
148-04

Abstract-- With the rapid expansion of computer networks
during the past decade, security has become a crucial issue for
computer systems. Different soft-computing based methods have
been proposed in recent years for the development of intrusion
detection systems. This paper presents a neural network
approach to intrusion detection. A Multi Layer Perceptron
(MLP) is used for intrusion detection based on an off-line
analysis approach. While most of the previous studies have
focused on classification of records in one of the two general
classes - normal and attack, this research aims to solve a multi
class problem in which the type of attack is also detected by the
neural network.
 Different neural network structures are analyzed to find the
optimal neural network with regards to the number of hidden
layers. An early stopping validation method is also applied in the
training phase to increase the generalization capability of the
neural network. The results show that the designed system is
capable of classifying records with about 91% accuracy with two
hidden layers of neurons in the neural network and 87%
accuracy with one hidden layer.

Index Terms—Artificial Neural Networks, Intrusion Detection,

Multilayer Perceptron, Training Strategies.

I. INTRODUCTION
HE rapid development and expansion of World Wide
Web and local network systems have changed the

computing world in the last decade. However, this
outstanding achievement has an Achilles’ heel: The highly
connected computing world has also equipped the
intruders and hackers with new facilities for their
destructive purposes. The costs of temporary or permanent
damages caused by unauthorized access of the intruders to
computer systems have urged different organizations to
increasingly implement various systems to monitor data
flow in their networks [14]. These systems are generally
referred to as Intrusion Detection Systems (IDSs).

There are two main approaches to the design of IDSs. In
a misuse detection based IDS, intrusions are detected by
looking for activities that correspond to known signatures
of intrusions or vulnerabilities. On the other hand, an
anomaly detection based IDS detects intrusions by
searching for abnormal network traffic. The abnormal

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

M. Moradi is with the School of Computing, Queen’s University,
Kingston, Ontario, Canada K7L 3N6 (e-mail: moradi@cs.queensu.ca).

M. Zulkernine is with the School of Computing, Queen’s University,
Kingston, Ontario, Canada K7L 3N6 (e-mail: mzulker@cs.queensu.ca).

traffic pattern can be defined either as the violation of
accepted thresholds for frequency of events in a connection
or as a user’s violation of the legitimate profile developed
for his/her normal behavior.

One of the most commonly used approaches in expert-
system based intrusion detection systems is rule-based
analysis using Denning’s [1] profile model. Rule-based
analysis relies on sets of predefined rules that are provided
by an administrator or created by the system.
Unfortunately, expert systems require frequent updates to
remain current. This design approach usually results in an
inflexible detection system that is unable to detect an attack
if the sequence of events is even slightly different from the
predefined profile. The problem may lie in the fact that the
intruder is an intelligent and flexible agent while the rule-
based IDSs obey fixed rules. This problem can be tackled
by the application of soft computing techniques in IDSs.

Soft computing is a general term for describing a set of
optimization and processing techniques that are tolerant of
imprecision and uncertainty. The principal constituents of
soft computing techniques are Fuzzy Logic (FL), Artificial
Neural Networks (ANNs), Probabilistic Reasoning (PR),
and Genetic Algorithms (GAs) [15]. The idea behind the
application of soft computing techniques and particularly
ANNs in implementing IDSs is to include an intelligent
agent in the system that is capable of disclosing the latent
patterns in abnormal and normal connection audit records,
and to generalize the patterns to new (and slightly
different) connection records of the same class.

In the present study, an off-line intrusion detection
system is implemented using Multi Layer Perceptron
(MLP) artificial neural network. While in many previous
studies [2], [3], [10] the implemented system is a neural
network with the capability of detecting normal or attack
connections, in the present study a more general problem is
considered in which the attack type is also detected. This
feature enables the system to suggest proper actions against
possible attacks. The promising results of the present study
show the potential applicability of ANNs for developing
practical IDSs.

Different structures of MLP are examined to find a
minimal architecture that is reasonably capable of
classification of network connection records. The results
show that even an MLP with a single layer of hidden
neurons can generate satisfactory classification results.
Because the generalization capability of the IDS is

A Neural Network Based System for Intrusion
Detection and Classification of Attacks

Mehdi MORADI and Mohammad ZULKERNINE

T

148-04

critically important, the training procedure of the neural
networks is carried out using a validation method that
increases the generalization capability of the final neural
network.

Paper Organization: Section I has introduced the basic
ideas in intrusion detection and the motivations for this
study. Section II reviews some basic ideas in neural
network theory and presents an overview of some of the
previous studies that have applied neural networks in
intrusion detection. Section III deals with the dataset,
attack types, and the features used for classifying network
connection records in this study. Section IV describes the
implementation procedure and training-validation method.
Section V presents the experimental results and Section VI
concludes the paper with a discussion of the results and
possibilities for future work.

II. ARTIFICIAL NEURAL NETWORKS (ANNS) IN INTRUSION
DETECTION REVIEW STAGE

The ability of soft computing techniques for dealing with
uncertain and partially true data makes them attractive to
be applied in intrusion detection. Some studies have used
soft computing techniques other than ANNs in intrusion
detection. For example, genetic algorithms have been used
along with decision trees to automatically generate rules
for classifying network connections [13]. However, ANNs
are the most commonly used soft computing technique in
IDSs [2], [4], [6], [10], [11].

 An ANN is an information processing system that is
inspired by the way biological nervous systems, such as the
brain, process information. It is composed of a large
number of highly interconnected processing elements
(neurons) working with each other to solve specific
problems. Each processing element (neuron) is basically a
summing element followed by an activation function. The
output of each neuron (after applying the weight parameter
associated with the connection) is fed as the input to all of
the neurons in the next layer. The learning process is
essentially an optimization process in which the parameters
of the best set of connection coefficients (weighs) for
solving a problem are found and includes the following
basic steps [8]:

- Present the neural network with a number of inputs
(vectors each representing a pattern)

- Check how closely the actual output generated for a
specific input matches the desired output.

- Change the neural network parameters (weights) to
better approximate the outputs.

Some IDS designers exploit ANN as a pattern
recognition technique. Pattern recognition can be
implemented by using a feed-forward neural network that
has been trained accordingly. During training, the neural
network parameters are optimized to associate outputs
(each output represents a class of computer network

connections, like normal and attack) with corresponding
input patterns (every input pattern is represented by a
feature vector extracted from the characteristics of the
network connection record). When the neural network is
used, it identifies the input pattern and tries to output the
corresponding class. When a connection record that has no
output associated with it is given as an input, the neural
network gives the output that corresponds to a taught input
pattern that is least different from the given pattern [6].

The most commonly reported application of neural
networks in IDSs is to train the neural net on a sequence of
information units, each of which may be an audit record or
a sequence of commands. The input to the net consists of
the current command and the past w commands (w is the
size of window of commands under examination). Once the
net is trained on a set of representative command sequences
of a user, it constitutes (learns) the profile of the user and
when put in action, it can discover the variance of the user
from its profile [4], [6]. Usually recurrent neural networks
are used for this purpose.

Ryan et al. [3] described an off-line anomaly detection
system (NNID) which utilized a back-propagation MLP
neural network. The MLP was trained to identify users’
profile and at the end of each log session, the MLP
evaluated the users’ commands for possible intrusions (off-
line). The authors described their research in a small
computer network with 10 users. Each feature vector
described the connections of a single user during a whole
day. 100 most important commands are used to describe a
user’s behavior. They used a 3 layer MLP (2 hidden
layers). The MLP identified the user correctly in 22 cases
out of 24.

Cannady [2] used a three layer neural network for offline
classification of connection records in normal and misuse
classes. The system designed in this study was intended to
work as a standalone system (not as a preliminary classifier
whose result may be used in a rule-based system). The
feature vector used in [2] was composed of nine features all
describing the current connection and the commands used
in it. A dataset of 10,000 connection records including
1,000 simulated attacks was used. The training set included
30% of the data. The final result is a two class classifier
that succeeded in classification of normal and attack
records in 89-91% of the cases.

In yet another study [10], the authors used three and four
layer neural networks and reported results of about 99.25%
correct classification for their two class (normal and attack)
problem.

Cunningham and Lippmann [11] used ANNs in misuse
detection. They used an MLP to detect Unix-host attacks
by searching for attack specific keywords in the network
traffic. Different groups used self-organizing maps (SOM)
for intrusion detection [5].

In most of the previous studies [2], [3], [10], the

148-04

implemented systems were neural networks with two
possible outputs: normal or anomaly. In these studies, some
types of attacks and a set of normal records were included
in the dataset; however, the output of the neural network
was 1 or 0 for normal or attack conditions (the attack type
was not determined by the neural network). The present
study is aimed to solve a multi class problem in which not
only the attack records are distinguished from normal ones,
but also the attack type is identified.

III. EVALUATION DATASET: ATTACK TYPES AND
FEATURES

The 1999 version of MIT Lincoln Laboratory - DARPA
(Defense Advanced Research Projects Agency) intrusion
detection evaluation data was used in this research [16].
The sample version of the dataset included more than
450,000 connection records. A subset of the data that
contained the desired attack types and a reasonable number
of normal events were selected manually. The final dataset
used in this study included 20,055 records.

A. Attack Types
There are at least four different known categories of

computer attacks including denial of service attacks, user to
root attacks, remote to user attacks and probing attacks [9].
Two different attack types were included in the dataset
used for this study: SYN Flood (Neptune) and Satan. These
two attack types were selected from two different attack
categories (denial of service and probing) to check for the
ability of the intrusion detection system to identify attacks
from different categories. Availability of enough data
records was the other factor in choosing these two specific
types. Furthermore, there are studies that have used the
same attack types [2]. Therefore, evaluation of the results
by comparing them to previous studies was possible. In the
following paragraphs, a description of the attack types is
provided.

SYN Flood (Neptune) is a denial of service attack to
which every TCP/IP implementation is vulnerable (to some
degree). For distinguishing a Neptune attack network
traffic is monitored for a number of simultaneous SYN
packets destined for a particular machine. The host sending
these packets is usually unreachable [9].

Satan is a probing intrusion which automatically scans a
network of computers to gather information or find known

vulnerabilities. The network probes are quite useful for
attackers planning a future attack [9].

Table 1 shows detailed information about the number of
records from normal and two attack types included in
training, validation, and testing sets. There were 9,830
records of normal connections, 7,051 records of Neptune
attack, and 3,174 records of Satan attack in the dataset.

B. Features: Selection, Numerical Representation, and
Normalization
In DARPA dataset each event (connection) is described

with 41 features. 22 of these features describe the
connection itself and 19 of them describe the properties of
connections to the same host in last two seconds. In many
attack scenarios, the signature of the attack record is
identified through examination of some features in a
sequence of records. Therefore, the IDS should analyze the
service types used by the same user in previous
connections and for this purpose these 19 features
describing past events in the computer network were
included in the feature vector.

A complete description of all 41 features is available
[10], [16]. Instead of describing all the features, here we
divide them into three groups and provide descriptions and
examples for each group.

Group 1 includes features describing the commands
used in the connection (instead of the commands
themselves). These features describe the aspects of the
commands that have a key role in defining the attack
scenarios. Examples of this group are number of file
creations, number of operations on access control files,
number of root accesses, etc..

Group 2 includes features describing the connection
specifications. This group includes a set of features that
present the technical aspects of the connection. Examples
of this group include: protocol type, flags, duration, service
types, number of data bytes from source to destination, etc..

Group 3 includes features describing the connections to
the same host in last 2 seconds. Examples of this group
are: number of connections having the same destination
host and using the same service, % of connections to the
current host that have a rejection error, % of different
services on the current host, etc..

During inspection of the data it turned out that the values
of six features (land, urgent, num_failed_logins,
num_shells, is_host_login num_outbound_cmds) were
constantly zero over all data records (see [10] for
descriptions). Clearly these features could not have any
effect on classification and only made it more complicated
and time consuming. They were excluded from the data
vector. Hence the data vector was a 35 dimensional vector.

Different possible values for selected features were
extracted and a numerical value was attributed to each of
them. For example, for the protocol type the possible

TABLE 1.
DISTRIBUTION OF DATA VECTORS IN DIFFERENT SUBSETS FOR

TRAINING, VALIDATION, AND TESTING SETS
(THERE WERE TOTALLY 20,055 VECTORS IN THE DATASET).

Record Types Training
SET

Validation Set
Test
Set

Normal 5,922 300 3,608
Neptune 4,430 300 2,321

Satan 1,807 300 1,067

148-04

numerical values were: tcp=0, udp=1, icmp=2. This
numerical representation was necessary because the feature
vector fed to the input of the neural network has to be
numerical.

The ranges of the features were different and this made
them incomparable. Some of the features had binary values
where some others had a continuous numerical range (such
as duration of connection). As a result, the features were
normalized by mapping all the different values for each
feature to [0, 1] range.

IV. IMPLEMENTATION: TRAINING AND VALIDATION
METHOD

The present study was aimed to solve a multi class
problem. Here, a three class case is described which can be
extended to cases with more attack types. An output layer
with three neurons (output states) was used: [1 0 0] for
normal conditions, [0 1 0] for Neptune attack and [0 0 1]
for the Satan attack. The desired output vectors used in
training, validation, and testing phases were simply as
mentioned above. In practice, sometimes the output of the
neural network showed other patterns like [1 1 0] which
were considered irrelevant. It is straightforward to show
that there are 6 possible irrelevant cases.

In this paper, a three layer1 neural network means a
neural network with two hidden layers (the input layer is
not counted because it acts just like a buffer and no
processing takes place in it; however, the output layer is
counted). The universal approximation theorem states that
an MLP (with one or more hidden layers) can approximate
any function with arbitrary precision and of course the
price is an increase in the number of neurons in the hidden
layer [8]. The question is if anything is gained by using
more than one hidden layer. One answer is that using more
than one layer may lead to more efficient approximation or
to achieving the same accuracy with fewer neurons in the
neural network.

The performance of a 2 layer neural network is seldom
reported in the previous studies as described in Section II.
One of the objectives of the present study is to evaluate the
possibility of achieving the same results with this less
complicated neural network structure. Using a less
complicated neural network is more computationally
efficient. Also it would decrease the training time.

MATLABTM Neural Network Toolbox [12] was used for
the implementation of the MLP networks. Using this tool
one can define specifications like number of layers, number
of neurons in each layer, activation functions of neurons in
different layers, and number of training epochs. Then the
training feature vectors and the corresponding desired
outputs can be fed to the neural network to begin training.

1 There are different traditions for naming neural networks based

on the number of hidden neuron layers [8].

All the implemented neural networks had 35 input
neurons (equal to the dimension of the feature vector) and
three output neurons (equal to the number of classes).
Number of the hidden layers and neurons in each were
parameters used for the optimization of the architecture of
the neural network. Error back-propagation algorithm was
used for training.

A. The Over-fitting Problem
 One problem that can occur during neural network

training is over-fitting. In an over fitted ANN, the error
(number of incorrectly classified patterns) on the training
set is driven to a very small value, however, when new data
is presented, the error is large. In these cases, the ANN has
memorized the training examples; however, it has not
learnt to generalize the solution to new situations.

One possible solution for the over-fitting problem is to
find the suitable number of training epochs by trial and
error. In this study, the training time was too long (25 hours
in the first experiment). Therefore, it was not reasonable to
find the optimal number of epochs by trial and error. A
more reasonable method for improving generalization is
called early stopping. In this technique, the available data
is divided into three subsets. The first subset is the training
set, which is used for training and updating the ANN
parameters. The second subset is the validation set. The
error on the validation set is monitored during the training
process. The validation error will normally decrease during
the initial phase of training similar to the training set error.
However, when the ANN begins to over-fit the data, the
error on the validation set will typically begin to rise.
When the validation error increases for a specified number
of iterations, the training is stopped, and the weights that
produced the minimum error on the validation set are
retrieved [12]. In the present study, this training-validation
strategy was used in order to maximize the generalization
capability of the ANN.

V. EXPERIMENTAL RESULTS
The first implemented intrusion detector was a three

layer MLP (two hidden layers with 35 neurons in each).
This structure is referred to as: {35 35 35 3}. At this stage,

TABLE 2.

 CORRECT CLASSIFICATION RATES IN THREE DIFFERENT TRAINING-
VALIDATION-TESTING SESSIONS FOR THE {35 35 35 3} MLP NEURAL
NETWORK. THE EARLY STOPPING VALIDATION METHOD IS APPLIED;
THEREFORE, THE NUMBER OF TRAINING EPOCHS IS NOT THE SAME IN

DIFFERENT SESSIONS.

Training Session
CORRECT

CLASSIFICATION ON
TRAINING SET

Correct Classification
on Test Set

1 98.2 89.2
2 98.1 90.9
3 96.9 90.3

Average 97.46 90.13

148-04

early stopping validation was not applied and the training
was performed for 200 times. The training process took
more than 25 hours. Figure 1 shows the mean square error
of the back propagation training process versus the
progress of training epochs. The error clearly decreased to
an outstanding level (comparable to zero). Therefore, it
was expected to have good classification results. The final
correct classification rate on training set confirmed this
theory: it was very close to 100%. However, when unseen
data (test set) was fed to the neural network, the result was
undesirable. The correct classification rate was less than
80%.

A. Application of Early Stopping Validation Method
The initial result was a clear indication of over-fitting of

the neural network (a description of this problem is
presented in Section IV.A). As explained, the reasonable
solution was to define a validation data set and monitor the
classification error on this data set while the neural network
was being trained.

The validation set used in this study consisted of 900
data records (300 of each class). The same neural network
{35 35 35 3} was trained this time by applying early
stopping validation method. Figure 2 shows the error of the
training process versus progress of training epochs for one
training session. The error on the training set (darker curve)
was decreasing after epoch number 45; however, the
training process was stopped because the error on the
validation set was constant for ten epochs.

As expected, the correct classification rate on the training
set declined slightly (98% compared to 100% in the first
experiment). Instead, when unseen data (test set) was fed to
the neural network the result was considerably better than
the first experiment in which the early stopping method
was not applied. The correct classification rate was more
than 90% showing an 11% increase (from 80% in the first

experiment). There was another advantage associated with
application of early stopping method: the training time was
decreased because the number of training epochs was
restricted by early stopping. The training-validation time in
this implementation was less than 5 hours which is an
improvement over 25 hours training time in the first
experiment.

Because of the stochastic nature of the neural networks,
it is usually common to report results of multiple training-
testing procedures. Table 2 illustrates the results of three
training-validation-testing sessions of {35 35 35 3} MLP
used in this study. The correct classification results are
reported separately for training and test data sets.

B. Two Layer Neural Network
As described in Section IV, one of the objectives of this

study was to evaluate the possibility of application of a two
layer neural network (one hidden layer) in the classification
of normal and attack records. The back-propagation
training algorithm becomes more complicated and
consumes more memory and time when a hidden layer is
added to the neural network. Furthermore, the resulting
neural network is more complicated and less memory
efficient. Therefore, it is always desirable to solve the
problem with a simpler classifier.

The best two layer neural network used in this study was
{35 45 35}. The early stopping validation method was
applied. The best result was attained in a training session
that was stopped on 48th epoch. The result was 93.1%
correct classification on training and 87% on the testing
set. The result of multiple training sessions also led to an
average of 86% correct classification on unseen data.

Although the classification efficiency of the best two
layer neural network was less than the best three layer
neural network, the difference was just 4%.

C. Discussion
There were three categories of incorrect outputs: false

positive, false negative, and irrelevant neural network
output. The irrelevant outputs were those that did not
represent any of the output classes in the data set (normal,
Neptune attack, Satan attack). While in a two state neural
network implemented with one output neuron there is no
irrelevant output state, in a three output neural network,
there are 6 irrelevant states. An analysis showed that in the
three layer neural network with 90.9% correct
classification, more than half of the incorrect results were
from the category of irrelevant results. The number of
incorrect classifications of this category can be decreased
by classifying each irrelevant pattern in the class
corresponding to the output neuron that has the highest
value of activation function.

Are the results presented in the previous section
satisfactory? To answer this question, they should be
compared to the results of similar studies. In a previous

Fig. 1. The mean square error of the back-propagation training procedure
versus training epochs for a 3 layer neural network {35 35 35 3}. The
decrease in the error was completely satisfactory. The network was over-
fitted.

148-04

study [10], a result of more than 99% correct classification
on this dataset using the neural network structure {41-40-
40-1} was reported. However, a two class problem was
solved in which the records were classified either in normal
or in attack classes. In another similar study with different
dataset [2], the success rate was comparable to the results
of the present study (89-99%) and again a two class
problem was implemented.

VI. CONCLUSION AND FUTURE WORK
An approach for a neural network based intrusion

detection system, intended to classify the normal and attack
patterns and the type of the attack, has been presented in
this paper. We applied the early stopping validation
method which increased the generalization capability of the
neural network and at the same time decreased the training
time. It should be mentioned that the long training time of
the neural network was mostly due to the huge number of
training vectors of computation facilities. However, when
the neural network parameters were determined by training,
classification of a single record was done in a negligible
time. Therefore, the neural network based IDS can operate
as an online classifier for the attack types that it has been
trained for. The only factor that makes the neural network
off-line is the time used for gathering information
necessary to compute the features.

A two layer neural network was also successfully used
for the classification of connection records. Although the
classification results were slightly better in the three layer
network, application of a less complicated neural network
was more computationally and memory wise efficient.

From the practical point of view, the experimental results
imply that there is more to do in the field of artificial neural
network based intrusion detection systems. The
implemented system solved a three class problem.
However, its further development to several classes is

straightforward. As a possible future development to the
present study, one can include more attack scenarios in the
dataset. Practical IDSs should include several attack types.
In order to avoid unreasonable complexity in the neural
network, an initial classification of the connection records
to normal and general categories of attacks can be the first
step. The records in each category of intrusions can then be
further classified to the attack types.

REFERENCES
[1] D. E. Denning, “An intrusion detection model,” IEEE

Transactions on Software Engineering, vol. 13, no. 2, pp. 222–
232, 1987.

[2] James Cannady, “Artificial neural networks for misuse
detection,” Proceedings of the 1998 National Information
Systems Security Conference (NISSC'98), Arlington, VA, 1998.

[3] J. Ryan, M. Lin, and R. Miikkulainen, “Intrusion Detection with
Neural Networks,” AI Approaches to Fraud Detection and Risk
Management: Papers from the 1997 AAAI Workshop,
Providence, RI, pp. 72-79, 1997.

[4] K. Fox, R. Henning, J. Reed, and R. Simonian, "A neural
network approach towards intrusion detection," Proceedings of
13th National Computer Security Conference, Baltimore, MD,
pp. 125-134, 1990.

[5] P. Lichodzijewski, A.N. Zincir Heywood, and M. I. Heywood,
“Host-based intrusion detection using self-organizing maps,”
Proceedings of the 2002 IEEE World Congress on
Computational Intelligence, Honolulu, HI, pp. 1714-1719, 2002.

[6] H. Debar, M. Becker, and D. Siboni, “A neural network
component for an intrusion detection system,” Proceedings of
1992 IEEE Computer Society Symposium on Research in
Security and Privacy, Oakland, California, pp. 240 – 250, 1992.

[7] Daivid Poole, Alan Makworth, and Randi Goebel,
Computational Intelligence, New York: Oxford University
Press, 1998.

[8] Sergios Theodorios and Konstantinos Koutroumbas, Pattern
Recognition, Cambridge: Academic Press, 1999.

[9] Kristopher Kendall, “A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems,” Masters Thesis,
MIT, 1999.

[10] Srinivas Mukkamala, “Intrusion detection using neural networks
and support vector machine,” Proceedings of the 2002 IEEE
International Honolulu, HI, 2002.

[11] R. Cunningham and R. Lippmann, “Improving intrusion
detection performance using keyword selection and neural
networks,” Proceedings of the International Symposium on
Recent Advances in Intrusion Detection, Purdue, IN, 1999.

[12] MATLAB online support:
www.mathworks.com/access/helpdesk/help/techdoc/matlab.sht
ml.

[13] C. Sinclair, L. Pierce, and S. Matzner, “An application of
machine learning to network intrusion detection,” Proceedings
of 15th Annual Computer Security Applications Conference
(ACSAC '99), Phoenix, AZ, pp. 371-377, 1999.

[14] R. A. Kemmerer and G. Vigna, “Intrusion detection: a brief
history and overview,” Computer, vol. 35, no. 4, pp. 27–30,
2002.

[15] Piero P. Bonissone, “Soft computing: the convergence of
emerging reasoning technologies,” Soft Computing Journal,
vol.1, no. 1, pp. 6-18, Springer-Verlag 1997.

[16] MIT Lincoln Laboratory, http://www.ll.mit.edu.

Fig. 2. The training process error when the early stopping validation method
is applied (for the same network as in figure 1). The darker curve shows the
error on the training set and the brighter curve presents the error on
validation set.

