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Abstract

Governments routinely intercept messages as part of
counterterrorism efforts. We consider the problem of
identifying and associating messages between mem-
bers of a threat group when the content is apparently
innocuous and senders and/or receivers are not iden-
tifiable as particular people. We show that clusters
of related messages can be identified when they use
words in correlated ways (which all conversations do)
and the words are used with the ‘wrong’ frequency.
The proposed technique therefore complements the
use of a watch list of words, since the greater the
awareness that particular words should not be used,
the greater the use of inappropriate words that will
reveal the existence of related groups of messages.

1 Introduction

A great deal of email and voice communication
comes under surveillance as part of the counterter-
rorism effort in many countries. Data mining can
play an obvious role in this surveillance effort.

Individual messages of interest can be detected
using a watch list of words that are potentially sig-
nificant. For example, the Echelon system [1] in-
tercepts satellite-detectable messages whose sender
and/or receiver is outside the UKUSA intelligence
sharing agreement.

Messages that are related to each other can
sometimes be detected because of properties of the
communication mechanism, for example:

• The identity of the sender or receiver is known,
for example when landline or cell phones are
used.

• The location of the sender or receiver is known,
for example when radio is used.

In such situations, techniques drawn from social
network analysis [2, 6] can also be used to connect
messages [8], either in a virtual space of relation-
ships or in physical space.

In this paper we consider the problem of detect-
ing related groups of messages, for example mes-
sages among the members of a terrorist cell, when
the senders and receivers cannot be directly estab-
lished. This typically happens because communi-
cation is done via email accounts (which can be cre-
ated so easily that it is hard to associate them with
either owners or locations); via web pages (where
identifying the content creator is difficult, but dis-
covering the receivers is even harder because they
are hidden inside a large number of innocent visi-
tors to the web site); or via cell phones when the
ownership of the handsets cannot be established
(e.g. stolen phones or switched SIMs).

Such related sets of messages are likely to show
correlated use of words; after all the messages are
about something. However, many innocent sets of
messages will also show similar correlated word use.
Groups that are trying to avoid detection are under
an added constraint: they must avoid using words
that might appear on a watch list, and they can
have only a rough idea of the contents of such a
list. This will tend to alter their word usage, both
consciously and unconsciously. They will replace
words they do not wish to use with others, but the
replacement words will be used in ways that do not
match their natural frequency.

The contribution of this paper is to show that
sets of messages that use unusual words in corre-
lated ways can be detected using matrix decompo-
sitions. Neither ordinary conversations (using cor-
related words with their typical frequencies) nor



individual messages with unusual word frequen-
cies are detected, so that typical sources of false
positives do not create a problem. The ability to
classify groups of messages as related expands the
range of analysis that can be applied to intercepted
message traffic.

In Section 2 we discuss some of the linguistic
properties that are relevant to this problem. In
Section 3 we introduce the matrix decompositions
that we use to tackle the problem. In Section 4
we outline the structure of the datasets we use. In
Section 5, we describe the experiments performed
and their results. Finally, in Section 6 we draw
some conclusions.

2 Patterns in conversation and email

Speech has certain characteristics that distinguish
it from prose, primarily because it is produced
in real-time and cannot be edited. It is widely
believed by linguists that email falls in a middle
ground between speech and prose, with many of
the characteristics of the former – email tends
to be constructed on the fly and with little, if
any, editing. In what follows, we will assume
that both speech and email have similar word-
use structure because of their informal nature and
rapid construction.

Four properties of informal language are rele-
vant:

1. The frequency distribution of words is Zipf;
furthermore the distribution of individual
classes of words, such as nouns and verbs, is
also Zipf. There are a number of compet-
ing explanations for why this property holds
for human languages: there are simply more
possible long words than short ones and this
alone is enough to account for the observed
distribution [7]. Whatever, the explanation,
it is widely agreed that a Zipf distribution for
words is a shallow (although useful) property
of languages.

2. If adjacent (or almost adjacent) co-occurrence
of words is considered as a relation, then En-
glish at least exhibits the small world property
– almost all words are reachable from a given
word along a path of length not much greater

than three [5]. This suggests that words can be
considered as forming a sphere, in which the
core is almost fully-connected, and successive
layers have rich interconnection both to the in-
ner layers and to the other words in their own
layer. Considering occurrences of word pairs
or sequences seems unlikely to provide much
more information than considering single word
occurrences.

3. The process of sentence formation in an indi-
vidual is highly individualized, notwithstand-
ing the previous two points. Authorship stud-
ies show that elements of individual style per-
sist even when deliberate attempts are made
to conceal them.

4. Language production is largely an unconscious
process, so that many aspects of utterances are
hard, perhaps impossible, for the speaker to
change.

Knowing that conversations and emails are un-
der surveillance, a strategy for avoiding detection,
or better still consideration, is to avoid words that
might be on a watch list, and to use words in ways
that are consistent with their normal usage, in par-
ticular to use rare words infrequently and common
words frequently. This is not an easy thing to do
in real-time since we do not use rare words rarely
because we have a model of the Zipf distribution in
our heads, but because of largely unconscious lan-
guage production systems. Trying to consciously
adjust the behavior of these unconscious systems
is unlikely to work and likely to leave traces that
may be detectable.

The task of avoiding consideration is further
complicated by the need to talk about actual
objects. Replacing the names of these objects by
more common words may lead to message profiles
that are unusually bland. Replacing the names of
these objects by other names (as in simple forms of
speech code) produces messages whose noun usage
profile is unusual, perhaps including too many
infrequent nouns.

It is hard to select anomalous individual mes-
sages with confidence, although messages can po-
tentially be ranked by how anomalous they are.



However, correlated anomalous messages are both
easier to detect and potentially more interesting.
In general, a large number of messages may use an
infrequent word; it is much less likely that a set of
messages will use the same infrequent word. Par-
ticular turns of phrase or idioms tend to circulate
among members of groups, and these may further
tend to create correlations among messages. In
other words, authorship, normally considered as a
property associated with an individual, can plausi-
bly be associated with a group as well, particularly
a group that is already distinctive in its attitudes,
goals, and in its milieu.

3 Matrix Decompositions

Matrix decompositions express a matrix, represent-
ing a dataset, in a form that reveals aspects of
its internal structure. Different matrix decompo-
sitions impose different requirements on the struc-
ture of the decomposition and so reveal different
structures. A typical matrix decomposition allows
a matrix A to be expressed as a product

A = C F

where, if A is n×m, the matrix C is n× r and F
is r×m. Sometimes a third, diagonal r× r matrix
is also part of the decomposition.

There are two natural interpretations of such
a decomposition. The first, a geometric model,
interprets the rows of F as axes in a transformed
space, and the rows of C as coordinates in this
space. The second interpretation, a layer model,
sees A as the sum of Ai, where each Ai is the outer
product of the ith column of C and the ith row
of F (and hence is the same shape as A). The
outer product representation is particularly useful
for judging the likely discriminative power of a
matrix decomposition. If one of the Ai matrices
is plotted using a colored representation for the
magnitude of its entries and a region of distinct
color is visible, then the rows corresponding to
this region will be distant from the remaining rows
when plotted in space in dimension i (and similarly
for the columns). Hence the existence of distinctive
regions in layer plots is a kind of shorthand for good
clusterings, and potentially for good predictors.

We will use two matrix decompositions:

• Singular value decomposition (SVD) [3] for
which

A = U S V ′

where U and V are orthogonal, and S is
diagonal with non-increasing entries.

• Independent Component Analysis (ICA) [4]
for which

A = W H

where the rows of H are statistically independent.
SVD has the property that the first new axis is

aligned along the direction of maximal variation in
the data, the second axis along the direction of re-
maining maximal variation, and so on. Each axis
is orthogonal to the others, so the ‘factors’ cor-
responding to each axis are linearly independent.
The truncated representation for any k ≤ m is
the most faithful possible in that number of dimen-
sions. A useful property of SVD is that it trans-
forms correlation in the original data into prox-
imity in the transformed space. Fast algorithms
for computing the SVD of a sparse matrix (with
complexity proportional to r times the number of
non-zero entries in A) are known.

A particularly useful property of SVD is that
distance of a point from the origin in the trans-
formed space (even when the number of dimensions
is reduced by truncation) represents how interest-
ing the point is in the sense of how strongly it is cor-
related with all of the other points. Hence points
far from the origin are most anomalous, while those
close to the origin are least anomalous. Both pieces
of information can be useful.

ICA is similar to SVD but selects factors (rows
of H) that are statistically independent. Typically,
these factors do not have a natural ordering on
them, as those of SVD do.

4 Datasets

We use artificial, but plausible, datasets for our
experiments. We assume that messages have been
processed to generate a frequency histogram giv-
ing the number of occurrences of each word of
some (potentially large) dictionary in each mes-
sage. Each column of a dataset represents a word
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Figure 1: Word frequencies in a typical dataset
(lighter colors = greater frequency)

and each row the frequencies of each word in a par-
ticular document (representing an email or tele-
phone conversation transcript). The columns are
ordered in decreasing order of natural frequency –
we ignore which words they actually represent and
simply generate the corresponding entries with ap-
propriate frequencies.

The ijth entry of such a dataset is generated
by sampling from a Poisson distribution with mean
f ∗ 1/j + 1, where f is a parameter that allows the
overall frequencies to be altered, and the 1/j + 1
term decreases the probability of the occurrence of
a word depending which column represents it (so
that inherently infrequent words, supposed to be
represented by the later columns, are unlikely to
appear in any given document). This approximates
the Zipf distribution.

Figure 1 shows the distribution of word fre-
quencies in a dataset with 1000 documents and 400
words. With f = 3 such a dataset has about 16000
non-zero entries (4% sparse) and each document
contains about 20 distinct words. This dataset is
a reasonable representation of, say, the nouns in a
collection of 1000 messages.

5 Experiments

We begin with a dataset constructed as above, with
a further 10 similar rows added to it (representing
messages that we wish to detect). None of the
techniques we use rely on the ordering of the
rows so, without loss of generality, we can make

these the last ten rows. In all of these matrix
decompositions, we discard the first 200 columns of
the dataset since the (mostly spurious) correlations
among common words obscure the more interesting
structure of the less-frequent words.

The first dataset illustrates a set of messages
with correlated use of unusual words. A block of
size 10 rows by 6 columns with uniformly random
1’s and 0’s is generated and added to the dataset at
rows 1001 to 1010 and columns 301 to 306. Each
message therefore has an overlap of 2–3 words with
every other message in the group. The natural
frequency of occurrences of these words is around
1% so the use in these messages is well above
the background usage. This dataset represents a
typical scenario in which several objects are being
discussed in messages, but different, less frequent
words, are being used in place of the object names.

Figure 2 shows the first three layer matrices
from the SVD of this dataset. Each of these
matrices has the same shape as the dataset, and
the colors represent the magnitudes of each entry.
The band of different coloring is visible across the
bottom of the first two figures. These bands show
that the corresponding points (rows 1001–1010)
are far from the others in these two dimensions.
The bands would not, of course, be as visible if
the matrix were not arranged in this way, so the
layer representation only acts as a visual shorthand
for the quality of the separation in this artificial
setting. However, the distances of the points
corresponding to these rows from the others do not
depend on the order of the rows of the dataset, so
the separation is always visible in a 3-dimensional
plot.

Figure 3 shows such a plot using the first 3
columns of the U matrix from the decomposition.
The messages in the correlated group are marked
with red circles. It is easy to see how they are
separated from the other messages in the first and
second dimensions.

Figure 4 shows the lower right-hand corner
of the truncated correlation matrix obtained by
truncating each of the matrices in the SVD to
k = 3, remultiplying to generate a matrix of
the same shape as A, and then computing the
correlation matrix of this new product. Such a
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(a) SVD outer product at level 1
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(b) SVD outer product at level 2
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(c) SVD outer product at level 3

Figure 2: Layers of the SVD for a dataset contain-
ing correlated unusual word usage
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Figure 3: The 3-dimensional plot of messages for a
dataset containing correlated unusual word usage
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Figure 4: The truncated correlation matrix for a
dataset containing correlated unusual word usage

correlation matrix captures not only the direct
correlations (which would be visible in AA′) but
also the indirect correlations (via the use of the
truncated SVD). The group of messages is clearly
visible in this matrix.

Figure 5 shows the first layer matrix from the
ICA of this dataset. The correlation within the
message group (and its relationship to words 301-
306 which correspond to columns 101–106) are
clearly visible.

Figure 6 shows how the values in the layer
matrix are reflected by unusual positions in the
plot of points using the first 3 columns of the W
matrix. Figure 7 illustrates the entire W matrix,
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Figure 5: Layer 1 of the ICA for a dataset contain-
ing correlated unusual word use
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Figure 6: The 3-dimensional plot from ICA of a
dataset containing correlated unusual word usage

showing how the message group can be seen as a
block of unusual magnitude at the bottom of the
first column.

We now show that both correlation and unusual
frequency are required in order to form detectable
groups of related messages. We first add to the
base dataset a block of correlated messages whose
frequencies are natural. To do this, we generate
a block of 5 rows by 6 columns and place non-
zero entries in it with frequencies appropriate to
columns 301–306 of the base dataset. We then
insert this block twice, at rows 1001–1005 and
1006–1010. Because there is only approximately
a 1% chance of a word of this frequency being used
in a message, such blocks may contain very few
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Figure 7: The W matrix from ICA for a dataset
containing correlated unusual word usage

1’s. However, even when f = 30 is used, so that
there are a significant number of 1’s in the repeated
block, no structure is seen.

Figure 8 shows that there is no obvious struc-
ture related to rows 1001–1010. Figure 9 shows
that the points corresponding to rows 1001–1010
are not separated from the main mass of points.
Figure 10 shows that there is little correlation
among the rows of this group of messages.

Figure 11 shows that ICA does not see any
structure related to this group in the first 3 di-
mensions, and Figure 12 shows that there is no
structure at deeper levels either.

We now consider a dataset where unusual
words uses are present but they are not correlated.
We generate 10 independent vectors of size 1 by
6 with a uniform distribution of 0’s and 1’s (as in
the first dataset) and then place each of these vec-
tors in non-overlapping columns starting from col-
umn 280. The resulting dataset therefore has 10
final rows in which rare words are used with much
greater than their natural frequency.

Figure 13 shows that there is no obvious struc-
ture as the result of these unusual words usages. As
expected Figure 14 shows the points corresponding
to these messages scattered all over the plot. No-
tice, though, that several of these points are far
along the U1 axis as a result of the unusual word
usage they contain. The truncated correlation ma-
trix, shown in Figure 15, also shows the lack of
correlation among these rows. Similar results for



0 50 100 150 200 250

0

200

400

600

800

1000

1200

50

100

150

200

250

(a) SVD outer product at level 1
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(b) SVD outer product at level 2
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(c) SVD outer product at level 3

Figure 8: Layers of SVD for a dataset with corre-
lation but typical frequencies
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Figure 9: 3-dimensional plot from SVD for a
dataset with correlation but typical frequencies
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Figure 10: Truncated correlation matrix for a
dataset with correlation but typical frequencies
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Figure 11: 3-dimensional plot from ICA for a
dataset with correlation but typical frequencies
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Figure 12: The W matrix from ICA for a dataset
with correlation but typical frequencies

ICA can be seen in Figures 16 and 17.
Although we have shown results only for a par-

ticular base dataset and particular modifications
to it, the results shown here are typical of similar
datasets. Although as a matter of practicality, the
datasets are small, they are not unreasonable as
examples of email or phone conversations collected
over a short period of time.

Notice that only a few dimensions of the decom-
position are needed to give good results. Hence the
complexity of these matrix decompositions is quite
practical since the data matrices are sparse – the
complexity is effectively linear in the number of
messages considered.

6 Conclusion

We have presented preliminary results showing
that groups of related messages can sometimes be
identified by internal evidence alone, that is with-
out information about senders and receivers. Iden-
tifying such groups requires that the messages use
words in a correlated way and that the words are
used with the ‘wrong’ frequencies. We suggest that
groups whose purpose is malign are likely to use
words with the ‘wrong’ frequency because of their
awareness that certain words will trigger suspicion
and scrutiny. Their attempts to substitute for such
words, either using speech code or on-the-fly, are
likely to produce words that are either too common
or too unusual, and hence to produce the message
profiles that our technique will detect. We have
shown that the use of correlated words alone does
not trigger detection by our technique – which is
just as well since most collections of messages will
contain conversations with such correlations. We
also show that unusual word use alone does not
trigger detection by our technique – so eccentrics
and non-native speakers do not cause false positives
either.
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