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Abstract

It is known that a nondeterministic input-driven pushdown automaton (IDPDA) (a.k.a. visibly pushdown
automaton; a.k.a. nested word automaton) of size n can be transformed to an equvalent deterministic
automaton of size 2Θ(n2) (B. von Braunmühl, R. Verbeek, “Input-driven languages are recognized in log n
space”, FCT 1983), and that this size is necessary in the worst case (R. Alur, P. Madhusudan, “Adding
nesting structure to words”, J.ACM, 2009). This paper demonstrates that the same worst-case 2Θ(n2) size
blow-up occurs when converting a nondeterministic IDPDA to an unambiguous one, and an unambiguous
IDPDA to a deterministic one. In addition, the methods developed in this paper are used to demonstrate
that the descriptional complexity of complementation for nondeterministic IDPDAs is 2Θ(n2), and that the
descriptional complexity of homomorphisms for deterministic IDPDAs is 2Θ(n2) as well.

Keywords: nondeterminism, unambiguity, input-driven pushdown, visibly pushdown automata, nested
word automata, descriptional complexity

1. Introduction

An input-driven pushdown automaton, first considered by Mehlhorn [23] in 1980, has an input alphabet
split into three classes, and the type of the current symbol determines whether the automaton must push
onto the stack, pop from the stack, or ignore the stack. Mehlhorn [23] showed that the languages recognized
by such automata, called input-driven languages, have space complexity O

(
log2 n

log log n

)
. This bound was further

improved to O(log n) by von Braunmühl and Verbeek [8], and later Rytter [32] obtained a different algorithm
with the same space requirements. Input-driven languages were proved to be in NC1 by Dymond [10]. Von
Braunmühl and Verbeek [8] have also demonstrated that the nondeterministic variant of the model is equal
in power to the deterministic one.

Input-driven automata were rediscovered and further studied by Alur and Madhusudan [3] in 2004
under the name of visibly pushdown automata. In particular, they showed that a deterministic automaton
simulating a nondeterministic automaton with n states and stack symbols needs in the worst case 2Θ(n2)

states, and that the class of input-driven languages has strong closure properties. Various aspects of visibly
pushdown automata were researched in further papers [2, 3, 7, 9, 25]. Later, Alur and Madhusudan [4]
suggested to regard this model as automata operating on nested words, which provide a natural data model
for such applications as XML document processing, where the data has a dual linear-hierarchical structure [1,
5]. The nested word automaton model has been studied in a number of papers [1, 5, 14, 29, 33].

IA preliminary version of this paper, entitled “Descriptional complexity of unambiguous nested word automata”, was
presented at the Languages and Automata Theory and Applications (LATA 2011) conference held in Tarragona, Spain, May
26–31, 2011, and its extended abstract appeared in the conference proceedings.
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Yet another mathematically equivalent model are the pushdown forest automata of Neumann and
Seidl [24]. A pushdown forest automaton is a tree automaton that traverses a tree in depth-first left-
to-right order and is equipped with a stack, which is manipulated as follows: whenever the machine goes
down to the leftmost child, it pushes a symbol onto the stack, and as it returns from the rightmost child, it
pops a symbol off the stack. The class of tree languages recognized by pushdown forest automata coincides
with the regular tree languages. Pushdown forest automata were found to be equivalent to input-driven
pushdown automata by Gauwin et al. [11].

Of all the different terminology for this machine model, this paper sticks to the original name of input-
driven pushdown automata (IDPDA) and to their pushdown automata semantics. Though the name “visibly
pushdown automaton” has been more widespread in the recent literature, the authors believe that the
original name better describes this model: for example, Bollig [7] uses the term “input-driven” to describe
the operation of these automata, in spite of being unaware of their original name. In the following, when
citing results from papers using any equivalent automaton model, the terminology shall be translated to
that of input-driven pushdown automata without separate mention.

It is known from Alur and Madhusudan [4] that a deterministic input-driven pushdown automaton
(DIDPDA) equivalent to a nondeterministic one (NIDPDA) with n states and stack symbols needs in the
worst case 2Θ(n2) states. Later Okhotin et al. [27] refined the result by giving a lower bound construction that
is tight within a multiplicative constant both for the number of states and the number of stack symbols. A
similar result for finite automata, that an n-state nondeterministic automaton (NFA) requires up to exactly
2n states in a deterministic one (DFA), is well-known, and there exists a vast literature on descriptional
complexity of different kinds of finite automata [16]. For instance, precise succinctness tradeoffs between
two-way and one-way finite automata were determined by Kapoutsis [19] for an unbounded alphabet, and by
Kunc and Okhotin [20] in the case of a one-letter alphabet. There exists an important intermediate class of
finite automata located between NFAs and DFAs: the unambiguous finite automata (UFA), which are NFAs,
where every accepted string must have a unique accepting computation. The first state complexity studies
on UFAs [30, 34] and on automata employing different degrees of ambiguity [12, 21] led to the following
tradeoffs. Leung [22] proved that simulating an n-state UFA requires, in the worst case, a DFA with 2n

states, while the NFA-to-UFA tradeoff is 2n − 1. In the case of a one-letter alphabet, the UFA-to-DFA and
NFA-to-UFA tradeoffs are known from Okhotin [26], and are estimated as eΘ(

3√
n ln2 n) and e(1+o(1))

√
n ln n,

respectively.
This paper introduces unambiguous input-driven pushdown automata (UIDPDA), and investigates their

descriptional complexity tradeoffs with DIDPDAs and NIDPDAs. In Sections 4–5 it is shown that converting
an unambiguous automaton of size n to a deterministic one, or nondeterministic automaton of a size n to
an unambiguous automaton, requires size 2Θ(n2) in the worst case. By the size of an IDPDA we mean the
sum of the number of states and of stack symbols. That is, in both cases, the size explosion is the same as
for determinizing an NIDPDA.

To establish lower bounds on the size of NIDPDAs, this paper employs fooling set methods [14, 29], that
have been originally introduced for proving lower bounds for NFAs [6, 35]. The general lower bound method
for UFAs is based on the rank of a fooling set matrix; it was developed by E. M. Schmidt [34] already in
1978, and a good self-contained presentation was given by Leung [22]. Also Hromkovič et al. [17] have given
an alternative proof using communication complexity. The lower bound technique based on the rank of a
fooling set matrix is extended to unambiguous input-driven automata in Section 3.

The ideas used to establish the tradeoffs in Sections 4–5 are next applied to obtain further results on the
complexity of operations on input-driven automata, in line with some recent work [14, 28, 29, 33]. The first
operation to be investigated is complementation. It is known that the complement of an n-state NFA needs
in the worst case 2n states [15], and the same bound for languages over a binary alphabet is known from
Jirásková [18]. In other recent work, the complementation of two-way finite automata was studied by Geffert
et al. [13], and complementation of unary UFAs was investigated by Okhotin [26]. For NIDPDAs, Han and
Salomaa [14] gave a lower bound of

√
n! states for complementing nondeterministic nested word automata,

leaving the precise state complexity open. This paper demonstrates, in Section 6, that the complexity of
complementation for NIDPDAs is 2Θ(n2): in other words, in the worst case, one essentially has to determinize
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the automaton in order to represent its complement.
In the last Section 7, the complexity of homomorphisms for DIDPDAs is determined to be 2Θ(n2) as well.

The lower bound construction again relies on a modification of the languages used for the lower bound for
the NIDPDA-to-UIDPDA conversion.

2. Input-driven pushdown automata

We assume that the reader is familiar with the basics of formal languages and finite automata [31, 35, 36].
The original reference on input-driven pushdown automata is the paper by Mehlhorn [23], and more details
on this model and on its applications, as well as recent references, are given by Alur and Madhusudan [4].

In the following, Σ always denotes a finite alphabet. The set of strings over Σ is Σ∗, and Σ+ is the set
of nonempty strings. Let Σ6m with m > 0 denote the set of all strings over Σ of length at most m.

For m ∈ N, denote [1,m] = {1, . . . ,m}. For every binary string w = b`−1 . . . b1b0 ∈ {0, 1}∗, denote its
numerical value by (w)2 =

∑`−1
i=0 bi2i.

Next, recall and introduce definitions and notation concerning input-driven pushdown automata. An
action alphabet is a triple Σ̃ = (Σ+1,Σ−1,Σ0), in which the components Σ+1, Σ−1 and Σ0 are finite disjoint
sets. Unless otherwise mentioned, Σ+1, Σ−1 and Σ0 always refer to components of an action alphabet, and
their union is denoted by Σ. In the following, Σ is always the “underlying alphabet” of an action alphabet,
and when referring to a string w ∈ Σ∗, the symbols occuring in w are assumed to have types.

The distinguishing property of input-driven pushdown automata is that the type of the stack operation
is always determined by the input symbol, and in the definition of an NIDPDA it is convenient to use three
separate transition functions, one for each type of input symbol.

Definition 1. A nondeterministic input-driven pushdown automaton, NIDPDA, is a tuple

A = (Σ̃,Γ, Q, q0, F, δ0, δ+1, δ−1)

where Σ = Σ+1 ∪ Σ−1 ∪ Σ0 is the input alphabet, Γ is the finite set of stack symbols, Q is the finite set of
internal states, q0 ∈ Q is the start state, F ⊆ Q is the set of final states, δ0 : Q × Σ0 → 2Q is the internal
transition function, and δ+1 : Q × Σ+1 → 2Q×Γ and δ−1 : Q × (Γ ∪ {⊥}) × Σ−1 → 2Q are the transition
functions determining the push and pop operations, respectively. The symbol ⊥ 6∈ Γ is used to denote the
empty stack.

A configuration of A is a tuple (q, w, u), where q ∈ Q is the state, w ∈ Σ∗ is the remaining input and
u ∈ Γ∗ is the stack contents. A stack ε is, for the purposes of the transition relation δ−1, interpreted to
contain the bottom of stack symbol ⊥. The height of the stack of a configuration (q, w, u) is |u|, and hence
the height of the empty stack is zero. The set of configurations of A is C(A), and we define the single step
computation relation `A⊆ C(A)× C(A) as follows.

For a ∈ Σ0 we have: (q, aw, u) `A (q′, w, u), for all q′ ∈ δ0(q, a), w ∈ Σ∗ and u ∈ Γ∗.

For a ∈ Σ+1 we have: (q, aw, u) `A (q′, w, γu), for all (q′, γ) ∈ δ+1(q, a), γ ∈ Γ, w ∈ Σ∗ and u ∈ Γ∗.

For a ∈ Σ−1 we have: (q, aw, γu) `A (q′, w, u) for all q′ ∈ δ−1(q, γ, a), γ ∈ Γ, w ∈ Σ∗ and u ∈ Γ∗; further-
more, (q, aw, ε) `A (q′, w, ε), for all q′ ∈ δ−1(q,⊥, a) and w ∈ Σ∗.

According to the last case, when the automaton A encounters a symbol a ∈ Σ−1 with an empty stack,
it can make any transition chosen from δ−1(q,⊥, a), where q ∈ Q is the current state of A, and the stack
remains empty. When reading a symbol from Σ0 ∪ Σ+1, the behaviour does not depend on the top stack
symbol. Naturally, given an NIDPDA A, it would be possible to construct an NIDPDA B that simulates
the computation of A and keeps track (in its state) of the topmost stack symbol in the corresponding
computation of A, however, the transformation would need to increase the number of states and stack
symbols of A.
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Figure 1: Recognizing the language Ln from Proposition 1 by an NIDPDA with O(n) states.

The initial configuration of A on an input w ∈ Σ∗ is Cinit
A (w) = (q0, w, ε). The language recognized by A

is defined as
L(A) = {w ∈ Σ∗ | Cinit

A (w) `∗A (q, ε, u) for some q ∈ F, u ∈ Γ∗}.

An IDPDA accepts by final state only. By an input-driven language we mean a language recognized by some
IDPDA.

As special cases of the automata of Definition 1, we obtain the unambiguous and the deterministic nested
word automata. An input-driven pushdown automaton A is unambiguous (a UIDPDA) if it has exactly one
accepting computation for any w ∈ L(A), that is, a unique sequence of configurations C1, C2, . . . , Cm such
that C1 = Cinit

A (w), Ci `A Ci+1, 1 ≤ i ≤ m− 1, and Cm is of the form (q, ε, u) where q ∈ F , u ∈ Γ∗.
An input driven pushdown automaton A is said to be deterministic (a DIDPDA) if its transition functions

δ0, δ+1 and δ−1 give at most one action in each configuration, that is, are defined as partial functions
δ0 : Q× Σ0 → Q, δ+1 : Q× Σ+1 → Q× Γ and δ−1 : Q× (Γ ∪ {⊥})× Σ−1 → Q.

When speaking about the descriptional complexity of input-driven pushdown automata, by the size of
an NIDPDA A as in Definition 1 we mean the sum of the number of its states and the number of its stack
symbols, that is, |Q|+ |Γ|.

The following result gives an upper bound on the size blow-up of determinizing an NIDPDA. Note that
in Proposition 1, as well as in the following sections, when citing results from papers using the nested word
automaton formalism, we translate them to the terminology of input-driven pushdown automata, that is,
we speak about states and stack symbols instead of linear and vertical states.

Proposition 1 (Alur and Madhusudan [4]). An NIDPDA with k states and h stack symbols can be simulated
by a DIDPDA with 2k·h states and 2h2

stack symbols. There exist languages Ln for n > 1, recognized by
NIDPDAs of size O(n) such that any DIDPDA for Ln needs size 2n2

.

A matching lower bound for both the number of states and the number of stack symbols was given by
Okhotin, Piao and Salomaa [27].

The second part of Proposition 1, where the languages Ln are constructed, deserves an explanation,
because this paper develops two new constructions of similar languages with different properties. The
witness languages of Alur and Madhusudan [4] are defined as

Ln =
{

<u1#v1#u2#v2# . . .#u`#v`$v>u
∣∣ ` > 1, ui, vi ∈ {0, 1}+ for all i ∈ {1, . . . , `}, u, v ∈ {0, 1}dlog ne,

and there exists t ∈ {1, . . . ,m} with u = ut, v = vt

}
,

and an NIDPDA with O(n) states recognizes this language as follows. At the first step of the computation,
upon reading the left bracket <, the automaton guesses the string u and pushes a symbol representing
this string to the stack, as well as stores it in the internal state. Then the automaton nondeterministically
decides to skip any even number of blocks, verifies that the next string is u, and then stores the following
string v in its internal state. After skipping until the dollar sign, the automaton verifies that the last string
inside the brackets is exactly v. Finally, upon reading the right bracket > the automaton pops u from the
stack and compares this string to the remaining symbols of the input string, to verify that they are the
same. The data flow in such a computation is illustrated in Figure 1.
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2.1. Stack height, well nested strings and homomorphisms
Since the type of the stack operation is always uniquely determined by the input symbol, the height of

the stack that any NIDPDA reaches after reading an input string w is uniquely determined by w. Thus we
can introduce the following notion of stack height.

A configuration (q, ε, u), with q ∈ Q, u ∈ Γ∗ and with the remaining input empty, is called a terminal
configuration. If Cinit

A (w) `∗A C, where C is a terminal configuration, we say that the stack height of w
is |u|. As observed above, the stack height of a string w is a property of w that does not depend on the
nondeterministic choices made by A during the computation.

A string w over an action alphabet Σ̃ defines a natural matching relation between occurrences of elements
of Σ+1 and of Σ−1, respectively, by matching each occurrence of an element of Σ+1 with the next unmatched
occurrence of an element of Σ−1 [4]. In an arbitrary computation of an NIDPDA on a string w, a stack
symbol pushed at an occurrence of a symbol of Σ+1 will always be popped at a matching occurrence of
a symbol from Σ−1, assuming that there is a matching symbol of type −1 in w. (If there is no matching
occurrence of a symbol of type −1, the stack symbol will never be popped.) The stack height of w is then
defined as the number of occurrences of symbols of type +1 in w that do not have a matching symbol of
type −1.

We say that w ∈ Σ∗ is well nested , if every occurrence of a symbol of Σ+1 has a matching occurrence
of a symbol of Σ−1, and vice versa. The computations of an input-driven pushdown automaton on a well
nested string w have the following property: if an NIPDPA A begins reading w with stack contents u, the
computation ends with the same stack contents u without ever touching the initial contents of the stack.

Since the stack operations of an NIDPDA are determined by the type of the input symbols, arbitrary
homomorphisms defined on Σ = Σ+1 ∪ Σ−1 ∪ Σ0 do not preserve the class of input-driven languages: for
instance, if a symbol in Σ+1 is mapped to a string of two symbols from Σ+1, then it breaks the nestedness of
brackets, and may map such an input-driven language as {<n>n | n > 0 } to a non-input-driven language
{<2n>n | n > 0 }. Below we define a class of homomorphisms that respect the types of symbols and, thus,
maintain the nesting of the correspondence between occurrences of symbols of type +1 and −1, respectively.

Definition 2. Let Σ̃ be an action alphabet. Let h : Σ̃ → Σ∗ be a mapping such that

(i) for each σ ∈ Σ0, h(σ) is well nested,

(ii) for each σ ∈ Σ+1, h(σ) contains exactly one unmatched symbol of type +1 and no unmatched symbols
of type −1,

(iii) for each σ ∈ Σ−1, h(σ) contains exactly one unmatched symbol of type −1 and no unmatched symbols
of type +1.

The mapping h determines a homomorphism that respects nesting h : Σ∗ → Σ∗ by setting h(ε) = ε, and,
for σ ∈ Σ, w ∈ Σ∗, h(σw) = h(σ)h(w). For simplicity we use h in place of h.

We say that h is a Σ0-relabeling if h is the identity on Σ+1 and Σ−1, and maps symbols of Σ0 into Σ0

(not necessarily injectively).

In the following, unless otherwise mentioned, by a homomorphism we mean always a homomorphism
that respects nesting. Note that Alur and Madhusudan [4] used a slightly different definition for the above
notion: they consider a multiple-valued substitution, in which all strings in each set h(σ) with σ ∈ Σ+1,
have an unmatched symbol of type +1 as their first symbols, while all images of σ ∈ Σ−1 must end with
a unique unmatched symbol, A one-valued homomorphism that respects nesting according to Alur and
Madhusudan [4] is a special case of a homomorphism of Definition 2. As in the cited paper [4], it can be
shown that the family of input-driven languages is closed under homomorphisms (that respect nesting).

3. Lower bounds on the size of input-driven automata

We recall some techniques for establishing lower bounds on the size of deterministic and nondeterministic
input-driven pushdown automata [14, 29]. These results are straightforward extensions of the well-known
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fooling set method for NFAs [6, 35]. However, already in the case of deterministic input-driven pushdown
automata, these methods do not always yield a precise lower bound [33].

Let Σ̃ = (Σ+1,Σ−1,Σ0) be an action alphabet and, as usual, we denote Σ = Σ+1 ∪Σ−1 ∪Σ0. For k > 1,
a set of depth k is a finite set S of strings over Σ each having stack height k. A finite set of pairs of strings
F = {(xi, yi) | i = 1, 2, . . . ,m} is said to be a set of pairs of depth k, where k > 1, if each string xi has stack
height k.

Definition 3. Let Σ̃ = (Σ+1,Σ−1,Σ0) be an action alphabet and let L ⊆ Σ∗.

(i) A set S of depth k is a separator set of depth k for L, if every element of S is a prefix of some string
in L, and for any two-element set {u, v} ⊆ S with u 6= v, there exists x ∈ Σ∗, such that one of the
strings ux, vx is in L, while the other is not.

(ii) A set of pairs F = {(x1, y1), . . . , (xm, ym)} of depth k is said to be a fooling set of depth k for L, if

(ii-a) xiyi ∈ L for all i ∈ {1, 2, . . . ,m}, and

(ii-b) for all i, j with 1 6 i < j 6 m, xiyj /∈ L or xjyi /∈ L.

Lemma 1 ([14, 29]). Let A be a (deterministic or nondeterministic) input-driven pushdown automaton with
a set of states Q and a set of stack symbols Γ.

(i) If A is a DIDPDA and S is a separator set of depth k for L(A) then |Γ|k · |Q| > |S|.

(ii) If L(A) has a fooling set F of depth k, then |Γ|k · |Q| > |F |.

The above definition of a fooling set of depth k is similar to the fooling sets of Birget [6] used for NFAs.
In the case of DIDPDAs, there is a unique computation on a given prefix, which means that instead of pairs
of strings, it is sufficient to consider only individual strings to be separated. The requirement that all strings
of a separator set of depth k (or first components of a fooling set of depth k) must have the same stack
height limits the use of Lemma 1.

We need a stronger lower bound condition for UIDPDAs to establish a trade-off for converting a non-
deterministic automaton to an unambiguous one. In the domain of ordinary finite automata without a
pushdown, the first lower bound argument for UFAs was given by Schmidt [34, Thm. 3.9] in his proof of
a 2Ω(

√
n) lower bound on the NFA-to-UFA tradeoff. We recall here a general statement of Schmidt’s lower

bound method due to Leung [22]:

Schmidt’s Theorem [34, 22]. Let L ⊆ Σ∗ be a regular language and let F = {(u1, v1), . . . , (un, vn)}
with n > 1 and ui, vi ∈ Σ∗ be a finite set of pairs of strings. Consider the integer matrix M(F,L) ∈ Zn×n

defined by M(F,L)i,j = 1 if uivj ∈ L, and M(F,L)i,j = 0 otherwise. Then every UFA recognizing L has at
least rank M(F,L) states.

We translate Schmidt’s Theorem to the case of unambiguous input-driven pushdown automata. Let L be
an input-driven language and let F = {(xi, yi) | i = 1, . . . , n} be a set of pairs of depth k > 1. Analogously
to the above, we define an integer matrix M(F,L) ∈ Zn×n by setting M(F,L)i,j = 1 if xiyj ∈ L and
M(F,L)i,j = 0 otherwise.

Lemma 2. Let F = {(xi, yi) | i = 1, . . . , n} be a set of pairs of depth k. Suppose that an input-driven
language L is recognized by a UIDPDA A with a set of states Q and a set of stack symbols Γ. Then

|Γ|k · |Q| > rank M(F,L).

Proof. The proof is analogous to the one given by Leung [22, Thm. 2], except that instead of considering
the states reached by A after reading each string xi, we now consider both the states and the stack contents
that the computations of A reach after reading each string xi. For completeness, we include here a short
proof.
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We define a matrix M̂(F,A), where the rows are indexed by elements f ∈ Γk × Q and the columns are
indexed by the strings yi with 1 6 i 6 n, by setting M̂(F,A)f ,yi

= 1 if f = (u, q) and A has an accepting
computation starting from the configuration (q, yi, u), and M̂(F,A)f ,yi = 0 otherwise.

For each i ∈ {1, . . . , n}, let Hi ⊆ Γk ×Q be the set of pairs of stack contents and states that A can reach
after reading one of the inputs x1, . . . , xn. Recall that since xi has stack height k, the stack contents of A
after reading xi is in Γk. We note that the unambiguity of A guarantees that if M̂(F,A)f ,yj = 1 for some
f ∈ Hi, 1 6 j 6 n, then M̂(F,A)f ′,yj

= 0 for all f ′ ∈ Hi, f ′ 6= f . This means that the ith row of M(F,L)
(corresponding to xi) is a sum of the rows of M̂(F,A) indexed by elements of Hi. Since each row of M(F,L)
is a sum of rows of M̂(F,A),

rank M(F,L) 6 rank M̂(F,A).

On the other hand, rank M̂(F,A) 6 |Γ|k · |Q|, which is the number of rows of M̂(F,A).

4. From unambiguous to deterministic

The size blow-up of converting a UIDPDA to a DIDPDA turns out to be, in the worst case, the same
as for determinizing a general nondeterministic nested word automaton. Recall that, as elsewhere in this
paper, the size of an input-driven pushdown automaton means the sum of the number of states and the
number of stack symbols.

Theorem 1. For every n > 1 there exists an input-driven language Kn recognized by a UIDPDA of size
O(n), such that every DIDPDA for Kn needs size 2Θ(n2).

Proof. Let Σ0 = {0, 1,#, $}, Σ+1 = {<}, Σ−1 = {>}. For n > 1 define the language

Kn =
{

<x0#x1# . . .#x`$v>u
∣∣ xi ∈ {0, 1}∗ for all i ∈ {1, . . . , `}, u, v ∈ {0, 1}dlog ne,

and the bit number (v)2 in x(u)2 is 1
}

The language Kn is recognized unambiguously as follows. In the following discussion, we assume that the
input string is in <({0, 1}∗#)∗{0, 1}∗${0, 1}∗>{0, 1}∗, that is, of the general form given in the definition of
the language Kn. By increasing the number of states of the UIDPDA with a multiplicative constant, it is
easy to guarantee that all computations reject otherwise.

The computation of an UIDPDA A recognizing the language Kn is illustrated in Figure 2. At the first
input symbol < ∈ Σ+1, the automaton guesses a string u ∈ {0, 1}dlog ne and stores it both in its state and in
the symbol pushed to the stack. Using the state, the computation counts the separation markers # to locate
the (u)2-th binary substring x(u)2 , forgetting (u)2 in the process. Then, the automaton nondeterministically
chooses any true bit of x(u)2 and remembers the number of this bit in the internal state; let this be the
(v)2-th bit of x(u)2 , with v ∈ {0, 1}dlog ne. The next task carried out by the automaton is checking that
the binary string occurring after the marker $ equals to v. Finally, after popping the stack at the symbol
> ∈ Σ−1, the computation verifies, using the information in the symbol popped from the stack, that the
binary string after the symbol > is equal to u. All nondeterministic choices in a successful computation
are pre-determined by the suffix of the input v>u, and for each input there can be only one accepting
computation. This computation is illustrated in Figure 2.

It remains to show the lower bound on the size of any DIDPDA recognizing Kn. For every set R ⊆
{0, . . . , n− 1}2, consider the unique string

wR = <x0#x1# . . .#xn−1$,

where xi ∈ {0, 1}n and for each i, j ∈ {0, . . . , n− 1}, the jth bit of xi is 1 iff (i, j) ∈ R.

It is claimed that the set of strings wR, with R ⊆ {0, . . . , n − 1}2, is a separator set of depth 1 for Kn.
Indeed, for any distinct sets R1 6= R2 there is a pair (i, j) belonging to one of them but not to the other;
assume, without loss of generality, that (i, j) ∈ R1 \ R2. Let u, v ∈ {0, 1}dlog ne be the binary notations of
these numbers, with i = (u)2 and j = (v)2. Then wR1v>u ∈ Kn and wR2v>u /∈ Kn.

By Lemma 1 (i), any DIDPDA for Kn needs a size of at least 2
n2
2 .
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< x1 x(u)2 >$ v u. . .. . .

GUESS u COUNT (u)2 BLOCKS
STATE vGUESS BIT (v)2STATE u STATE u

u IN STACK u IN STACK

CHECK v CHECK u

x2

Figure 2: Recognizing the language Kn in the proof of Theorem 1 by a UIDPDA with Θ(n) states.

< $. . . >. . .

GUESS u
STATE vSTATE u

u IN STACK u IN STACK

GUESS BLOCK CHECK u READ v

v . . .

MATCH

. . .u

STATE uGUESS BLOCK CHECK v READ u

uv

Figure 3: Recognizing the language Ln in the proof of Theorem 2 by an NIDPDA with Θ(n) states.

5. From nondeterministic to unambiguous

We show that transforming an NIDPDA to an equivalent UIDPDA entails, in the worst case, the same
2Ω(n2) size blow-up as for the conversion of UIDPFAs to DIDPDAs.

We first define a class of languages Ln, with n > 1, that will be used for the lower bound construction,
as well as for establishing lower bounds in the later sections. Choose

Σ0 = {a, b, #}, Σ+1 = {<},Σ−1 = {>}

and define, for every n > 1,

Ln =
{

<ak1b`1 ak2b`2 . . . akmb`m # b`′
1ak′

1 b`′
2ak′

2 . . . b`′
m′ ak′

m′ >
∣∣

m,m′ > 1, ki, `i, k
′
j , `

′
j > 1, ∃s, t : ks = k′t 6 n, `s = `′t 6 n

}
. (1)

Theorem 2. For every n > 1, the language Ln is recognized by an NIDPDA of size O(n), but every
UIDPDA for Ln needs size at least 2b

n2
2 c−1.

Proof. An NIDPDA recognizing this language is defined as follows. Its computation on any well-formed
input in <{a, b}∗#{a, b}∗> aims to detect a pattern of the form < . . . uv . . . # . . . vu . . . >. Upon reading
the first symbol < ∈ Σ+1, the NIDPDA guesses an integer i ∈ {1, . . . , n} representing the string u = ai,
pushes a symbol representing i to the stack and remembers it in the state. Then the computation proceeds
as illustrated in Figure 3. First, it nondeterministically selects a substring of the form w = barbsa in the
part preceding the “middle marker” #, and verifies that r is equal to the number i stored in the state. If the
selected substring w occurs directly after <, the first b is missing; similarly, if w occurs directly before #,
then the last a is missing. Next, the computation memorizes the integer s in the state and proceeds to the
part after the symbol #, where another substring in b∗a∗ encoding a pair of integers is nondeterministically
selected. The computation verifies that the first component of this pair is equal to bs, and then memorizes
the second component in the state. Finally, upon the transition at the last symbol > ∈ Σ−1, this memorized
length of the second component is compared to the value of i stored in the stack.

The computation uses exactly n stack symbols. The state of the automaton needs to store an integer
of size at most n, count the length of a nondeterministically chosen unary string of length at most n and
remember whether or not the computation has passed the “middle marker” #. For this, O(n) states are
clearly sufficient.

For each set R ⊆ [1, n]× [1, n], define the strings xR = ai1bj1 · · · aimbjm and yR = bj1ai1 · · · bjmaim , where
R = {(i1, j1), . . . , (im, jm)}. For each R ⊆ [1, n] × [1, n], the elements of R are listed in an arbitrary but
fixed order, so that the strings xR and yR are fixed.
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The lower bound on the size of every UIDPDA recognizing this language is obtained by using a set of
pairs F of depth 1. The set F is of size 2b

n2
2 c consisting of some pairs (<xR#, yf(R)>), where R is a subset

of [1, n] × [1, n] of size bn2

2 c and f(R) is another subset of [1, n] × [1, n] of the same size depending on R.
We will need that for all R,S ⊆ [1, n]× [1, n], the sets R and f(S) are disjoint if and only if R = S.

The set F with the above properties is constructed as follows. Denote z = bn2

2 c. First consider the case
where n is even, and let

p(1,0), p(1,1), p(2,0), p(2,1), . . . , p(z,0), p(z,1) (2)

be an arbitrary but fixed enumeration of [1, n]×[1, n]. If n is odd, define the list (2) to contain all elements of
[1, n]× [1, n]\{(n, n)}, again listed in any order. For v = b1b2 · · · bz with bi ∈ {0, 1}, denote by v = b′1b

′
2 · · · b′z

the inverted string, where b′i = 1 if bi = 0 and b′i = 0 if bi = 1 for all i ∈ {1, . . . , z}. Also for v = {0, 1}z,
define the set Rv ⊆ [1, n]× [1, n] by setting

Rv = { p(1,b1), p(2,b2), . . . , p(z,bz) }.

Now define
F = { (<xRv#, yRv

> | v ∈ {0, 1}z },

which is a set of 2z = 2b
n2
2 c pairs.

The above choices guarantee that each string <xRv#yRv
> is not in Ln, while <xRv#yR

v′ > ∈ Ln for
all v 6= v′. Therefore, the corresponding matrix M(F,Ln), as defined in Lemma 2, has a zero diagonal and
ones as the rest of its elements. Hence, this 2z × 2z matrix has a full rank, and according to Lemma 2,
each UIDPDA with a set of states Q and a stack alphabet Γ recognizing the language Ln must satisfy
|Γ| · |Q| > 2b

n2
2 c.

6. Complementing nondeterministic automata

We show that complementing an NIDPDA of size n requires, in the worst case, size 2Θ(n2). We consider
again the languages Ln with n > 1, defined in (1), and the following lemma establishes the lower bound.

Lemma 3. Let A be an NIDPDA with a set of states Q and a pushdown alphabet Γ, which recognizes the
language Ln, where Ln is the language (1) defined in Section 5. Then |Q| · |Γ| > 2n2

.

Proof. The construction of a fooling set is similar to the construction used in Theorem 2, however, now the
fooling set can be based on arbitrary binary relations on [1, n].

As in the proof of Theorem 2, for each set R ⊆ [1, n] × [1, n] we define the strings xR ∈ (a+b+)∗ and
yR ∈ (b+a+)∗ that “list” the elements of R in an arbitrary order. We define a set of pairs S of depth 1 to
consist of all pairs (<xR#, yR>), where R ⊆ [1, n]× [1, n]. Since every R1, R2 ⊆ [1, n]× [1, n] with R1 6= R2

satisfy R1 ∩ R2 6= ∅ or R2 ∩ R1 6= ∅, one of the strings <xR1#yR2
>, <xR2#yR1

> must be in Ln. This
means that S is a fooling set of depth 1 for Ln, and the claim follows by Lemma 1 (ii).

As a consequence, we get a descriptional complexity bound for the complementation of NIDPDAs that
is tight within a multiplicative constant in the exponent.

Theorem 3. The worst-case size needed to recognize the complement of a language recognized by an NIDPDA
of size n is 2Θ(n2).

Proof. Proposition 1 gives an upper bound 2O(n2). By Theorem 2, the language Ln can be recognized by
an NIDPDA of size O(n), and hence the result follows by Lemma 3.
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7. Homomorphic images of deterministic automata

We establish a tight bound for the deterministic state complexity of homomorphisms that respect nesting.
Recall that, as observed in Section 2, the input-driven languages are not closed under homomorphisms defined
in the usual way that are not required to respect the types of symbols. For the worst-case lower bound, it
is sufficient to consider Σ0-relabelings.

We use a modification of the language (1), where, roughly speaking, every place that requires a nondeter-
ministic guess is annotated with special symbols that communicate the guess to a deterministic automaton
Thus, the pairs of substrings that need to be compared are marked by the new symbols a\ and b\. Let
Σ0 = {0, 1, a, b, a\, b\,#}, Σ+1 = {<}, Σ−1 = {>}. For n > 1 we define the language L′

n to consist of all
strings of the form

w<(a+b+)∗a\a
(w)2−1b`(a+b+)∗#(b+a+)∗b\b

`−1a(w)2(b+a+)∗>, (3)

where w ∈ {0, 1}dlog ne and 1 6 ` 6 n.

Lemma 4. The language L′
n is recognized by a DIDPDA A with O(n) states and n stack symbols.

Proof. At the beginning of its computation, A memorizes the number (w)2 in its state, and, when reading
the input symbol < ∈ Σ+1, stores this number in the stack as a single stack symbol. Then the computation
checks that the length of the sequence of as following the first occurrence of a\ equals to (w)2 − 1. After
this, the computation memorizes the number of bs immediately following the as (that is, `) and checks that
the number of bs occurring after the symbol b\ is `−1. Then A stores in the state the length of the following
sequence of a’s, and finally, while popping the stack at the last symbol >, the computation checks that the
number stored in the internal state is equal to the number (w)2 popped from the stack.

Let h be the homomorphism that maps a\ to a, b\ to b and 1 to 0, while mapping the rest of the symbols
to themselves. Note that h is a Σ0-relabeling.

Lemma 5. Every DIDPDA for h(L′
n) needs size 2

n2
2 .

Proof. We note that
h(L′

n) = { 0dlog neu | u ∈ Ln },

where Ln is defined in (1). For R ⊆ [1, n]×[1, n], we define the strings xR and yR as in the proof of Lemma 3.
Let

S1 = { 0dlog ne<xR# | R ⊆ [1, n]× [1, n] }.

Consider arbitrary relations R1, R2 ⊆ [1, n] × [1, n], where R1 6= R2. Without loss of generality we assume
that R1 −R2 6= ∅. Now

0dlog ne<xR1#yR2
> ∈ h(L′

n) and 0dlog ne<xR2#yR2
> /∈ h(L′

n).

This means that S1 is a separator set of depth 1 for h(L′
n) and, by Lemma 1 (i), any DIDPDA for h(L′

n)
needs size

√
2n2 .

Now we can state a tight bound for the descriptional complexity of homomorphism for deterministic
input-driven pushdown automata. The upper bound is established straightforwardly by constructing an
NIDPDA to recognize the homomorphic image.

Theorem 4. Let h be a homomorphism and A a DIDPDA of size n. The input-driven language h(L(A))
can be recognized by a DIDPDA of size 2O(n2).

There exists a Σ0-relabeling h and input-driven languages L′
n, with n > 1, recognized by a DIDPDA with

O(n) states and stack symbols such that any DIDPDA for h(L′
n) needs size 2n2

.
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Proof. Given h and A, we construct an NIDPDA B recognizing h(L(A)), which nondeterministically guesses
and verifies a decomposition of its input w as h(a1)h(a2) · · ·h(am) with ai ∈ Σ̃, and in parallel simulates
the computation of A on a1 · · · am. Note that if ai ∈ Σ+1, then h(ai) has exactly one unmatched symbol
of type +1, and the stack symbol pushed to the stack in the simulated computation of A is pushed at the
unmatched symbol; and symmetrically, for each ai ∈ Σ−1, its image h(ai) has a unique unmatched symbol
of type −1, and the stack symbol popped in the simulated computation of A is popped at this unmatched
symbol.

The lower bound was established in Lemma 5.

8. Conclusion

We have shown that both the conversion of an unambiguous input-driven pushdown automaton of size
n to a deterministic one and the conversion of a nondeterministic automaton of size n to an unambiguous
nondeterministic automaton causes in the worst case 2Θ(n2) size blow-up. Both descriptional complexity
bounds are tight within a multiplicative constant in the exponent. As a future work, one can try to determine
the associated multiplicative constants more precisely. It can be noted that for the cost of determinizing
a general nondeterministic input-driven pushdown automaton, the precise multiplicative constant in the
exponent is also not known [4].

Not long ago, the state complexity of operations on input-driven pushdown automata was investigated
by Piao and Salomaa [29] and by Okhotin and Salomaa [28]. Another subject for future research is the state
complexity of operations on unambiguous input-driven pushdown automata, of which nothing is yet known.
Not much is known about the operational state complexity of unambiguous finite automata either [26], and
finding out these properties would lead to a better understanding of the power of unambiguous nondeter-
minism in automata.
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