of states or the number of transitions
of a (nondeterministic) finite automaton. The descriptional complexity of
finite automata has been studied for over half a century [19, 21, 22, 23], and
there has been particularly much work done over the last two decades [9,
14, 34].

Besides the number of states (or transitions) a further resource to quan-
tify is the amount of nondeterminism used by a finite automaton [13]. Var-
ious ways of quantifying the amount of nondeterminism in finite automata
have been considered. The degree of ambiguity counts the number of ac-
cepting computations on a given input. The degree of ambiguity of finite
automata has been considered since the 1970’s and it is, perhaps, the most
well studied measure [16, 29, 33]. Other nondeterminism measures are based
on the amount of nondeterminism used in all, accepting as well as non-
accepting, computations and further distinctions arise depending on whether
the measure is a best case or a worst case measure [6, 7, 25, 28].

The computation width (a.k.a. ‘leaf size’ [1, 11], a.k.a. ‘tree width’
[24, 28]) of a nondeterministic finite automaton (NFA) measures the total
number of computations on a given input. On the other hand, the guess-
ing measure [7] counts the number of bits of information the NFA needs to
encode the nondeterministic choices on the “best” accepting path, that is,

1

2

the path using the least amount of nondeterminism. A closely related best
case measure is deviation number [5]. The product of the degrees of non-
deterministic choices on the best accepting computation is called branching
[7] and, by definition, the guessing of an NFA A is the logarithm of the
branching of A. A worst case variant of the branching measure is called
trace [25, 28].

General references on descriptional complexity include the surveys by
Gao et al. [3], Goldstine et al. [6], Holzer and Kutrib [9], Kutrib and
Pighizzini [14] and the handbook article by Yu [34], and more comprehensive
references can be found therein.

2 Preliminaries

We assume that the reader is familiar with the basics of finite automata and
regular languages [32, 34].

The set of strings over a finite alphabet Σ is Σ∗, the length of w ∈ Σ∗ is
|w|, the set of strings of length at most m is Σ≤m and ε is the empty string.
The set of positive integers is N and the cardinality of a finite set F is |F |.

A nondeterministic finite automaton (NFA) is a 5-tupleA = (Q,Σ, δ, q0, F)
where Q is the finite set of states, Σ is the input alphabet, δ : Q× Σ→ 2Q

is the transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set
of final states. The transition function δ is in the usual way extended as a
function Q × Σ∗ → 2Q and the language recognized by A is L(A) = {w ∈
Σ∗ | δ(q0, w) ∩ F 6= ∅}. By the size of the NFA A, size(A), we mean the
number of states, that is, the cardinality of Q.

A transition of A is a triple µ = (q, a, p), q, p ∈ Q, a ∈ Σ such that
p ∈ δ(q, a). The transition µ is nondeterministic if δ(q, a) has at least 2
elements, and otherwise µ is deterministic. The degree of nondeterminism
of the transition (q, a, p) is the cardinality of δ(q, a).

If all transitions are deterministic, A is a deterministic finite automaton
(DFA). Note that we allow a DFA to have undefined transitions.

A partial computation of A from the initial state q0 to state s on input
w = a1 · · · a`, ai ∈ Σ, i = 1, . . . , `, ` ≥ 1, is a sequence of transitions

C = (µ1, . . . , µk), k ≤ `, µi = (qi−1, ai, qi), 1 ≤ i ≤ k, s = qk

such that either k = ` or k < ` and δ(qk, ak+1) is undefined. The sequence
of transitions C is a (full) computation (of A) on w if k = `. An accepting
computation is a (full) computation to a final state. The set of partial
computations (respectively, accepting computations) of A on a string w is
part-compA(w) (respectively, acc-compA(w)).

A computation (of A on string w) is a special case of a partial compu-
tation (of A on w). Partial computations are sequences of transitions that
either consume the entire string w or become “stuck” before processing the

3

entire string. If a partial computation does not reach the end of w, it must
have encountered an undefined transition, that is, a prefix of a partial com-
putation is not a partial computation. When using the term computation,
we always mean a full computation.

The minimal size of a DFA or an NFA recognizing a regular language
L is called the deterministic (nondeterministic) state complexity of L and
denoted, respectively, sc(L) and nsc(L). Note that we allow DFAs to be
incomplete and, consequently, the deterministic state complexity of L may
differ by one from a definition using complete DFAs.

A deterministic finite automaton with multiple initial states (MDFA) is
an extension of a DFA that allows more than one initial state [10, 12]. An
MDFA A accepts string w if the computation of A on w started from any of
the initial states accepts. A k-MDFA is an MDFA with k ∈ N initial states.

Following the convention used by the overwhelming majority of the lit-
erature, including the central work done on various nondeterminism mea-
sures [6, 7, 8, 11], we have defined an NFA to have only one initial state.
This means, that strictly speaking, a k-MDFA is not an NFA. However,
a k-MDFA can always be converted to an NFA with one more state. For
dealing with MDFAs, defining NFAs to have more than one initial state
would probably be a more natural choice. However, allowing more than one
initial state changes the precise relationships between the different nondeter-
minism measures. In this brief survey we do not wish to include technical
recomputations of the various bounds and consequently use the standard
definition.

3 Measures of nondeterminism

The ambiguity of an NFA counts the number of accepting computations
while the computation width counts the total number of partial computa-
tions. Additionally we recall the definitions of further measures that are
based on a best accepting computation or a worst computation. In the rest
of this subsection, A = (Q,Σ, δ, q0, F) is always an NFA.

The degree of ambiguity [16, 29] of A on w ∈ Σ∗, ambA(w), is the number
of accepting computations of A on w. The degree of ambiguity of A on
strings of length m is defined as

ambA(m) = max{ambA(w) | w ∈ Σ≤m}, m ∈ N.

We say that A has finite ambiguity if the value ambA =def supm∈N ambA(m)
is finite. Otherwise, the ambiguity ofA is infinite (unbounded). If ambA = 1,
A is an unambiguous finite automaton (UFA).

The computation width of A on w ∈ Σ∗, cwA(w), is the number of
partial computations of A on w. The notion of computation width has been
called also ‘leaf size’ [11] or ‘tree width’ [24, 28], and it can be viewed as

4

the number of leaves in the computation tree of A on w. Note that the
number of partial computations, as defined in section 2, coincides with the
number of leaves in the computation tree of A on w, as defined in [24].
Again, the computation width of A on strings of length m ∈ N is defined
as cwA(m) = max{cwA(w) | w ∈ Σ≤m}, and we say that A has finite
computation width if the quantity cwA =def supm∈N cwA(m) is finite.

Next we consider measures that, instead of counting the number of all
(accepting) computations, are based on a single computation of A. Consider
a partial computation of A on input w = a1a2 · · · a`,

C = (µ1, . . . , µk), k ≤ `, µi = (qi, ai, qi+1). (1)

The guessing γA(C) (respectively, the branching βA(C)) of the partial com-
putation C is

γA(C) =
k∑
i=1

log2 |δ(qi, ai)|, βA(C) =
k∏
i=1

|δ(qi, ai)|.

Intuitively, γA(C) represents the amount of guessing, in bits of information,
that occurs during the computation. If A is a DFA, the amount of guessing
in any computation of A is zero. By definition βA(C) = 2γA(C) [7].

Note that in order to define the guessing and branching measures [7, 8]
above it would be sufficient to consider only full computations C. We have
allowed the possibility that C is a partial computation because below we
consider also a corresponding worst case measure.

The deviation number [5] of the computation C (as in (1)) is defined
as dnA(C) =

∑k
i=1(|δ(qi, ai)| − 1). Note that if all transitions of A are ei-

ther deterministic or have degree of nondeterminism two, then the deviation
number coincides with the guessing measure, that is, for any computation
C, dnA(C) = γA(C). The deviation number directly counts the number of
paths that branch out from a nondeterministic computation. On the other
hand, the guessing of one transition with degree of nondeterminism three
is less than the guessing of a computation where we achieve three choices
by first making a binary choice between states q1 and q2 and then another
binary choice in state q1.

The guessing of a string w ∈ L(A) is the guessing of the best accepting
computation: γA(w) = min{γA(C) | C ∈ acc-compA(w)}. Similarly, the
branching (respectively, the deviation number) of A on w ∈ L(A), βA(w),
(respectively, dnA(w)) is defined in terms of the best accepting computation
of A on w.

As with ambiguity and computation width, the value of the measures on
strings of length m ∈ N is their value on the string of length m that needs
the largest amount of nondeterminism. Let α be one of the measures γ, β
or dn. Then αA(m) = max{αA(w) | w ∈ L(A) ∩ Σ≤m}. We say that the
α-value of A is finite if the quantity αA =def supm∈N αA(m) is finite.

5

A variant of the guessing and branching measures that is defined in
terms of the worst computation of A on a string (as opposed to the best
computation used to define γA(w) and βA(w)) has been considered [25].
When defining a worst case measure, we should consider also failed (partial)
computations and the values are not restricted to strings in L(A).

The maximum guessing ofA on a string w ∈ Σ∗ is γmax
A (w) = max{γA(C) |

C ∈ part-compA(w)}, and the trace of A on w is τA(w) = 2γ
max
A (w) [25]. Let

α be either γmax or τ and m ∈ N. Then αA(m) = max{αA(w) | w ∈ Σm}.
The maximum guessing (respectively, the trace) of A is said to be finite if
the value γmax

A =def supm∈N γA(m) (respectively, τA =def supm∈N τA(m)) is
finite.

Instead of counting the amount of guessing in bits of information, Le-
ung [17] counts the number of nondeterministic steps on the best accept-
ing computation and Hromkovič et al. [11] use the advice measure that
counts the number of nondeterministic steps on the worst computation
on a given input. These measures are within a multiplicative factor of
max{log2 |δ(q, a)| | δ(q, a) 6= ∅} of the guessing and maximum guessing,
respectively.

For descriptional complexity comparisons of the various nondeterminism
measures the relevant quantity is the optimal size of an NFA where nonde-
terminism is bounded by one of the measures. Let α be one of the measures
ambiguity (amb), computation width (cw), guessing (γ) , branching (β), de-
viation number (dn), maximum guessing (γmax), or trace (τ). For a regular
language L and k ∈ N, we denote

nscα≤k(L) = min{size(A) : αA ≤ k, L(A) = L}.

Above we defined the nondeterministic state complexity of L only in the
case where the value of the α-measure is bounded by a constant. In the
natural way, the notion can be extended for NFAs A where the α-value on
strings of length m, αA(m), is bounded by a value f(m) for some function
f . Except for the descriptional complexity comparisons between different
ambiguity growth rates (discussed in section 5), very few results are known
on the descriptional complexity of NFAs with non-constant nondeterminism
that is bounded by input length.

4 Growth rate of nondeterminism

For NFAs with unbounded nondeterminism, the growth rate of the nondeter-
minism measures is counted as a function of input length. In this section we
discuss results on the growth rate of nondeterminism, bounds for finite non-
determinism in terms of the number of states and comparisons between the
different nondeterminism measures. The results deal mainly with the non-
determinism of a specific NFA because, in general, not much is known about

6

descriptional complexity comparisons between the various nondeterminism
measures in the case where the amount of nondeterminism is unbounded.

It is known since the 1970’s that the problem of determining whether
the degree of ambiguity of a given NFA is finite, polynomial or exponential
is decidable [20, 30]. The problem of computing the degree of ambiguity
of an NFA with finite ambiguity was shown by Chan and Ibarra [2] to be
PSPACE-hard. On the other hand, based on a characterization of NFAs
with, respectively, polynomial and exponential ambiguity due to Ravikumar
and Ibarra [29], Weber and Seidl [33] have given a polynomial time algorithm
for testing whether the degree of ambiguity of an NFA is finite or whether
it grows polynomially or exponentially.

Hromkovič et al. [11] have characterized the possible growth rates of
computation width (for which they use the name ‘leaf size’).

Theorem 4.1 (Hromkovič et al. [11]) For any NFA A, the function cwA(m)
is either bounded by a constant, or between linear and polynomial in m, or
otherwise in 2Θ(m).

The above characterization can be effectively decided. An NFA A has un-
bounded computation width if and only if some cycle of A contains a nonde-
terministic transition and this observation yields a simple polynomial time
algorithm to test whether cwA is finite.

Hromkovič et al. [11] have shown that if A is an n-state NFA with
bounded computation width, then cwA ≤ nn. Palioudakis et al. [24] have im-
proved the bound to 2n−2 and, furthermore, shown that all values up to 2n−2

are possible. We say that an NFA A has optimal computation width if L(A)
cannot be recognized by an NFA B where size(B) ≤ size(A), cwB ≤ cwA

and one of the inequalities is strict.

Theorem 4.2 (Palioudakis et al. [24]) The bounded computation width of
an n-state NFA is at most 2n−2. For every n ≥ 2 and 1 ≤ k ≤ 2n−2 there
exists an n-state NFA A over a binary alphabet with optimal computation
width k.

The following relationships between the growth rates of maximum guess-
ing, computation width and ambiguity are known. Hromkovič et al. [11] use
“advice” instead of maximum guessing and a different name for computation
width. The maximum guessing of an NFA A is always within a constant
factor of the advice measure of A.

Theorem 4.3 (Hromkovič et al. [11]) If A is a minimal NFA, then

(∀m ∈ N) γmax
A (m), ambA(m) ≤ cwA(m) = O(ambA(m) · γmax

A (m)).

7

Goldstine et al. [8] have constructed NFAs having unbounded, but sub-
linear guessing, and have considered the relation between ambiguity and
guessing.

Theorem 4.4 (Goldstine et al. [8]) For every k ∈ N, there is an NFA A

such that γA(m) = Θ(m
1
k).

If γA(m) = Θ(m
1
k) with k ≥ 2, then the ambiguity of A must be un-

bounded. If γA(m) is Θ(m) or Θ(1), then the ambiguity of A may be either
bounded or unbounded.

Directly from the definitions it follows that if A has finite computation
width, then the guessing and branching of A is finite but the converse im-
plication does not hold, in general. The computation width of A is finite if
and only if the trace of A is finite.

Lemma 4.1 (Palioudakis et al. [25]) For any NFA A with finite computa-
tion width, cwA ≤ τA ≤ 2cwA−1.

Furthermore, it is known that the bounds cannot be improved [25]. Con-
trasting the result of Theorem 4.1, the growth rate of trace cannot be poly-
nomial.

Theorem 4.5 (Palioudakis et al. [25]) If A is an n-state NFA then either
the trace of A is finite or, for all m ∈ N, τA(m) ≥ 2b

m
n
c.

Determining the possible growth rates of the corresponding “best case”
measure branching is considerably more difficult. By Theorem 4.4 we know

that there exist NFAs A such that βA(m) = 2Θ(m
1
k), for all k ≥ 1, however,

it is not known whether the branching of an NFA can be polynomial but
unbounded.

Open problem 4.1 Is the growth rate of βA(m) superpolynomial for all
NFAs that have infinite branching?

If A is an NFA over a unary alphabet and A has unbounded branching, then
βA(m) = 2Ω(m) [27].

5 Limited nondeterminism and state complexity

It is well known that an incomplete DFA equivalent to an n state NFA
needs in the worst case 2n − 1 states. Schmidt [31] first developed methods
to prove lower bounds for the size of UFAs and gave a family of n state
NFAs An with finite ambiguity such that any UFA for L(An) needs 2Ω(

√
n)

states. Schmidt’s lower bound criterion can be viewed as a special case of
the communication complexity techniques [11]. The worst case trade-off for
converting an NFA with finite ambiguity to a UFA was given by Leung [18].

8

Theorem 5.1 (Leiss [15], Leung [18]) The worst case size of a UFA equiv-
alent to an n state NFA with finite ambiguity, and the worst case size of a
DFA equivalent to an n state UFA, is 2n − 1.1

Descriptional complexity comparisons between NFAs with different un-
bounded ambiguity were first considered by Ravikumar and Ibarra [29].
Leung [16] has established the following important separation between poly-
nomial and exponential ambiguity.

Theorem 5.2 (Leung [16]) For every n ∈ N there exists an NFA An with
n states such that any polynomially ambiguous NFA for L(An) needs 2n− 1
states.

Hromkovič et al. [11] have given a substantially simpler proof for an expo-
nential size gap between NFAs of polynomial ambiguity and general NFAs,
however, their result does not yield the precise 2n − 1 lower bound of The-
orem 5.2. The main open problem for NFAs with unbounded ambiguity
is the size trade-off between NFAs with finite ambiguity and polynomial
ambiguity.

Open problem 5.1 Is there an exponential gap between (optimal) sizes of
NFAs with finite ambiguity and polynomial ambiguity?

Goldstine et al. [7] have shown that there exist NFAs A with n states
such that any NFA with finite branching equivalent to A needs to have
almost worst case size blow-up.

Theorem 5.3 (Goldstine et al. [7]) For n ∈ N there exists a regular lan-
guage L with nsc(L) = n such that for any k ∈ N, nscβ≤k(L) = 2n−1.

Conversely, it is known that there exist NFAs that require almost the
worst case size blow-up of determinization and, furthermore, different finite
amounts of branching allow incremental savings in the number of states. The
theorem below is the “spectrum result” of [7] stated in a slightly simplified
form and translated into our notations.

Theorem 5.4 (Goldstine et al. [7]) For n ≥ 2 there exists a regular lan-
guage Ln such that nsc(Ln) = n+ 1, sc(Ln) = 2n and

nscβ≤k(Ln) is between

2

n
k and 2k · 2

n
k − 1 for 2 ≤ k < n

log2 n
,

n+ 1 and 2k · 2
n
k − 1 for n

log2 n
≤ k < n,

n+ 1 and 4n− 1 for k ≥ n.
1The latter is given as 2n in [15, 18] because the paper requires the DFAs to be complete.

9

By Theorems 5.1 and 5.3 we know that a finite degree of ambiguity or
finite branching does not improve the worst case exponential cost of deter-
minization. On the other hand, an NFA with finite computation width has
an equivalent DFA of polynomial size.

Theorem 5.5 (Palioudakis et al. [24]) If A is an NFA with n states and
cwA ≤ k for some k ≤ n−1, then sc(L(A)) ≤ 1+

∑k
j=1

(
n−1
j

)
. Furthermore,

for every 1 ≤ k ≤ n− 1, there exists an n state NFA An,k with computation

width k over a binary alphabet such that sc(L(An,k)) = 1 +
∑k

j=1

(
n−1
j

)
.

The determinization of MDFAs involves a similar size trade-off and the lower
bound construction used for Theorem 5.5 is modified from Holzer et al. [10].
Palioudakis et al. [24] gives also an upper bound 1 +

∑k−`+1
i=1

(
n−1
i

)
for con-

verting an n state NFA with computation width k to an NFA with compu-
tation width 2 ≤ ` < k. However, a corresponding lower bound is missing
and for computation width we do not have a spectrum result analogous to
Theorem 5.4.

By noting that finite computation width implies finite ambiguity, The-
orem 5.1 establishes that the worst case cost of converting an NFA with
finite computation width to a UFA is the same as determinizing an arbitrary
NFA. For the converse transformation Palioudakis et al. [24] has observed,
by modifying constructions of Goldstine et al. [7] and Leung [18], that for
any n ≥ 4 there exists an UFA A with n states such that any NFA with
finite computation width equivalent to A needs 2n−1 states.

The deviation number [5] counts the computations “branching out” from
a best accepting computation. For any NFA A with finite computation
width, dnA ≤ cwA − 1. If the NFA A is constructed in a way that forces it
to make the nondeterministic choices sequentially, and the “wrong” choice
always leads to failure without further nondeterminism, then the deviation
number of A is exactly one less than the computation width of A. It is known
that for some regular languages the minimal NFA must have this property.
Note that for any DFA A, cwA = 1 and dnA = 0. In the result below the
condition nscdn≤k(Lk) < nscdn≤k−1(Lk) guarantees that the minimal NFA
for Lk needs to have deviation number at least k – otherwise the equality
would be satisfied by any regular language L such that the minimal DFA
for L is also minimal as an NFA.

Proposition 5.1 (Goc and Salomaa [5]) For every k ∈ N there exists a
regular language Lk (over a three letter alphabet) such that

nsccw≤k+1(Lk) = nscdn≤k(Lk) < nscdn≤k−1(Lk).

Contrasting the languages of Proposition 5.1, there exist languages for
which an NFA of given computation width needs to be super-polynomially
larger than an NFA with the same deviation number.

10

Theorem 5.6 (Goc and Salomaa [5]) For k, s ∈ N there exists a language
Lk,s over an alphabet of size s recognized by an NFA having size (k+ 1) · sk
and deviation number kdlog se+ 1 such that for any constant c ≥ 1,

nsccw≤c·k·log s(Lk,s) ∈ Ω(c · k · (log s) · 2
s

c·log s).

The inequalities of Lemma 4.1 imply the following state complexity com-
parison between finite computation width and finite trace:

Theorem 5.7 (Palioudakis et al. [25]) For any regular L and k ∈ N,

nsccw≤k(L) ≤ nscτ≤k(L) ≤ nsccw≤log(k−1)(L).

It is known that the first inequality cannot be improved because for any
unary regular language L and all k ∈ N, nsccw≤k(L) = nscτ≤k(L) [27]. It
remains an open problem whether there exist regular languages for which
the second inequality of Theorem 5.7 is an equality.

Directly from the definitions it follows that, for any NFA A, βA ≤ τA
and hence Theorem 5.7 implies that for any regular language L and k ∈ N,
nscβ≤2k−1(L) ≤ nsccw≤k(L).

For the converse state complexity comparison between branching and
computation width, we recall that Kappes [12] has given a nice construction
based on modular arithmetic that simulates an NFA with finite branching
by an MDFA.

Theorem 5.8 (Kappes [12]) An NFA with n states having branching k can
be simulated by a k-MDFA with k · n states.

Strictly speaking, Kappes [12] constructs a k-MDFA with k · n + 1 states
including a dead state (which can be omitted with our conventions). Now
observing that a k-MDFA can be converted to an NFA with computation
width k by adding one more state, we have:

Corollary 5.1 For any regular language L, nsccw≤k(L) ≤ k ·nscβ≤k(L)+1.

It is not known whether the bound of Corollary 5.1 is the best possi-
ble. On the other hand, we know that the transformation of Theorem 5.8
converting an NFA with finite branching to an MDFA is almost optimal.

Theorem 5.9 (Palioudakis et al. [26]) For infinitely many values n, k ∈ N,
an MDFA equivalent to an NFA with n states and branching k needs, in the
worst case, size k

1+log k · n.

Most of the above state complexity results deal only with finite nonde-
terminism measures. With the exception of the exponential trade-off be-
tween NFAs with polynomial and exponential ambiguity, respectively (The-
orem 5.2 [16]), very little is known about descriptional complexity compar-
isons between the various nondeterminism measures in the case where the

11

amount of nondeterminism is unbounded. For example, for a given regular
language, the comparison between optimal sizes of NFAs having polynomial
and exponential growth rate of computation width remains open.

References

[1] H. Björklund and W. Martens, The tractability frontier for NFA minimization. J.
Comput. System Sci. 78 (2012) 198–210.

[2] T. Chan and O.H. Ibarra, On the finite valuedness problem for sequential machines.
Theoret. Comput. Sci. 23 (1983) 95–101.

[3] Y. Gao, N. Moreira, R. Reis and S. Yu, A review on state complexity of individual
operations. Faculdade de Ciencias, Universidade do Porto, Technical Report DCC-
2011-8 www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf To appear in
Computer Science Review.

[4] Y. Gao and S. Yu, State complexity and approximation. Int. J. Found. Comput. Sci.
23(5) (2012) 1085–1098.

[5] D. Goc and K. Salomaa, Computation width and deviation number. Proceedings of
DCFS 2014, Lect. Notes Comput. Sci. 8614, Springer (2014) 150–161.

[6] J. Goldstine, M. Kappes, C.M.R. Kintala, H. Leung, A. Malcher and D. Wotschke,
Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci.
8 (2002) 193–234.

[7] J. Goldstine, C.M.R. Kintala and D. Wotschke, On measuring nondeterminism in
regular languages. Inform. Comput. 86 (1990) 179–194.

[8] J. Goldstine, H. Leung and D. Wotschke, On the relation between ambiguity and
nondeterminism in finite automata. Inform. Comput. 100 (1992) 261–270.

[9] M. Holzer and M. Kutrib, Descriptional and computational complexity of finite au-
tomata — A survey. Inform. Comput. 209 (2011) 456–470.

[10] M. Holzer, K. Salomaa and S. Yu, On the state complexity of k-entry deterministic
finite automata. J. Automata, Languages and Combinatorics 6 (2001) 453–466.

[11] J. Hromkovič, S. Seibert, J. Karhumäki, H. Klauck and G. Schnitger, Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput. 172 (2002) 202–217.

[12] M. Kappes, Descriptional complexity of deterministic finite automata with multiple
initial states. J. Automata, Languages, and Combinatorics 5 (2000) 269–278.

[13] C.M.R. Kintala and D. Wotschke, Amounts of nondeterminism in finite automata.
Acta Inf. 13 (1980) 199–204.

[14] M. Kutrib and G. Pighizzini, Recent trends in descriptional complexity of formal
languages. Bulletin of the EATCS 111 (2013) 70–86.

[15] E. Leiss, Succinct representation of regular languages by Boolean automata. Theoret.
Comput. Sci. 13 (1981) 323–330.

[16] H. Leung, Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4) (1998) 1073–1082.

[17] H. Leung, On finite automata with limited nondeterminism. Acta Inf. 35 (1998) 595–
624

[18] H. Leung, Descriptional complexity of NFA of different ambiguity. Internat. J. Foun-
dations Comput. Sci. 16 (2005) 975–984.

12

[19] O.B. Lupanov, A comparison of two types of finite sources. Problemy Kibernetiki 9
(1963) 328–335.

[20] A. Mandel and I. Simon, On finite semi-groups of matrices, Theoret. Comput. Sci. 5
(1977) 183–204.

[21] A.N. Maslov, Estimates on the number of states of finite automata. Soviet Math.
Dokl. 11 (1970) 1373–1375.

[22] A.R. Meyer and M.J. Fischer, Economy of description by automata, grammars and
formal systems. Proc. SWAT (FOCS), IEEE Computer Society (1971) 188–191.

[23] F.R. Moore, On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on
Computers C-20 (1971) 1211–1214.

[24] A. Palioudakis, K. Salomaa, and S.G. Akl, State complexity of finite tree width NFAs.
J. Automata, Languages and Combinatorics 17 No. 2–4 (2012) 245–264.

[25] A. Palioudakis, K. Salomaa, and S.G. Akl, Comparisons between measures of nonde-
terminism for finite automata. Proceedings of DCFS 2013, Lect. Notes Comput. Sci.
8031, Springer, (2013) 217–228.

[26] A. Palioudakis, K. Salomaa, and S.G. Akl, Lower bound for converting an NFA with
finite nondeterminism into an MDFA. J. Automata, Languages and Combinatorics
19 (2014) 251–264.

[27] A. Palioudakis, K. Salomaa, and S.G. Akl, Unary NFAs with limited nondeterminism.
Proceedings of SOFSEM’14. Lect. Notes Comput. Sci. 8327, Springer (2014) 443–454.

[28] A. Palioudakis, State complexity of nondeterministic finite automata with limited
nondeterminism. PhD thesis, Queen’s University, Kingston, Canada, 2014.

[29] B. Ravikumar and O.H. Ibarra, Relating the degree of ambiguity of finite automata
to the succinctness of their representation. SIAM J. Comput. 18 (1989) 1263–1282.

[30] C. Reutenauer, Propiétés arithmétiques et topologiques des séries rationnelles en vari-
able non commutative. Tèse de troisuème cycle, Université Paris VI, 1977.

[31] E.M. Schmidt, Succinctness of descriptions of context-free, regular and finite lan-
guages. PhD thesis, Cornell University, Ithaca, NY, 1978.

[32] J. Shallit, A Second Course in Formal Languages and Automata Theory, Cambridge
University Press, 2009.

[33] A. Weber and H. Seidl, On the degree of ambiguity of finite automata. Theoret.
Comput. Sci. 88 (1991) 325–349.

[34] S. Yu, Regular languages, in: Handbook of Formal Languages, Vol. I, (G. Rozenberg,
A. Salomaa, Eds.), Springer, 1997, pp. 41–110.

Alexandros Palioudakis
Institution: Department of Computer Science, Yonsei University
Post address: 50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Korea
Email: alex@cs.yonsei.ac.kr

Kai Salomaa and Selim G. Akl

Institution: School of Computing, Queen’s University

Post address: Kingston, Ontario K7L 2N8, Canada

E-mail: {ksalomaa, akl}@cs.queensu.ca

