
January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

STATE COMPLEXITY OF ADDITIVE WEIGHTED FINITE

AUTOMATA∗

KAI SALOMAA and PAUL SCHOFIELD

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

{ksalomaa,schofiel}@cs.queensu.ca

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

It is known that the neighborhood of a regular language with respect to an additive
distance is regular. We introduce an additive weighted finite automaton model that pro-
vides a conceptually simple way to reprove this result. We consider the state complexity
of converting additive weighted finite automata to deterministic finite automata. As our
main result we establish a tight upper bound for the state complexity of the conversion.

1. Introduction

Regularity preserving distances between words have been considered in [1] with

applications to fault tolerant lexical analysis. A distance is said to be additive if

it, in a certain sense, respects the factorizations of a word into subwords. The

edit distance [10] is a standard example of an additive distance. Additivity of the

distance is sufficient to guarantee that any neighborhood of a regular language is

regular whereas, for example, finite distances do not necessarily have this property.

A weighted finite automaton (WFA) associates weights with transitions between

states. Weighted finite automata have been used in many applications, see for ex-

ample, [2, 3, 4, 5, 6, 11]. Here we consider an additive WFA model that provides a

natural and conceptually simple way to recognize neighborhoods of regular lan-

guages with respect to an additive distance.

In image processing applications [3, 6] the weight of a path is obtained by multi-

plying together the weights of transitions on the path (and the values of the initial

and final distribution). The weight of a word w is then the sum of the weights of

the paths that spell out w. For the error detection application we have in mind it

turns out to be useful that the weight of a path is defined to be the sum of the

weights occurring on the path and the weight of a word w is the minimum weight

∗Research supported in part by the Natural Sciences and Engineering Research Council of Canada,
NSERC.

1

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

2 Kai Salomaa, Paul Schofield

of any path from the start state to a final state that spells out w. Note that fuzzy

finite automata [12] combine weights using a max–min strategy. In fuzzy automata

the weight associated with a word indicates the degree of membership whereas in

additive WFA the weight corresponds to the amount of error observed, that is, a

larger weight can be viewed to indicate a smaller degree of membership.

For a given regular language L and an error radius r we construct an additive

WFA that recognizes the neighborhood of L of radius r with respect to an addi-

tive distance. The construction uses r as a parameter, i.e., the same construction

works for any radius up to the given upper bound. The construction gives a better

upper bound for the state complexity of the neighborhood, that is the number of

states of the minimal deterministic finite automaton (DFA) recognizing the neigh-

borhood [7, 18], than would be obtained directly from the construction of [1].

We study the state complexity of converting additive WFAs with integer weights

to DFAs and establish a tight upper bound for the state complexity. Our worst case

examples that reach the upper bound use a variable size alphabet and it remains an

open question whether the upper bound can be reached using a family of additive

WFAs where the alphabet does not depend on the number of states.

To conclude the introduction, we mention some related work. Very efficient

constructions of nondeterministic and deterministic automata that recognize the

neighborhood of a single word with respect to the edit distance have been given

in [15]. The complexity of computing the edit distance of a given word and a regular

language was first considered in [16] and extensions of this problem have been

addressed in [13]. Computing the edit distance of a regular language, that is, the

smallest edit distance between two distinct words in the language, is shown to have

polynomial time complexity in [9].

2. Preliminaries

For all unexplained notions concerning finite automata and regular languages we

refer the reader, e.g., to [8, 17].

The cardinality of a finite set Q is denoted |Q| and the power set of Q is P(Q).

The symbol Σ denotes a finite alphabet, Σ∗ is the set of words over Σ and ε is the

empty word. When there is no confusion a singleton set {w}, w ∈ Σ∗, is denoted

simply as w. The set of non-negative integers (respectively, non-negative rational

numbers) is IN0 (resp. Q0).

A nondeterministic finite automaton (NFA) is a tuple A = (Q, Σ, γ, s, F) where

Q is the finite set of states, Σ is the input alphabet, γ : Q × Σ → P(Q) defines

the state transitions, s ∈ Q is the start state and F ⊆ Q is the set of accepting

states. In the well known way γ is extended as a function γ̂ : Q × Σ∗ → P(Q) and

we denote also γ̂ simply by γ. The language recognized by A is L(A) = {w ∈ Σ∗ |

γ(s, w) ∩ F 6= ∅}.

An NFA A as above is deterministic (a DFA) if for all q ∈ Q and a ∈ Σ,

|γ(q, a)| = 1. Here we assume that DFAs are complete, i.e., that all transitions are

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

State Complexity of Additive WFA 3

defined. Both NFAs and DFAs recognize the regular languages.

For L ⊆ Σ∗ we define an equivalence relation ≡L on Σ∗ by setting, for x, y ∈ Σ∗,

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L ⇔ yz ∈ L].

The relation ≡L is called the right invariant equivalence relation of L and the

following result is well known.

Proposition 1. For any regular language L the number of states of the minimal

DFA recognizing L equals to the number of equivalence classes of ≡L.

3. Distances and additive WFAs

First we recall some definitions and notation concerning distances between words.

For more details and examples the reader is referred to [1].

A function d : Σ∗ × Σ∗ → [0,∞) is a distance if it satisfies the following three

conditions:

(D1) d(x, y) = 0 if and only if x = y, x, y ∈ Σ∗,

(D2) d(x, y) = d(y, x) for all x, y ∈ Σ∗,

(D3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Σ∗.

The function d defines a quasi-distance if it satisfies (D2) and (D3) and d(x, x) = 0

for all x ∈ Σ∗. A quasi-distance allows the possibility that d(x, y) = 0 for x 6= y.

In the following we restrict consideration to (quasi-)distances d : Σ∗ ×Σ∗ → Q0

where the values are assumed to be non-negative rational numbers.

The neighborhood of L ⊆ Σ∗ of radius r ≥ 0 is

E(L, d, r) = {w ∈ Σ∗ | (∃u ∈ L) d(w, u) ≤ r}.

The distance d is said to be finite if for all w ∈ Σ∗ and r ≥ 0, E(L, d, r) is finite.

The distance d is additive if for any decomposition w = w1w2, w1, w2 ∈ Σ∗, and

radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).

We will use the following result:

Proposition 2. [1] Every additive distance is finite.

Next we introduce the weighted automaton model used here.

Definition 3. An additive weighted finite automaton (additive WFA) is a tuple

Ã = (Q, Σ, γ, β, s, F), (1)

where Q is the finite set of states, Σ is the alphabet of input symbols, γ : Q × Σ →

P(Q) is the (nondeterministic) transition function, β : Q×Σ×Q → Q0 is a partial

function where β(q1, a, q2) is defined iff q2 ∈ γ(q1, a), s ∈ Q is the start state and

F ⊆ Q is the set of accepting states.

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

4 Kai Salomaa, Paul Schofield

The function β assigns non-negative rational weights to transitions. For possible

applications we can restrict the weights to be rational. For notational convenience

we include an explicit transition function γ although γ is naturally completely

determined by the domain of the partial function β. If Ã = (Q, Σ, γ, β, s, F) is as in

Definition 3, the contruct A = (Q, Σ, γ, s, F) is a nondeterministic finite automaton.

Let Ã be as in (1), w = a1 · · · am, ai ∈ Σ, i = 1, . . . , m, m ≥ 0, and p1, p2 ∈ Q.

By a computation path of Ã along w from state p1 to p2 we mean an element of

(Q × Σ × Q)∗,

α = (q0, a1, q1) · . . . · (qm−1, am, qm), (2)

where p1 = q0 and p2 = qm, and qi ∈ γ(qi−1, ai), i = 1, . . . , m. The weight of a

computation path α as in (2) is

β(α) =

m∑

i=1

β((qi−1, ai, qi)).

If m = 0 and p1 = p2, α as in (2) is interpreted to be the empty sequence and in

this case we set β(α) = 0. The set of all computation paths along w from state p1

to state p2 is denoted Θ(p1, w, p2).

Now the language recognized by Ã, as in (1), within weight bound r ≥ 0 is

defined as

L(Ã, r) = {w ∈ Σ∗ | (∃f ∈ F)(∃α ∈ Θ(s, w, f)), β(α) ≤ r}.

The language L(Ã, r) consists of all words w that take the start state of Ã to an

accepting state along some path having cumulative weight at most r.

The usefulness of the model of additive WFA for error recognition is based on

the following result.

Theorem 4. Let B be an NFA, d an additive distance and r0 ≥ 0. We can construct

an additive WFA Ã such that for any 0 ≤ r ≤ r0,

L(Ã, r) = E(L(B), d, r).

Furthermore, if d and r0 are fixed, based on the description of the NFA B the WFA

Ã can be constructed in square time.

Proof. Due to length restrictions we only sketch the construction here. The WFA

Ã has the same set of states Q as the NFA B. Between any pair of states q1, q2 the

WFA Ã will have a transition labeled by b ∈ Σ if and only if, in the NFA B, q2 is

reachable from q1 along a path spelled by some word w ∈ Σ∗ where d(b, w) ≤ r0.

The weight of the transition (q1, b, q2) is defined to be the minimum of all values

d(b, w) with the above property.

Using induction on the length of w (and additivity of d) we can show that w

spells out some path in Ã from the start state s to a state q with cumulative weight

r ≤ r0 only if some word u such that d(w, u) ≤ r takes B from the start state to

the same state q.

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

State Complexity of Additive WFA 5

Conversely, given any word w ∈ E(L(B), d, r) we find a word w′ such that

w′ takes the NFA B to an accepting state qf and d(w, w′) ≤ r. Again using the

additivity of d, there exists an accepting computation path of Ã with cumulative

weight at most d(w, w′). A detailed proof for the correctness of the construction is

given in [14].

Finally, to verify the time bound we note that when d and r0 are fixed Proposi-

tion 2 implies that, for each pair of states of B, we need to add a constant number

of weighted transitions (and the weight can be found from a constant number of

candidate values).

It is easy to see that L(Ã, r) is always regular, and this follows also from the

explicit WFA-to-DFA construction described in the next section when dealing with

state complexity. Thus, Theorem 4 gives a new proof for the result [1] that the

neighborhoods of regular languages with respect to an additive distance are regular.

The proof of Theorem 4 is conceptually simpler than the original proof, and it has

the advantage that the same construction works for all neighborhoods having a

radius within some upper bound.

Theorem 4 combined with the state complexity upper bound in the next section

(Theorem 5) gives a better upper bound for the state complexity of the neighbor-

hood of a regular language than the bound obtained by first constructing an NFA

as in [1] and then converting it to a DFA.

Also additive quasi-distances are known to preserve regularity [1]. However, the

analogy of Proposition 2 does not hold for additive quasi-distances and it remains

an open question whether one can use a WFA construction analogous to Theorem 4.

4. State Complexity

We first give a construction of a DFA that recognizes the language of an arbitrary

n state WFA within a given weight bound r and then show that the construction

is optimal in terms of the number of states. The state complexity bound can be

viewed as an extension of the well known tight upper bound for the NFA–to–DFA

conversion.

In the following we assume that all transition weights of WFAs are integers, this

does not lose generality since we can, if necessary, multiply all transition weights

and the weight bound by an arbitrary integer.

Theorem 5. Let Ã as in (1) be an additive WFA where all transition weights are

integers and let r ∈ IN0. The language L(Ã, r) can be recognized by a DFA B having

(r + 2)n states.

Proof. Denote the set of states of Ã as {q1, . . . , qn} where q1 is the start state. The

states of B are tuples of integers (i1, . . . , in), 0 ≤ ij ≤ r+1, j = 1, . . . , n. Intuitively,

a state (i1, . . . , in) is used to indicate that the value ij, where 0 ≤ ij ≤ r, is the

smallest cumulative weight of any path in Ã that can reach the state qj with the

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

6 Kai Salomaa, Paul Schofield

input processed so far. A value ij = r+1 indicates that there is no path spelled out

by the current input that reaches state qj from the start state with a cumulative

weight at most r.

The start state of B is sB = (0, r+1, . . . , r+1) and a state (i1, . . . , in) is accepting

if ij ≤ r for some j such that qj is an accepting state of Ã. On input symbol b, the

DFA B changes state from (i1, . . . , in) to (j1, . . . , jn) where for t = 1, . . . n,

jt = min({r + 1} ∪ {s | qt ∈ γ(qk, b), s = ik + β((qk, b, qt)), 1 ≤ k ≤ n}).

We denote the (deterministic) transition function of B by πB.

If either the minimum weight path of Ã from s to qk spelling out the word w,

1 ≤ k ≤ n, has weight at least r + 1 or Ã does not have a path along w from s

to qk, we say that the minimal path from s to qk along w has weight r + 1. With

this convention and using induction on the length of the input word w we can show

that the minimum weight path in Ã that spells out w from s to qk has weight ik,

k = 1, . . . , n, if and only if the transition function πB takes sB to (i1, . . . , in) along

w. The details of the proof are given in [14].

Next we present a construction of a WFA where the state complexity of the

minimal equivalent DFA reaches the upper bound given by Theorem 5. The con-

struction below uses 2n − 1 alphabet symbols for a WFA with n states. Let n ≥ 1

and let

Ãn = (Q, Σ, γ, β, s, F) (3)

be an additive WFA where Q = {1, . . . , n}, Σ = {a1, . . . , an−1, b1, . . . , bn}, s = 1,

F = {n}, and the functions γ and β are defined as follows.

The function γ is determined by setting

• γ(i, ai) = {i, i + 1}, i = 1, . . . , n − 1;

• γ(i, aj) = {i}, i = 1, . . . n − 2, j = i + 1, . . . n − 1;

• γ(i, bj) = {i}, i = 1, . . . , n, i − 1 ≤ j ≤ n;

• for all cases not included in the above, the transition is undefined.

The transition weights are assigned by β as follows:

• β((i, bi, i)) = 1, i = 1, . . . , n

• β assigns the weight zero to all the other transitions of Ãn.

The only transitions of Ãn that change the state are transitions from state i to

i + 1 with input ai, i = 1, . . . , n − 1. All other transitions of Ãn are self-loops. The

self-loops (i, bi, i), i = 1, . . . , n, have weight one. All other transitions of Ãn have

weight zero.

Figure 1 represents the additive WFA Ã5 constructed as described above. In the

figure, note that all transitions where the weight is not marked have a weight of

zero.

In the following we show that if Ãn, n ≥ 1, is defined as in (3), then for any

integer r ≥ 0, the minimal DFA for the language L(Ãn, r) has at least (r + 2)n

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

State Complexity of Additive WFA 7

1 2 3 4 5
a1 a2 a3 a4

b1/1 b2/1 b3/1 b4/1 b5/1

a1, a2, a3, a4 a2, a3, a4 a3, a4 a4 b4

b2, b3, b4, b5 b1, b3, b4, b5 b2, b4, b5 b3, b5

Fig. 1. The weighted finite automaton
�

A5.

states. By Proposition 1 it is sufficient to find (r + 2)n words that are all pairwise

distinguishable with respect to the the language L(Ãn, r), that is, all belong to

different equivalence classes of ≡
L(

�

An,r).

We define the following words over the alphabet Σ:

w(k1, . . . , kn) = a1b
k1

1 a2b
k2

2 · · ·an−1b
kn−1

n−1 bkn

n , 0 ≤ ki ≤ r + 1, i = 1, . . . , n. (4)

Note that there are exactly (r + 2)n words of the form (4).

The WFA Ãn is nondeterministic since γ(i, ai) always has two choices to continue

the computation, i = 1, . . . , n − 1. However, in the following lemma we show that

on an input as in (4), the automaton Ãn can reach the state i, 1 ≤ i ≤ n, only with

a computation that has cumulative weight exactly ki.

Lemma 6. Assume that Ãn reaches state i, 1 ≤ i ≤ n, along a computation path

α ∈ Θ(s, w(k1, . . . , kn), i) that consumes input word w(k1, . . . , kn). Then the weight

of α is ki. Furthermore, An can reach the state i after reading any word of the form

w(k1, . . . , kn) along a path with weight ki.

Proof. Recall that the only transitions of Ãn that are not self-loops are transitions

of the form (j, aj , j + 1). Since α ends in state i, it follows that when reading the

word w(k1, . . . , kn) each symbol aj , 1 ≤ j < i, changes the state from j to j + 1.

Note that otherwise the computation would get stuck in some state i′ < i.

The above means that when reading the word w(k1, . . . , kn), Ãn reads the k1

symbols b1 in state 2, the k2 symbols b2 in state 3, and continuing in this way, it

reads the ki−1 symbols bi−1 in state i. Since the computation ends in state i, the

next symbol ai has to be read using a self-loop (i, ai, i). After this the input word

has ki symbols bi and each of the corresponding self-loops in state i has weight one.

After the above the remaining suffix of the input is

wsuffix = ai+1b
ki+1

i+1 · · · an−1b
kn−1

n−1 bkn

n .

All symbols occurring in wsuffix are processed deterministically in state i with self-

loops having weight zero. The total weight of all the transitions used in the com-

putation is ki · 1 = ki.

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

8 Kai Salomaa, Paul Schofield

The second claim was shown also above since we constructed a computation on

input w(k1, . . . , kn) with cumulative weight ki that reaches the state i, 1 ≤ i ≤ n.

Using the above lemma we can now establish that all words as in (4) are pairwise

in distinct equivalence classes of ≡
L(

�

An,r) and this gives the desired lower bound.

Theorem 7. Let r ≥ 0 be an arbitrary radius. The minimal DFA for L(Ãn, r) has

(r + 2)n states.

Proof. Let Bn,r be the minimal DFA for L(Ãn, r). From Theorem 5 we know that

Bn,r has at most (r + 2)n states.

We show that all of the (r+2)n words as defined in (4) are pairwise distinguish-

able with respect to the language L(Ãn, r). Proposition 1 then implies that Bn,r

has at least (r + 2)n states.

Consider two distinct words w(k1, . . . , kn) and w(k′

1, . . . , k
′

n) as in (4), 0 ≤ ki ≤

r + 1, 0 ≤ k′

i ≤ r + 1, i = 1, . . . n. Thus there exists an index j such that kj 6= k′

j .

Without loss of generality we assume that

kj < k′

j (5)

since the other possibility is symmetric.

Choose

z = b
r−kj

j ajaj+1 · · · an−1.

Note that since kj < k′

j ≤ r + 1, it follows that r − kj ≥ 0 and z is a well-defined

word. We claim that

w(k1, . . . , kn) · z ∈ L(Ãn, r) and w(k′

1, . . . , k
′

n) · z 6∈ L(Ãn, r). (6)

By Lemma 6, Ãn has a computation on input w(k1, . . . , kn) that ends in state

j and has cumulative weight kj . In state j, Ãn can read the first r − kj symbols bj

of z, and after this the total weight is kj + (r − kj) = r. Finally the zero weight

transitions on the suffix ajaj+1 · · · an−1 take the automaton from state j to the

accepting state n.

Now we show the second part of (6). First we consider the question from which

states q the WFA Ãn can reach the only accepting state n on input z — here for

the time being we do not consider weights of transitions. On any state of Ãn, the

symbol bj either defines a self-loop or the transition on bj is undefined. Thus, Ãn

can reach the accepting state from q on input z only if Ãn reaches the accepting

state from q on input ajaj+1 · · ·an−1. Since for any j′ > j the transition on aj from

state j′ is undefined, the only state from which Ãn reaches the final state on input

ajaj+1 · · ·an−1 is j. Note that from a state j′ < j, Ãn cannot reach the final state

since the given input does not contain the symbol aj′ .

Thus, the only possibility for Ãn to accept w(k′

1, . . . , k
′

n) · z would be that the

computation has to reach state j on the prefix w(k′

1, . . . , k
′

n). By Lemma 6, the

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

State Complexity of Additive WFA 9

weight of this computation can only be k′

j . Again, when continuing the computation

on z from state j, Ãn has to read the first r − kj symbols bj each with a self-loop

transition having weight one. After this the cumulative weight of the computation

will be k′

j +r−kj which is, by (5), greater than r. Since the cumulative weight of any

possible accepting computation path exceeds r, it follows that w(k′

1, . . . , k
′

n) · z 6∈

L(Ãn, r).

We have shown that ≡
L(

�

An,r) has at least (r + 2)n equivalence classes.

As a direct consequence of the upper bound given in Theorem 5 and the lower

bound given in Theorem 7, we state the following corollary.

Corollary 8. Let n be the number of states of a WFA Ãn and r ≥ 0 be an integer.

The tight upper bound for the number of states of the minimal DFA for L(Ãn, r) is

(r + 2)n.

In the construction used for Theorem 7, the size of the alphabet is 2n− 1 for a

WFA having n states. The WFA–to–DFA conversion has been implemented in [14]

and using the software we have found examples, where at least for small values of

n, an alphabet of size n + 1, is sufficient to reach the upper bound of (r + 2)n. In

Theorem 7 we have used the slightly larger alphabet, in order to make the proof

more transparent, because also the more complicated examples require a variable

size alphabet.

Note that by choosing the weight bound to be r = 0 in Corollary 8, the language

recognized by a WFA Ã reduces to the “crisp” language consisting of all words

accepted by the subautomaton of Ã that has only the transitions of weight zero. In

this case the result reduces to the well known 2n bound for the state complexity of

the NFA–to–DFA transformation.

5. Conclusion

The main open problem concerning the state complexity of additive WFAs is

whether the upper bound of Theorem 5 can be reached using automata defined

over a fixed size alphabet. We have experimental results that indicate that the size

of the alphabet can be reduced from 2n − 1.

Since additive distances preserve regularity, an interesting question would also be

to consider the state complexity of neighborhoods of regular languages with respect

to additive distances. For example, when L has (non)deterministic state complexity

n what is the worst case size, as a function of n and r, of the minimal DFA that

recognizes the neighborhood of L of radius r with respect to the edit distance? The

question could be naturally extended for arbitrary additive distances. Theorems 4

and 5 give an upper bound for the state complexity of additive neighborhoods.

Theorem 4 indicates that additive WFAs are a useful model for recognizing

(additive) errors in regular languages. A natural topic for further research is to

consider whether similar techniques can be used for error correction, for example,

by employing a weighted finite transducer model.

January 6, 2007 15:23 WSPC/INSTRUCTION FILE wfa

10 Kai Salomaa, Paul Schofield

References

[1] C. Calude, K. Salomaa and S. Yu, Additive distances and quasi-distances between
words, J. Universal Computer Sci. 8 (2002) 141–152.

[2] K. Culik II and J. Karhumäki, Finite automata computing real functions, SIAM J.

Comput. 23 (1994) 789–914.
[3] K. Culik II and J. Kari, Digital images and formal languages, in Handbook of Formal

Languages, Vol. 3, eds. G. Rozenberg and A. Salomaa, (Springer-Verlag, 1997), pp.
599–616.

[4] D. Derencourt, J. Karhumäki, M. Latteaux and A. Terlutte, On the computational
power of weighted finite automata, Fund. Inf. 25 (1996) 285–293.

[5] M. Droste and P. Gastin, Weighted automata and weighted logics, in Proc. of ICALP

2005, Lecture Notes in Computer Science 3580, (Springer, 2005) pp. 513–525.
[6] M. Eramian, Efficient simulation of nondeterministic weighted finite automata, J.

Automata, Languages and Combinatorics 9 (2004) 257–267.
[7] J. Goldstine, M. Kappes, C.M.R. Kintala, H. Leung, A. Malcher and D. Wotschke,

Descriptional complexity of machines with limited resources, J. Universal Computer

Sci. 8 (2002) 193–234.
[8] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison Wesley, Reading, Mass., 1979.
[9] S. Konstantinidis, Computing the edit distance of a regular language, in Proc. of IEEE

Information Theory Workshop on Coding and Complexity, Roturoa, New Zealand,
Aug. 29 – Sep. 1, 2005, pp. 113–116.

[10] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and rever-
sals, Soviet Physics Dokl. 10 (1966) 707–710.

[11] C. Martin-Vide, V. Mitrana and R. Stiebe, Weighted grammars and automata with
threshold interpretation, J. Automata, Languages and Combinatorics 8 (2003) 303–
318.

[12] A. Mateescu, A. Salomaa, K. Salomaa and S. Yu, Lexical analysis with a simple finite
fuzzy-automaton model, J. Universal Computer Sci. 1 (1995) 288–307.

[13] G. Pighizzini, How hard is computing the edit distance? Inform. Computation 165

(2001) 1–13.
[14] P. Schofield, Error quantification and recognition using weighted finite automata,

M.Sc. Thesis, School of Computing, Queen’s University, Canada, 2006.
[15] K.U. Schulz and S. Mihov, Fast string correction with Levenshtein automata, Inter-

nat. J. Document Analysis and Recognition 5 (2002) 67–85.
[16] R.A. Wagner, Order-n correction for regular languages, Comm. of the ACM 17 (1974)

265–268.
[17] S. Yu, Regular languages, in Handbook of Formal Languages, Vol. 1, eds. G. Rozen-

berg and A. Salomaa, (Springer-Verlag, 1997), pp. 41–110.
[18] S. Yu, State complexity of regular languages, J. Automata, Languages and Combina-

torics 6 (2001) 221–234.

