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Abstract

Due in part to the large volume of data avail-
able today, but more importantly to privacy
concerns, data are often distributed across
institutional, geographical and organizational
boundaries rather than being stored in a cen-
tralized location. Data can be distributed by
separating objects or attributes: in the homo-
geneous case, sites contain subsets of objects
with all attributes, while in the heterogeneous
case sites contain subsets of attributes for all
objects. Ensemble approaches combine the re-
sults obtained from a number of classifiers to
obtain a final classification. In this paper, we
present a novel ensemble approach, in which
data is partitioned by attributes. We show
that this method can successfully be applied
to a wide range of data and can even produce
an increase in classification accuracy compared
to a centralized technique. As an ensemble
approach, our technique exchanges models or
classification results instead of raw data, which
makes it suitable for privacy preserving data
mining. In addition, both final model size and
runtime are typically reduced compared to a
centralized model. The proposed technique is
evaluated using a decision tree, a variety of
datasets, and several voting schemes. This
approach is suitable for physically distributed
data as well as privacy preserving data mining.

Copyright c© 2004 Sabine McConnell and David
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vided the original copyright notice is reproduced in
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1 Introduction

Data mining is concerned with the extraction of
non-trivial, novel and potentially useful knowl-
edge from large databases. Sequential data
mining techniques have been applied success-
fully to a wide range of areas such as customer
relationship management, web mining, science,
engineering and medicine. However, a need for
distributed and parallel data mining techniques
has emerged over the past years.

The motivation for parallel and distributed
data mining is at least twofold. Perhaps the
most obvious reason is the sheer volume of data
available today. For example, data available
on the world wide web roughly doubles every
nine months while scientific data from surveys
and simulations are generated faster than sci-
entists can analyze it. One example is NASA’s
Earth Observing System (EOS), which pro-
duces roughly one terabyte of data each night.
Clearly, data mining, which is typically an in-
teractive process, results in prohibitively large
runtimes for such massive datasets. Second,
the introduction of deadlines emphasizes the
need for parallel and distributed data mining.
In tasks such as credit card fraud and intru-
sion detection, a quick response time is cru-
cial. Third, data are considered an asset and
cannot readily be shared across organizational
and institutional boundaries. For example, fi-
nancial institutions are not willing (or able) to
share confidential transaction information with
each other, but can still benefit from exchang-
ing models and results rather than raw data
to improve on the overall prediction accuracy.
Finally, to a lesser extent, certain distributed



data mining techniques can also be used to
improve prediction accuracy as compared to a
centralized technique.

In this paper, we investigate an ensemble ap-
proach for vertically partitioned data. Predic-
tors are built from datasets containing single
attribute values only and then combined using
simple voting schemes. We evaluate our ensem-
ble approach using a decision tree algorithm
and a variety of datasets.

The remainder of this paper is organized as
follows. Section 2 gives background definitions
while Section 3 introduces related work. The
proposed method is presented in Section 4.
Section 5 shows the results of the experimental
evaluation of the technique. These results are
discussed in Section 6 and we conclude with
Section 7.

2 Background and Defini-
tions

Throughout this paper, we assume that data
is represented in matrix form, where rows of
the matrix contain objects and columns the at-
tributes known about the objects. Data can
then be distributed across the sites involved in
the computation in two main ways. Horizon-
tally distributed data contains all attribute val-
ues for a subset of the objects at each site. In
contrast, vertically distributed data contains a
subset of the attributes for all objects at each
site. Horizontally and vertically partitioned
data are also referred to as homogeneous and
heterogenous data. Figure 1 shows a homoge-
neous data partitioning over two sites, while
Figure 2 show a corresponding heterogenous
case. Note that in the heterogeneous setting,
a common key is assumed to match subsets of
attributes to objects. Combinations of homo-
geneous and heterogeneous partitions as well as
overlap among sites are also possible.

Data mining techniques, which aim at ex-
tracting new and potentially useful information
from the data, need to be adjusted to reflect
the distribution of the data. In the more com-
mon homogeneous setting, techniques such as
collections of classifiers, or ensembles, and par-
allelization of sequential algorithms have been

ID Age Income Married Children
1 24 21000 yes 1
2 35 34000 no 3
3 61 41000 yes 0
4 22 19000 no 1

(a) Site 1

ID Age Income Married Children
5 19 27000 no 0
6 43 30000 yes 2

(b) Site 2

Figure 1: Homogeneous partitioning

ID Age Income Married
1 24 21000 yes
2 35 34000 no
3 61 41000 yes
4 22 19000 no
5 19 27000 no
6 43 30000 yes

(a) Site 1

ID age Children
1 24 1
2 35 3
3 61 0
4 22 1
5 19 0
6 43 2

(b) Site 2

Figure 2: Heterogeneous partitioning

utilized. In contrast to the ensemble tech-
nique presented in this paper, existing work
for heterogeneous data partitions focuses either
on constructing a single classifier using secure
protocols or, as in the Collective Data Mining
framework (CDM) introduced by Kargupta et
al. [12], transformations of the functions to be
learned.

The proposed technique for collections of
classifiers over heterogeneous data is closely re-
lated to ensembles over horizontally partitioned
data. Ensembles are collections of base classi-
fiers, which collectively determine the outcome
for the data instances, for example in tech-
niques such as bagging and boosting. These
base classifiers are constructed by either apply-
ing the same algorithm to different subsets of
the data, by changing input parameters such as



the number of hidden nodes in a neural network
for example or by using different classifiers on
the same data. In general, ensemble techniques
are applied to weak classifiers, for which the re-
sults are dependent on the underlying datasets.
Examples for such weak learners are neural net-
works and decision trees. Ensemble techniques
were originally introduced to increase the ac-
curacy of the final classification, but can also
be utilized for distributed data mining by par-
titioning datasets and algorithms over a num-
ber of processors and combining the results in
a central location. Such methods have been
successfully applied to horizontally distributed
data, because real life data typically exhibit a
large number of repetitions where the same or
similar samples are represented multiple times.
This is not the case for a vertically partitioned
setting. Therefore, ensembles do not trivially
extend to the heterogeneous case.
In this paper, we restrict our technique to a su-
pervised setting. In this case, the predictors are
built from a labeled training set for which the
classifications are known. The performance of
these predictors is then evaluated using a previ-
ously unseen test set. The particular technique
used in this paper is a decision tree algorithm,
which builds tree-like structures from the train-
ing sets. Leaf nodes are associated with target
classes, while internal nodes are labeled with
attributes and represent tests to be performed
on the data. The outcome of the test is de-
termined by the value of the attribute used to
label the node. Initially, all data is associated
with the root. A splitting criterion is then used
to separate the data, with the disjoint subsets
now associated with the children of the root.
The procedure is then applied recursively until
the nodes contain mainly samples of one class.
To classify previously unseen data, the test as-
sociated with the root is applied to a data in-
stance, which subsequently follows a path down
the tree until it reaches a leaf node. The path
a datum follows, and therefore the leaf node it
is assigned to, depends on the attribute values
of the datum.

3 Related Work

Originally developed and utilized to increase
the overall classification accuracy, ensemble
techniques have been applied to a wide range
of techniques such as decision trees and neu-
ral networks. Hansen and Salamon [8] show
that the classification accuracy of an ensemble
can surpass that of the single best classifier in
the collection, providing that the classifiers are
both accurate and diverse. Approaches such as
bagging, boosting and stacking as well as ran-
dom forests fall into this category. A survey
of various approaches to combine ensembles is
presented in Bahler and Navarro [1]. Meta-
learning, which can be regarded as an extension
of the ensemble approach, is loosely defined as
learning about learning or from learned knowl-
edge. The use of a second level for learning was
originally suggested by Wolpert [16] and used
in a supervised setting by Chan and Stolfo [3]
[4]. Outputs from a set of classifiers are used as
input to another classifier, which then produces
the final prediction.

Both approaches for combining classifiers,
ensembles and meta-learning, are complements
to the data mining techniques. As such, they
are independent of the underlying algorithms,
thus rendering them applicable to a wide range
of learning techniques without changes to the
original code. Advantages of these techniques
are the potential increase in accuracy, their
scalability to larger datasets as well as their
portability. In contrast, drawbacks include the
increased need for runtime resources and the
data dependency of the results. Even though
ensembles and meta-learning have been applied
extensively to horizontally partitioned data, in
which sites contain subsets of objects for all at-
tributes, to our best knowledge no approaches
to vertically partitioned data are reported in
the distributed data mining literature.

In contrast to ensembles, which produce a fi-
nal prediction from a collection of classifiers, al-
ternative data mining techniques for vertically
partitioned data are the Collective Data Min-
ing framework and the construction of a single
classifier from the distributed data in privacy
preserving data mining.

The collective data mining (CDM) frame-
work was specifically designed for heteroge-



neous data. It is based on the fact that any
function (such as the decision tree to be learned
for example) can be expressed as the sum of a
set of a possibly infinite number of basis func-
tions.

f(x) =
∑

k∈ΞI

wkΨk(x) (1)

where Ξ is a set of basis functions, the k-th
basis function is denoted by Ψk and the cor-
responding coefficient by wk. ΞI denotes the
set of indices of the basis functions. Rather
than learning the original function f through
the original representation of the data, CDM
aims at learning the function f using an alter-
nate basis by extracting the coefficients for the
basis functions from the distributed datasites.
To ensure computation polynomial in the num-
ber of samples, the sum in Equation 1 has to be
finite, which imposes a bound on the accuracy
that can be achieved.

After choosing an appropriate representation
for the function to be represented, the coeffi-
cients of the basis functions are computed for
each of the local datasets. These coefficients,
in some cases along with a small representative
sample of the local datasets, are then commu-
nicated to a central site, where the final model
is generated. Through the use of small rep-
resentative samples or the coefficients alone,
the need of communication of large amounts
of data is eliminated. This comes at the cost
of a reduction in accuracy, since the original
functions are approximated. This implies that,
contrary to ensemble techniques such as the one
introduced in this paper, and meta-learning ap-
proaches, the achieved accuracy in the CDM
framework will always be lower than that of a
predictor computed from a centralized dataset.
In addition, the CDM framework relies on the
communication of data samples to a central site
for most techniques, which limits its use for pri-
vacy preserving data mining.

In addition to the fact that a large number of
coefficients need to be zero or negligible as de-
termined by a threshold to allow for polynomial
computation of the coefficients, the coefficients
also have to be approximated. Considering the
need for linear time algorithms, this polyno-
mial complexity represents a major limitation
for this approach, in essence rendering it not
scalable to larger datasets. Additionally, since

the representation is approximate, the frame-
work might not be suitable for all techniques,
especially for those aimed at outlier detection.

The Collective Data Mining Framework en-
compasses a wide range of techniques. Hersh-
berger and Kargupta established the use of re-
gression within the CDM framework [9]. In this
approach, the coefficients representing cross
terms are estimated directly from the local
coefficients sent to a central site, eliminating
the need for transmitting raw data based on
a wavelet representation. For this particular
technique, the communication cost is indepen-
dent of the sample size, since only the basis co-
efficients are communicated. In the same pa-
per, the authors use this approach to include
linear discriminant analysis in their framework.
CDM has also been extended to clustering us-
ing Principal Component Analysis [11], genetic
algorithms [10] and Bayesian networks [5].

In contrast to the Collective Data Mining
Framework, which builds on a transformation
of the function to be learned, privacy preserv-
ing techniques focus on secure sum and se-
cure product computation from vertically par-
titioned data. The construction of a single clas-
sifier from vertically distributed data has been
applied to a number of techniques, for example
decision trees [7] and k-means clustering [14].
In this approach, the focus lies on secure com-
putation, where as little as possible about local
data is disclosed to other sites. Secure sum and
secure product computation increase the com-
putational complexity and communication re-
quirements of the technique, while, at the same
time, the accuracy is bounded by that of a sin-
gle sequential classifier applied to a centralized
dataset.

4 Ensembles for Vertically
Partitioned Data

In our ensemble technique for vertically par-
titioned data, local predictors are built from
training sets, which are partitioned by at-
tributes. The predictions obtained from those
local classifiers for the global test set are then
combined through a voting scheme.

We constructed training sets of the size of
the original datasets by drawing randomly with



Algorithm 1 Vertical Ensembles
Construct a training set
Construct an out-of-bag test set
Partition the training set by attributes
for all partitions of the training set
Distribute one partition of the training set to
each of the local sites, along with the test set
end for
for all local sites
Build a sequential predictor (decision tree)
from the local partitions of the training set
Obtain classifications for each test instance by
applying the local decision tree to the test set
Communicate the classification of the test in-
stances to a central site
end for
Combine the predictions of the classifiers over
the test set

replacement. The training set consisted then
of those samples not chosen to be included
in the training set, for an out-of-bag estimate
of the accuracy [2]. The training sets were
initially partitioned by splitting them verti-
cally into subsets containing single attributes
for each object contained in the database to
simulate a worst case scenario. In subsequent
runs, increasing numbers of attribute values
were grouped together in the default order of
their appearance in the database to investigate
the effect on the accuracy with decreasing num-
ber of sites. This was repeated with the num-
ber of sites varying from 2 to 11, depending on
the dataset. Of course, in a real world setting,
the data is already partitioned, typically with
a wide range of possible subsets.

For each of the vertically partitioned sub-
sets, we build separate decision tree classi-
fiers, which were subsequently combined us-
ing two different voting schemes. For the sim-
pler scheme, each classifier was given the same
vote and the test datum was assigned to the
class with the highest number of votes. In a
more sophisticated voting scheme, each vote
was weighted with the probability that the de-
cision classifier gave to the class for that spe-
cific sample. The final prediction is tested on
the out-of-bag samples.

For our experiments, we used the J48 de-
cision tree implemented in WEKA, which is

Name Samples Targets Attr. Type
Balance 625 3 4 numeric
Iris 150 3 4 numeric
Parity 100 3 9 binary
LED 1024 10 7 binary
Haberman 306 2 3 numeric
Contr. 1473 4 9 all
Pima 768 2 8 numeric
Macho 10970 3 12 numeric
Star 4192 2 14 numeric
Mushroom 8125 2 21 numeric

Table 1: Overview of datasets

based on the C4.5 decision tree algorithm.
WEKA is an open source data mining package
for tasks such as regression and visualization
and contains a wide range of machine learning
algorithms. WEKA is available for download
at http://www.cs.waikato.ac.nz/ml/weka/.

Even though the vertical voting approach
was initially implemented utilizing a decision
tree technique, it can be applied to a wide range
of data mining techniques, including rule-based
approaches, neural networks and genetic algo-
rithms.

5 Experimental Results

We selected a wide variety of sample datasets
to evaluate the technique. With the exception
of the astronomical data the MACHO dataset
and the Star/Galaxy dataset, all datasets were
taken from the UCI repository. The MA-
CHO data was taken from the from the cat-
alogue of Variable Stars in the Large Magel-
lanic Clouds (MACHO), available through the
VizierR database of astronomical catalogues.
The Star/Galaxy dataset was used by Ode-
wahn in [13] to illustrate the use of neural net-
works for the separation of stars and galaxies
in data obtained from the Palomar Sky Survey.

The number of samples in the datasets
ranges from 100 to 10970, while the number of
attributes fall between 3 and 22, with a mixture
of binary and numeric attributes. The number
of target classes varies between 2 and 10. Ta-
ble 1 shows the number of samples, attributes
and target classes as well as the attribute types
of the 10 datasets used for the experimental
evaluation. The distributed execution was
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Figure 3: Accuracy comparisons: sequential vs. single attribute per partition

simulated on a Sun Ultra 1 processor. We mea-
sured the achieved accuracies, model sizes and
time to build the decision tree in both the dis-
tributed and centralized approaches and all re-
sults were averaged over 50 trials.

Figure 3 gives the results for the accuracies
achieved for all datasets in the worst case sce-
nario where each local site contains the values
of one attributes besides a common key. In
this case, correlations between attributes are
completely ignored when building the individ-
ual classifier, since no exchange of raw data,
models or results takes place at this stage. Note
that this makes it suitable for a case in which
the communication of raw data is not desir-
able due to cost of communication or privacy
issues, when parties cannot or do no want to
share their local data. The results are shown
for both the simple and weighted voting scheme
and compared to the accuracy achieved from a
centralized dataset. As expected, the more so-
phisticated voting approach, where each vote is
weighted by the probability the classifiers as-
sign to specific samples and classes, is at least
as good as that of the simple voting scheme,
which assigns equal weights to each classifier.

For two of the datasets (Haberman and Par-
ity) the accuracies for both voting schemes in
the distributed case are higher than the accura-
cies achieved from a centralized dataset. In two
additional cases, the more sophisticated major-
ity voting scheme is equivalent to the central-
ized approach (Iris and Balance). The perfor-
mance of the distributed approach is slightly
worse than the centralized approach for the ma-
jority of the remaining cases, and fails badly in
the LED dataset. For comparison, Hershberger
and Kargupta achieved a 90.3 % accurate clas-
sification for the IRIS dataset using 3-fold cross
validation in the Collective Data Mining frame-
work [9]. The fact that the accuracy is higher
when seeing only single attributes of the data
and then combining the prediction could pos-
sibly be due to the fact that each of the at-
tributes is a good predictor on a large number
of objects, combined with a minimal overlap of
these ranges for different attributes.

Figure 4 gives the accuracies for each dataset
with varying numbers of sites. Shown are the
results for majority voting, where the results
obtained from a centralized dataset (shown as
boxed values) are included for comparison. As



expected, we see the general pattern of increas-
ing accuracies with increasing numbers of vari-
ables at the sites, with the exception of the Par-
ity and Haberman datasets, for which the over-
all accuracy is less in a centralized approach.

More experiments are underway to deter-
mine the reason for the peaks and dips, for
example in the Balance dataset for 2 variables
and the Pima dataset for 4 variables per site.
We suspect that this is due to the ordering of
the variables that were grouped together, two
uncorrelated attributes placed with each other
might be responsible for the dips. In general,
a substantial increase in accuracy is achieved
for small groupings of attributes compared to
the worst case of single attributes at each site.
For example, accuracies in the Pima and Con-
traception datasets for two variables at each of
the site is comparable to that of the central-
ized approach, while for the Balance dataset,
the accuracy is even higher.

Figure 5 shows the model sizes for the dif-
ferent datasets with varying numbers of sites.
The average size of the decision tree in the cen-
tralized approach and the average model size at
each of the sites are shown. With the excep-
tion of the Macho dataset, the model sizes in-
crease as more complex models are build with
an increase of number of attributes at each site.
Incidentally, the highest increase in model size
with increasing number of attributes per site
occurs for the Parity dataset, for which the
resulting accuracy in the distributed case is
higher than the accuracy achieved by a central-
ized approach. The times to build the decision
trees, both in the distributed and centralized
approach are given in Figure 6. Parallel to the
increase in model size, the time to build the
tree for the Parity dataset increases sharply for
a centralized approach compared to the use of
two sites. Similar results are also observed for
the Haberman dataset.

From these results, it is clear that our ap-
proach has the potential of an increase in accu-
racy combined with a reduction in model size
and runtime as compared to a centralized ap-
proach. In the most extreme case, an increase
in accuracy was achieved with both a reduc-
tion in model size and runtime for a worst case
scenario where each site contains a single at-
tribute only. Furthermore, for those datasets

where the centralized approach had a higher ac-
curacy, the results for the distributed case im-
prove dramatically when increasing the number
of attributes per site to two, with the exception
of the Star/Galaxy dataset only. For each of
the datasets except the LED data, we observed
at least one distributed case with an accuracy
comparable to (within one percentage point) or
higher than a centralized approach. Moreover,
a small loss in accuracy as seen in the worst
case scenario for a subset of the data can be
acceptable if deadlines are involved and/or the
size of the models are of concern.

The proposed technique can be deployed in
a number of ways depending on the data min-
ing needs. If privacy of data is of main concern,
the classifiers can be built locally by each of the
parties involved without the exchange of raw
data or even models. In such a scenario, each
party can classify a previously unseen dataset
and only transmit the class predicted by each
classifier to a central site. Such an approach
requires the distribution of samples to be clas-
sified to each of the local sites, for a communi-
cation requirement of order O(np). Here, there
is a tradeoff between preserving the privacy of
the data and the achieved accuracy.

Alternatively, the predictors, or models,
themselves can be transmitted to a central dat-
asite and then applied to new datasets to be
classified. This trades the communication of
the data to the local sites with the communica-
tion of the classifiers, which only has to happen
initially. If we assume that the number of at-
tributes is smaller than the number of samples,
which is a typical real world scenario, then the
communication cost of our approach is equiva-
lent to the communication cost given by Vaidya
and Clifton [15] for privacy preserving associa-
tion rule mining.

Furthermore, the technique potentially re-
duces the overall model size and runtime, which
can be crucial in the presence of deadlines
and extremely large datasets: most data min-
ing techniques assume the model to be stored
in main memory. Promising results are also
achieved by the application of our technique
to data that is both horizontally and vertically
distributed and for which no distributed data
mining techniques are known. Preliminary re-
sults indicate that the loss of classification ac-
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Figure 4: Accuracies for increasing number of attributes per site: We observe an increase, with the
exception of the Parity and Haberman datasets in 4(b) and 4(i)
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(c) MACHO (12 attributes)
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(d) Mushroom (21 attributes)
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(e) Star/Galaxy (14 attributes)
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(f) Pima (8 attributes)
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(h) Contraception (9 attributes)
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(i) Haberman (3 attributes)
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(j) Balance (4 attributes)

Figure 5: Model sizes for increasing number of attributes per site: With the exception of the Macho
dataset, all data show an increase in model size as the number of attributes at each site increases.
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(a) Iris (4 attributes)
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(b) Parity (9 attributes)
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(c) MACHO (12 attributes)
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(d) Mushroom (21 attributes)
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(e) Star/Galaxy (14 attributes)
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(f) Pima (8 attributes)
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(g) LED (21 attributes)
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(h) Contraception (9 attributes)
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(i) Haberman (3 attributes)
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(j) Balance (4 attributes)

Figure 6: Time to build decision trees for increasing number of attributes per site: All datasets
exhibit an increase in time needed to build the decision tree as the number of attributes per site
increases.



curacy stemming from the independence as-
sumption of the attributes is offset by the gains
from an ensemble approach.

6 Theoretical Justification

Due to the fact that vertically partitioned data
does not exhibit the repetitiveness of horizon-
tally partitioned data, the success of a vertical
voting approach such as the one presented in
this paper comes as somewhat of a surprise on
a first glance. However, the effectiveness of the
technique, when applied to the majority of the
datasets investigated, is related to the success
of the Simple Bayesian Classifier as shown by
Domingos and Pazzani [6].

Bayes’ Theorem expresses p(Hi | x), the pos-
terior probability of a hypothesis Hi given a
sample x, as follows:

p(Hi | x) =
p(x | Hi)× p(Hi)

p(x)
(2)

where p(x | Hi) is the posterior probability of
sample x given a Hypothesis Hi, p(Hi) is the
prior probability of Hi and p(x) is the prior
probability of x. All terms on the right hand
side are estimated from training data, where
the difficulty lies in the fact that the estimation
of the first term is exponential in the number
of variables. One solution to this problem is
to assume that the p variables are condition-
ally independent, so that the first term can be
factorized as

p(x | Hi) =
p∏

j=1

p(xj | Hi) (3)

which is known as simple, naive or first or-
der Bayes approach. This has the advantage
that now the computation is linear in both the
number of samples and attributes, which is op-
timal for any data mining algorithm that is
not based on sampling from the original data.
Naive Bayes techniques are robust with re-
spect to irrelevant attributes, and experience
has shown that this approach works surpris-
ingly well for a wide range of problems and
that adding terms relating to combinations of
variables does not necessarily mean large im-
provements. Domingos and Pazzani show that

this is due to the fact that although the proba-
bilities are estimated wrongly, their ranking is
preserved, i.e. the class that should be assigned
to with the highest probability is still the high-
est under the naive Bayes assumption. The au-
thors also show that the naive Bayes approach
is optimal for disjunction and conjunction. By
presenting empirical evidence, Domingos and
Pazzani also show that the there is a small
correlation between the difference in accuracy
achieved by the Naive Bayes approach com-
pared to other techniques they used and the
attribute dependence found in the datasets. By
distributing the attributes across single sites
in our distributed voting approach, we are es-
sentially assuming independence amongst at-
tributes, where terms corresponding to the con-
ditional dependence of the attributes are ig-
nored. Similar to the first order Bayes as-
sumption, our vertical voting scheme classifies
a large number of samples correctly because the
ranking of the class assignments are preserved
to a large extent.

7 Conclusions

We presented an ensemble approach for verti-
cally partitioned data. Evaluation using a de-
cision tree technique on a variety of datasets
show that we achieve only small losses of pre-
diction accuracy in the worst case when each
site learns from a single attribute. Moreover,
in some cases an increase in prediction accu-
racy is observed. The fact that only models or
votes are exchanged, combined with a reduc-
tion in model sizes and time required to build
the classifiers, makes the technique suitable for
cases where data is physically distributed, or
for privacy preserving data mining.
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