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Abstract-- With the rapid expansion of computer networks 
during the past decade, security has become a crucial issue for 
computer systems. Different soft-computing based methods have 
been proposed in recent years for the development of intrusion 
detection systems. This paper presents a neural network 
approach to intrusion detection. A Multi Layer Perceptron 
(MLP) is used for intrusion detection based on an off-line 
analysis approach. While most of the previous studies have 
focused on classification of records in one of the two general 
classes - normal and attack, this research aims to solve a multi 
class problem in which the type of attack is also detected by the 
neural network.   
    Different neural network structures are analyzed to find the 
optimal neural network with regards to the number of hidden 
layers. An early stopping validation method is also applied in the 
training phase to increase the generalization capability of the 
neural network. The results show that the designed system is 
capable of classifying records with about 91% accuracy with two 
hidden layers of neurons in the neural network and 87% 
accuracy with one hidden layer. 

 
Index Terms—Artificial Neural Networks, Intrusion Detection, 

Multilayer Perceptron, Training Strategies. 

I. INTRODUCTION 
HE rapid development and expansion of World Wide 
Web and local network systems have changed the 

computing world in the last decade. However, this 
outstanding achievement has an Achilles’ heel: The highly 
connected computing world has also equipped   the   
intruders   and   hackers   with   new facilities for their 
destructive purposes. The costs of temporary or permanent 
damages caused by unauthorized access of the intruders to 
computer systems have urged different organizations to 
increasingly implement various systems to monitor data 
flow in their networks [14].  These systems are generally 
referred to as Intrusion Detection Systems (IDSs). 

There are two main approaches to the design of IDSs. In 
a misuse detection based IDS, intrusions are detected by 
looking for activities that correspond to known signatures 
of intrusions or vulnerabilities. On the other hand, an 
anomaly detection based IDS detects intrusions by 
searching for abnormal network traffic. The abnormal 
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traffic pattern can be defined either as the violation of 
accepted thresholds for frequency of events in a connection 
or as a user’s violation of the legitimate profile developed 
for his/her normal behavior.   

One of the most commonly used approaches in expert-
system based intrusion detection systems is rule-based 
analysis using Denning’s [1] profile model. Rule-based 
analysis relies on sets of predefined rules that are provided 
by an administrator or created by the system. 
Unfortunately, expert systems require frequent updates to 
remain current. This design approach usually results in an 
inflexible detection system that is unable to detect an attack 
if the sequence of events is even slightly different from the 
predefined profile. The problem may lie in the fact that the 
intruder is an intelligent and flexible agent while the rule-
based IDSs obey fixed rules. This problem can be tackled 
by the application of soft computing techniques in IDSs.  

Soft computing is a general term for describing a set of 
optimization and processing techniques that are tolerant of 
imprecision and uncertainty. The principal constituents of 
soft computing techniques are Fuzzy Logic (FL), Artificial 
Neural Networks (ANNs), Probabilistic Reasoning (PR), 
and Genetic Algorithms (GAs) [15]. The idea behind the 
application of soft computing techniques and particularly 
ANNs in implementing IDSs is to include an intelligent 
agent in the system that is capable of disclosing the latent 
patterns in abnormal and normal connection audit records, 
and to generalize the patterns to new (and slightly 
different) connection records of the same class.   

In the present study, an off-line intrusion detection 
system is implemented using Multi Layer Perceptron 
(MLP) artificial neural network. While in many previous 
studies [2], [3], [10] the implemented system is a neural 
network with the capability of detecting normal or attack 
connections, in the present study a more general problem is 
considered in which the attack type is also detected. This 
feature enables the system to suggest proper actions against 
possible attacks. The promising results of the present study 
show the potential applicability of ANNs for developing 
practical IDSs.  

Different structures of MLP are examined to find a 
minimal architecture that is reasonably capable of 
classification of network connection records. The results 
show that even an MLP with a single layer of hidden 
neurons can generate satisfactory classification results. 
Because the generalization capability of the IDS is 
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critically important, the training procedure of the neural 
networks is carried out using a validation method that 
increases the generalization capability of the final neural 
network. 

Paper Organization: Section I has introduced the basic 
ideas in intrusion detection and the motivations for this 
study. Section II reviews some basic ideas in neural 
network theory and presents an overview of some of the 
previous studies that have applied neural networks in 
intrusion detection. Section III deals with the dataset, 
attack types, and the features used for classifying network 
connection records in this study. Section IV describes the 
implementation procedure and training-validation method. 
Section V presents the experimental results and Section VI 
concludes the paper with a discussion of the results and 
possibilities for future work. 

II. ARTIFICIAL NEURAL NETWORKS (ANNS) IN INTRUSION 
DETECTION REVIEW STAGE 

The ability of soft computing techniques for dealing with 
uncertain and partially true data makes them attractive to 
be applied in intrusion detection. Some studies have used 
soft computing techniques other than ANNs in intrusion 
detection. For example, genetic algorithms have been used 
along with decision trees to automatically generate rules 
for classifying network connections [13]. However, ANNs 
are the most commonly used soft computing technique in 
IDSs [2], [4], [6], [10], [11].  

 An ANN is an information processing system that is 
inspired by the way biological nervous systems, such as the 
brain, process information. It is composed of a large 
number of highly interconnected processing elements 
(neurons) working with each other to solve specific 
problems. Each processing element (neuron) is basically a 
summing element followed by an activation function. The 
output of each neuron (after applying the weight parameter 
associated with the connection) is fed as the input to all of 
the neurons in the next layer. The learning process is 
essentially an optimization process in which the parameters 
of the best set of connection coefficients (weighs) for 
solving a problem are found and includes the following 
basic steps [8]: 

- Present the neural network with a number of inputs 
(vectors each representing a pattern)  

- Check how closely the actual output generated for a 
specific input matches the desired output. 

- Change the neural network parameters (weights) to 
better approximate the outputs. 

Some IDS designers exploit ANN as a pattern 
recognition technique. Pattern recognition can be 
implemented by using a feed-forward neural network that 
has been trained accordingly. During training, the neural 
network parameters are optimized to associate outputs 
(each output represents a class of computer network 

connections, like normal and attack) with corresponding 
input patterns (every input pattern is represented by a 
feature vector extracted from the characteristics of the 
network connection record). When the neural network is 
used, it identifies the input pattern and tries to output the 
corresponding class. When a connection record that has no 
output associated with it is given as an input, the neural 
network gives the output that corresponds to a taught input 
pattern that is least different from the given pattern [6].  

The most commonly reported application of neural 
networks in IDSs is to train the neural net on a sequence of 
information units, each of which may be an audit record or 
a sequence of commands. The input to the net consists of 
the current command and the past w commands (w is the 
size of window of commands under examination). Once the 
net is trained on a set of representative command sequences 
of a user, it constitutes (learns) the profile of the user and 
when put in action, it can discover the variance of the user 
from its profile [4], [6]. Usually recurrent neural networks 
are used for this purpose.  

Ryan et al. [3] described an off-line anomaly detection 
system (NNID) which utilized a back-propagation MLP 
neural network. The MLP was trained to identify users’ 
profile and at the end of each log session, the MLP 
evaluated the users’ commands for possible intrusions (off-
line). The authors described their research in a small 
computer network with 10 users. Each feature vector 
described the connections of a single user during a whole 
day.  100 most important commands are used to describe a 
user’s behavior. They used a 3 layer MLP (2 hidden 
layers). The MLP identified the user correctly in 22 cases 
out of 24. 

Cannady [2] used a three layer neural network for offline 
classification of connection records in normal and misuse 
classes. The system designed in this study was intended to 
work as a standalone system (not as a preliminary classifier 
whose result may be used in a rule-based system). The 
feature vector used in [2] was composed of nine features all 
describing the current connection and the commands used 
in it. A dataset of 10,000 connection records including 
1,000 simulated attacks was used. The training set included 
30% of the data. The final result is a two class classifier 
that succeeded in classification of normal and attack 
records in 89-91% of the cases. 

In yet another study [10], the authors used three and four 
layer neural networks and reported results of about 99.25% 
correct classification for their two class (normal and attack) 
problem. 

Cunningham and Lippmann [11] used ANNs in misuse 
detection. They used an MLP to detect Unix-host attacks 
by searching for attack specific keywords in the network 
traffic. Different groups used self-organizing maps (SOM) 
for intrusion detection [5]. 

In most of the previous studies [2], [3], [10], the 
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implemented systems were neural networks with two 
possible outputs: normal or anomaly. In these studies, some 
types of attacks and a set of normal records were included 
in the dataset; however, the output of the neural network 
was 1 or 0 for normal or attack conditions (the attack type 
was not determined by the neural network). The present 
study is aimed to solve a multi class problem in which not 
only the attack records are distinguished from normal ones, 
but also the attack type is identified. 

III. EVALUATION DATASET: ATTACK TYPES AND 
FEATURES  

The 1999 version of MIT Lincoln Laboratory - DARPA 
(Defense Advanced Research Projects Agency) intrusion 
detection evaluation data was used in this research [16]. 
The sample version of the dataset included more than 
450,000 connection records. A subset of the data that 
contained the desired attack types and a reasonable number 
of normal events were selected manually. The final dataset 
used in this study included 20,055 records.    

A.  Attack Types 
There are at least four different known categories of 

computer attacks including denial of service attacks, user to 
root attacks, remote to user attacks and probing attacks [9]. 
Two different attack types were included in the dataset 
used for this study: SYN Flood (Neptune) and Satan. These 
two attack types were selected from two different attack 
categories (denial of service and probing) to check for the 
ability of the intrusion detection system to identify attacks 
from different categories. Availability of enough data 
records was the other factor in choosing these two specific 
types. Furthermore, there are studies that have used the 
same attack types [2]. Therefore, evaluation of the results 
by comparing them to previous studies was possible. In the 
following paragraphs, a description of the attack types is 
provided. 

SYN Flood (Neptune) is a denial of service attack to 
which every TCP/IP implementation is vulnerable (to some 
degree). For distinguishing a Neptune attack network 
traffic is monitored for a number of simultaneous SYN 
packets destined for a particular machine. The host sending 
these packets is usually unreachable [9]. 

Satan is a probing intrusion which automatically scans a 
network of computers to gather information or find known 

vulnerabilities. The network probes are quite useful for 
attackers planning a future attack [9].  

Table 1 shows detailed information about the number of 
records from normal and two attack types included in 
training, validation, and testing sets. There were 9,830 
records of normal connections, 7,051 records of Neptune 
attack, and 3,174 records of Satan attack in the dataset.  

B. Features: Selection, Numerical Representation, and 
Normalization 
In DARPA dataset each event (connection) is described 

with 41 features. 22 of these features describe the 
connection itself and 19 of them describe the properties of 
connections to the same host in last two seconds. In many 
attack scenarios, the signature of the attack record is 
identified through examination of some features in a 
sequence of records. Therefore, the IDS should analyze the 
service types used by the same user in previous 
connections and for this purpose these 19 features 
describing past events in the computer network were 
included in the feature vector. 

A complete description of all 41 features is available 
[10], [16]. Instead of describing all the features, here we 
divide them into three groups and provide descriptions and 
examples for each group. 

Group 1 includes features describing the commands 
used in the connection (instead of the commands 
themselves). These features describe the aspects of the 
commands that have a key role in defining the attack 
scenarios. Examples of this group are number of file 
creations, number of operations on access control files, 
number of root accesses, etc.. 

Group 2 includes features describing the connection 
specifications. This group includes a set of features that 
present the technical aspects of the connection. Examples 
of this group include: protocol type, flags, duration, service 
types, number of data bytes from source to destination, etc.. 

Group 3 includes features describing the connections to 
the same host in last 2 seconds.  Examples of this group 
are: number of connections having the same destination 
host and using the same service, % of connections to the 
current host that have a rejection error, % of different 
services on the current host, etc.. 

During inspection of the data it turned out that the values 
of six features (land, urgent, num_failed_logins, 
num_shells, is_host_login num_outbound_cmds) were 
constantly zero over all data records (see [10] for 
descriptions). Clearly these features could not have any 
effect on classification and only made it more complicated 
and time consuming. They were excluded from the data 
vector. Hence the data vector was a 35 dimensional vector.  

Different possible values for selected features were 
extracted and a numerical value was attributed to each of 
them. For example, for the protocol type the possible 

TABLE 1.  
DISTRIBUTION OF DATA VECTORS IN DIFFERENT SUBSETS FOR 

TRAINING, VALIDATION, AND TESTING SETS  
(THERE WERE TOTALLY 20,055 VECTORS IN THE DATASET). 

Record Types Training  
SET 

Validation Set 
Test 
Set 

Normal 5,922 300 3,608 
Neptune 4,430 300 2,321 

Satan 1,807 300 1,067 
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numerical values were: tcp=0, udp=1, icmp=2. This 
numerical representation was necessary because the feature 
vector fed to the input of the neural network has to be 
numerical. 

The ranges of the features were different and this made 
them incomparable. Some of the features had binary values 
where some others had a continuous numerical range (such 
as duration of connection). As a result, the features were 
normalized by mapping all the different values for each 
feature to [0, 1] range.  

IV. IMPLEMENTATION: TRAINING AND VALIDATION 
METHOD  

The present study was aimed to solve a multi class 
problem. Here, a three class case is described which can be 
extended to cases with more attack types. An output layer 
with three neurons (output states) was used: [1 0 0] for 
normal conditions, [0 1 0] for Neptune attack and [0 0 1] 
for the Satan attack. The desired output vectors used in 
training, validation, and testing phases were simply as 
mentioned above. In practice, sometimes the output of the 
neural network showed other patterns like [1 1 0] which 
were considered irrelevant. It is straightforward to show 
that there are 6 possible irrelevant cases. 

In this paper, a three layer1 neural network means a 
neural network with two hidden layers (the input layer is 
not counted because it acts just like a buffer and no 
processing takes place in it; however, the output layer is 
counted). The universal approximation theorem states that 
an MLP (with one or more hidden layers) can approximate 
any function with arbitrary precision and of course the 
price is an increase in the number of neurons in the hidden 
layer [8]. The question is if anything is gained by using 
more than one hidden layer. One answer is that using more 
than one layer may lead to more efficient approximation or 
to achieving the same accuracy with fewer neurons in the 
neural network.  

The performance of a 2 layer neural network is seldom 
reported in the previous studies as described in Section II. 
One of the objectives of the present study is to evaluate the 
possibility of achieving the same results with this less 
complicated neural network structure. Using a less 
complicated neural network is more computationally 
efficient. Also it would decrease the training time.  

MATLABTM Neural Network Toolbox [12] was used for 
the implementation of the MLP networks. Using this tool 
one can define specifications like number of layers, number 
of neurons in each layer, activation functions of neurons in 
different layers, and number of training epochs. Then the 
training feature vectors and the corresponding desired 
outputs can be fed to the neural network to begin training.   

 
1 There are different traditions for naming neural networks based 

on the number of hidden neuron layers [8]. 

All the implemented neural networks had 35 input 
neurons (equal to the dimension of the feature vector) and 
three output neurons (equal to the number of classes). 
Number of the hidden layers and neurons in each were 
parameters used for the optimization of the architecture of 
the neural network. Error back-propagation algorithm was 
used for training. 

A. The Over-fitting Problem 
 One problem that can occur during neural network 

training is over-fitting. In an over fitted ANN, the error 
(number of incorrectly classified patterns) on the training 
set is driven to a very small value, however, when new data 
is presented, the error is large. In these cases, the ANN has 
memorized the training examples; however, it has not 
learnt to generalize the solution to new situations.  

One possible solution for the over-fitting problem is to 
find the suitable number of training epochs by trial and 
error. In this study, the training time was too long (25 hours 
in the first experiment). Therefore, it was not reasonable to 
find the optimal number of epochs by trial and error. A 
more reasonable method for improving generalization is 
called early stopping. In this technique, the available data 
is divided into three subsets. The first subset is the training 
set, which is used for training and updating the ANN 
parameters. The second subset is the validation set. The 
error on the validation set is monitored during the training 
process. The validation error will normally decrease during 
the initial phase of training similar to the training set error. 
However, when the ANN begins to over-fit the data, the 
error on the validation set will typically begin to rise. 
When the validation error increases for a specified number 
of iterations, the training is stopped, and the weights that 
produced the minimum error on the validation set are 
retrieved [12]. In the present study, this training-validation 
strategy was used in order to maximize the generalization 
capability of the ANN. 

V. EXPERIMENTAL RESULTS  
The first implemented intrusion detector was a three 

layer MLP (two hidden layers with 35 neurons in each). 
This structure is referred to as: {35 35 35 3}. At this stage, 

 
TABLE 2. 

 CORRECT CLASSIFICATION RATES IN THREE DIFFERENT TRAINING-
VALIDATION-TESTING SESSIONS FOR THE {35 35 35 3} MLP NEURAL 
NETWORK. THE EARLY STOPPING VALIDATION METHOD IS APPLIED; 
THEREFORE, THE NUMBER OF TRAINING EPOCHS IS NOT THE SAME IN 

DIFFERENT SESSIONS. 
 

Training Session 
CORRECT 

CLASSIFICATION ON 
TRAINING SET 

Correct Classification 
on Test Set 

1 98.2 89.2 
2 98.1 90.9 
3 96.9 90.3 

Average 97.46 90.13 
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early stopping validation was not applied and the training 
was performed for 200 times. The training process took 
more than 25 hours. Figure 1 shows the mean square error 
of the back propagation training process versus the 
progress of training epochs. The error clearly decreased to 
an outstanding level (comparable to zero). Therefore, it 
was expected to have good classification results. The final 
correct classification rate on training set confirmed this 
theory: it was very close to 100%. However, when unseen 
data (test set) was fed to the neural network, the result was 
undesirable. The correct classification rate was less than 
80%. 

A. Application of Early Stopping Validation Method 
The initial result was a clear indication of over-fitting of 

the neural network (a description of this problem is 
presented in Section IV.A). As explained, the reasonable 
solution was to define a validation data set and monitor the 
classification error on this data set while the neural network 
was being trained.  

The validation set used in this study consisted of 900 
data records (300 of each class). The same neural network 
{35 35 35 3} was trained this time by applying early 
stopping validation method. Figure 2 shows the error of the 
training process versus progress of training epochs for one 
training session. The error on the training set (darker curve) 
was decreasing after epoch number 45; however, the 
training process was stopped because the error on the 
validation set was constant for ten epochs.  

As expected, the correct classification rate on the training 
set declined slightly (98% compared to 100% in the first 
experiment). Instead, when unseen data (test set) was fed to 
the neural network the result was considerably better than 
the first experiment in which the early stopping method 
was not applied. The correct classification rate was more 
than 90% showing an 11% increase (from 80% in the first 

experiment). There was another advantage associated with 
application of early stopping method: the training time was 
decreased because the number of training epochs was 
restricted by early stopping. The training-validation time in 
this implementation was less than 5 hours which is an 
improvement over 25 hours training time in the first 
experiment. 

Because of the stochastic nature of the neural networks, 
it is usually common to report results of multiple training-
testing procedures. Table 2 illustrates the results of three 
training-validation-testing sessions of {35 35 35 3} MLP 
used in this study. The correct classification results are 
reported separately for training and test data sets.  

B. Two Layer Neural Network 
As described in Section IV, one of the objectives of this 

study was to evaluate the possibility of application of a two 
layer neural network (one hidden layer) in the classification 
of normal and attack records. The back-propagation 
training algorithm becomes more complicated and 
consumes more memory and time when a hidden layer is 
added to the neural network. Furthermore, the resulting 
neural network is more complicated and less memory 
efficient. Therefore, it is always desirable to solve the 
problem with a simpler classifier. 

The best two layer neural network used in this study was 
{35 45 35}. The early stopping validation method was 
applied. The best result was attained in a training session 
that was stopped on 48th epoch. The result was 93.1% 
correct classification on training and 87% on the testing 
set. The result of multiple training sessions also led to an 
average of 86% correct classification on unseen data.  

Although the classification efficiency of the best two 
layer neural network was less than the best three layer 
neural network, the difference was just 4%.  

C. Discussion  
There were three categories of incorrect outputs: false 

positive, false negative, and irrelevant neural network 
output. The irrelevant outputs were those that did not 
represent any of the output classes in the data set (normal, 
Neptune attack, Satan attack). While in a two state neural 
network implemented with one output neuron there is no 
irrelevant output state, in a three output neural network, 
there are 6 irrelevant states.  An analysis showed that in the 
three layer neural network with 90.9% correct 
classification, more than half of the incorrect results were 
from the category of irrelevant results. The number of 
incorrect classifications of this category can be decreased 
by classifying each irrelevant pattern in the class 
corresponding to the output neuron that has the highest 
value of activation function.  

Are the results presented in the previous section 
satisfactory? To answer this question, they should be 
compared to the results of similar studies. In a previous 

Fig. 1.  The mean square error of the back-propagation training procedure 
versus training epochs for a 3 layer neural network {35 35 35 3}. The 
decrease in the error was completely satisfactory. The network was over- 
fitted. 
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study [10], a result of more than 99% correct classification 
on this dataset using the neural network structure {41-40-
40-1} was reported. However, a two class problem was 
solved in which the records were classified either in normal 
or in attack classes. In another similar study with different 
dataset [2], the success rate was comparable to the results 
of the present study (89-99%) and again a two class 
problem was implemented.  

VI. CONCLUSION AND FUTURE WORK 
An approach for a neural network based intrusion 

detection system, intended to classify the normal and attack 
patterns and the type of the attack, has been presented in 
this paper. We applied the early stopping validation 
method which increased the generalization capability of the 
neural network and at the same time decreased the training 
time. It should be mentioned that the long training time of 
the neural network was mostly due to the huge number of 
training vectors of computation facilities. However, when 
the neural network parameters were determined by training, 
classification of a single record was done in a negligible 
time. Therefore, the neural network based IDS can operate 
as an online classifier for the attack types that it has been 
trained for. The only factor that makes the neural network 
off-line is the time used for gathering information 
necessary to compute the features. 

A two layer neural network was also successfully used 
for the classification of connection records. Although the 
classification results were slightly better in the three layer 
network, application of a less complicated neural network 
was more computationally and memory wise efficient.  

From the practical point of view, the experimental results 
imply that there is more to do in the field of artificial neural 
network based intrusion detection systems. The 
implemented system solved a three class problem. 
However, its further development to several classes is 

straightforward. As a possible future development to the 
present study, one can include more attack scenarios in the 
dataset. Practical IDSs should include several attack types. 
In order to avoid unreasonable complexity in the neural 
network, an initial classification of the connection records 
to normal and general categories of attacks can be the first 
step. The records in each category of intrusions can then be 
further classified to the attack types.  
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Fig. 2. The training process error when the early stopping validation method 
is applied (for the same network as in figure 1). The darker curve shows the 
error on the training set and the brighter curve presents the error on 
validation set. 


