
A Distributed Approach for Prediction in Sensor Networks

Sabine M. McConnell and David B. Skillicorn
School of Computing
Queen’s University

{mcconnell,skill}@cs.queensu.ca

Abstract

Sensor networks in which the sensors are capable of lo-
cal computation create the possibility of training and
using predictors in a distributed way. We have pre-
viously shown that global predictors based on voting
the predictions of local predictors each trained on one
(or a few) attributes can be as accurate as a central-
ized predictor. We extend this approach to sensor net-
works. We also show that, when the target function
drifts over time, sensors are able to make local decisions
about when they need to relearn to capture the chang-
ing class boundaries.

Keywords: sensor networks, prediction accuracy,
classification task, distributed data mining, anom-
aly detection, local models

1 Introduction

As sensors increasingly become active devices, with
their own processing power, rather than simply
passive input devices, new possibilities for imple-
menting distributed algorithms in a network of sen-
sors become possible. One important class of such
algorithms are predictors, which use the sensor in-
puts to predict some output function of interest –
one topical example is the use of ocean overpressure
sensors and seismic detectors to predict a tsunami.

Sensor networks are of two broad kinds: peer-
to-peer or hubbed. In a peer-to-peer (or ad hoc)
network, each sensor has access to some neighbors
and the overall network resembles a random graph.
In a hubbed network, the network structure is a
tree, where leaves are sensors, the root is some more
substantial computational device, and the internal
nodes may either be ordinary sensors, resemble
the root node, or something in between. We will
consider only hubbed sensor networks.

The trivial solution to learning a predictor
in such a sensor network is of course simply to
transmit the data from all of the sensors to the
root, and carry out all of the predictor training
and prediction at the central site. This has several
disadvantages: moving the raw data to the root
increases power consumption, uses bandwidth and
introduces latency. In addition, the sensors remain
passive devices.

We show that prediction in a hubbed sensor
network can be distributed in the following way:
each sensor learns a local predictive model for the
global target classes, using only its local input data.
Only the predicted target class for each reading is
then transmitted to the root, which determines the
appropriate prediction by voting the target classes
of the local predictors. This approach has a number
of desired properties: it is no less (and potentially
even more) accurate than a centralized predictive
model; it requires only the target class prediction
to be transmitted from the sensor, rather than
the entire raw data; and it allows each sensor to
locally determine its behavior and respond to its
environment, for example deciding when to relearn
its local model in response to changes in the input
data.

The contributions of this paper are:

• A framework for building and deploying pre-
dictors in sensor networks that pushes most
of the work out to the sensors themselves.
This builds on our earlier work on distributed
data mining. We show that prediction per-
formance is not negatively impacted by using
the framework instead of a centralized learning
approach.



• We show how the use of local predictive mod-
els enables sensors to respond to changes in
data by relearning when their local predictive
accuracy changes. This creates new possibil-
ities, such as allowing sensors to predict only
some target classes, for example those repre-
senting anomalies, therefore further reducing
the required bandwidth.

Because sensors only transmit model predictions,
and not raw data, our approach can also be used
in settings where privacy is a concern, for example
when sensors belong to different organizations or
governments.

2 Related Work

The deployment of data mining techniques in sen-
sor networks is an open research problem. For
a general discussion of the characteristics and re-
quirements of sensor networks see the survey by
Akyildiz et al. [1]. One application is the distrib-
uted stream mining system Vedas [9] by Kargupta
et al., which monitors data streams obtained in
moving vehicles before reporting them to a base.
More recently, Bandyopadhyay et al. [2] intro-
duced a distributed clustering algorithm based on
the k-means clustering algorithm in a peer-to-peer
environment.

The current limitation of data mining applica-
tions in sensor networks is that existing distributed
data mining techniques impose heavy demands on
computation and/or communication. In addition
to the trivial approach of sending all collected data
from the individual sensors to the root, where any
standard data-mining technique can then be ap-
plied, two techniques for distributed data mining
are known: the Collective Data Mining (CDM)
framework introduced by Kargupta et al. [8], and
metalearning [5].

The CDM framework encompasses a variety of
data mining techniques, while metalearning is algo-
rithm independent. The CDM framework is built
upon the fact that any function, i.e. the function
to be learned by the data mining algorithm, can
be expressed as a (possible infinite) sum of basis
functions and their corresponding coefficients. It
is those coefficients that are learned from the local

datasets and then combined into a global model.
This is computationally expensive, and the sum is
only approximated, which puts an upper bound-
ary on the accuracy that can be achieved. In met-
alearning, outputs from classifiers built at separate
sites and from separate datasets are combined by
sending them as input to a second level of clas-
sifiers, which then produce the final result. Be-
cause metalearning requires additional resources,
both for the transmission of the models as well as
the computation of the models themselves, it is not
well suited to applications in sensor networks.

3 Learning Predictors in Sensor Networks

Provided that each of the sensors provides an
attribute value (reading) at the same time, the
global view of the collected data is a matrix. Each
row of the matrix corresponds to a (global) reading
and each column to an attribute. Each sensor
may collect only a single attribute, so that it is
responsible for only one column of the dataset, or
it may collect multiple attributes. A target class
is associated with each global reading; for training
data, there is a further column containing these
target classes. After deployment, the goal is to
predict the target class for each global reading.

In our approach, each sensor builds a local pre-
dictor that predicts the target class based only on
the attribute(s) available to it locally. At first, it
might seem as if such predictors would be too poor
to be useful, especially given the amount of re-
search directed towards more heavyweight distrib-
uted data-mining techniques as described above.
However, we have shown [10] that, even when a
model is built from each attribute individually, pre-
dictive performance is not necessarily worse than
that of a centralized predictor. This follows partly
from the same reason that Bayesian classifiers are
often useful, even when the independence assump-
tion on which they depend is violated. Domin-
gos and Pazzani [6] attribute the success of the
naive Bayes classifier to the fact that even though
the class probabilities are estimated wrongly, their
ranking is preserved, i.e. the class that should
be assigned to with the highest probability is still
the highest under the naive Bayes assumption. It
should also be noted that many predictive model



building algorithms do not account for attribute
correlation well, even when they purport to.

Our model of a sensor network is as follows.
The network is a tree, with a powerful computa-
tional device at the root, and sensors, with limited
power, processing, and memory capabilities at the
leaves. Bandwidth in the network is a scarce re-
source, in part because transmission by the sen-
sors consumes power. In addition, available re-
sources vary across different sensor networks. Sen-
sors gather data synchronously (logically if not
physically), and the overall goal is to predict some
function of all data inputs.

During the learning phase, each sensor builds
a predictor for the global target class based on
values of its local input data. The accuracy of each
local predictor can be determined using test data
for which the correct target class predictions are
known. During deployment, each sensor receives
data from the outside world, and sends its target
class predictions for each of these readings (directly
or through other sensors) to the root. The root
uses voting to choose a global target class from
these individual predictions. Note that the root
can tell whether each individual sensor’s prediction
was ‘right’ or ‘wrong’ by whether it agreed with
the overall vote, and this can act as a surrogate for
prediction accuracy for each local predictive model.

There are several variations in this overall ap-
proach, depending on the capabilities of the sen-
sors and the particular predictive technique being
used. Some predictive techniques require access to
all of the training data at once (for example, de-
cision trees), while others require only one reading
at a time (for example, neural networks). In both
cases, sensors must have enough memory to store
the model itself and perhaps some statistics about
it; but in the former case, a sensor must also have
enough memory to hold the entire training data for
its input attribute(s).

When only one reading is stored at a time,
the training regime is given in Algorithm 1. For
model building techniques that must see the data
multiple times (for example, the epochs required in
backpropagation training of neural networks), the
data must be transmitted multiple times from the
root. Hence small memory at the sensors is bought

Algorithm 1 Learning with extremely limited
resources

for all objects in the training data do
Root sends values for attribute i to sensor i

end for
Sensor i uses the attribute value to build its local
model

at the cost of increased communication.
The test regime is outlined in Algorithm 2.

During deployment, each sensor classifies each new

Algorithm 2 Testing with extremely limited re-
sources

for all objects in the test data do
Root sends values for attribute i to sensor i
Sensor i uses its local predictor to predict the
target class
Sensor i sends its prediction to the root
The root votes using the predictions of each
sensor to get a global prediction

end for
The root computes the overall prediction accu-
racy using the target class labels of the test data
The root computes the accuracy of each local
predictor and sends this to each sensor

input it collects according to the local model and
then sends its prediction to the base. Voting
can either be unweighted, so that each sensor’s
prediction makes the same contribution to the
global prediction, or weighted by factors such as the
test set accuracy of each sensor’s local predictor or
the confidence with which local models assign input
values to target classes. The number of target
classes is typically much smaller than the range of
values in the attribute domain, and so much less
bandwidth is required to transmit predictions than
raw data. It should be noted at this point that even
a model that requires the entire training data for
its construction can sometimes be modified to learn
incrementally. A number of incremental algorithms
are known, for example those proposed by Thomas
[11] and Utgoff [12]. This implies that adaptations
of these techniques could be deployed even in sensor
networks with extremely limited resources.

When each sensor has a significant amount of



memory available, a less rigid training and testing
regime is possible as outlined in Algorithms 3 and
4, respectively. After testing, the root can send

Algorithm 3 Learning with larger resources
for all sensors do

Root sends the columns corresponding to each
sensor’s attributes and a copy of the target
attribute to each sensor
Each sensor builds a local predictor from this
data

end for

each sensor both its per-reading accuracy and its
global accuracy. The sensors are deployed exactly
as above. The amount of storage required at each
sensor has to be sufficient to store the larger of the
training and test set data, in addition to the target
class in each case.

Algorithm 4 Testing with larger resources
for all sensors do

Root sends the columns corresponding to each
sensor’s attributes and a copy of the target
attribute to each sensor
Each sensor uses its local predictor to generate
a list of predicted target classes and sends
them to the root

end for
Root votes using the target class predictions
from each sensor to get a global prediction for
each test-set reading

These strategies can be used with any weak
learner. The local deployed error rate is then
defined as the error rate of the locally built model
as compared to the results achieved by the global
model. The local deployed error rate is measured
against the global error rate, which implies that
relative changes rather than absolute values are of
interest.

4 Trend detection

In some sensor networks, the target function may
change over time, and the predictive model may
need to be relearned. This is difficult to handle
in a centralized way since a drop in the global

predictive accuracy could signal either a change
in the target function or a problem with the
predictor. Assuming that not all local predictors
will fail at the same time due to random data
fluctuations, and because the global predictive
model depends on many local predictors, a change
in a local predictor’s accuracy can then be used to
trigger local relearning to improve that predictor’s
accuracy in response to changes in input data.

After deployment, the root should send the cor-
rect class label for each prediction back to each
sensor. A sensor can use this to track its accu-
racy on observed inputs (which might be expected
to match its training accuracy, or at least to re-
main stable over time) and/or to label each of the
recent observed readings with its correct class la-
bel. Through the knowledge of class labels, a sen-
sor can then discover that its predictions are start-
ing to be less effective, which might trigger new
local behavior (relearning its predictive model), or
new global behavior (relearning all of the predictors
or, alternatively, removing this sensor from predic-
tions). If weighted voting is used, a sensor whose
predictions start to become less accurate is auto-
matically downweighted at the root. The availabil-
ity of global target classes also means that recent
data can be used as training data for relearning
local models.

5 Experiments

5.1 Basic distributed data mining The fea-
sibility of the distributed voting approach was
demonstrated using the following experiment that
simulates distributed execution on an artificial
dataset. A more detailed evaluation of the effec-
tiveness of this approach, utilizing a variety of real
life datasets containing a large range of numbers of
classes, samples and attributes of varying type can
be found in [10].

Datasets were generated by drawing from
two normal distributions in 10-dimensional space,
choosing various different separations for the means
in each dimension, and different magnitudes for
the variances. The target class is the distribution
from which each row was drawn. 500 samples were
drawn from each distribution, giving a dataset with
1000 rows and 10 columns.



Each sensor receives a single column of this
dataset, together with the corresponding class la-
bels. This is the worst case scenario, since a sensor
might be gathering more than one signal at a time.
These data were further separated into training and
test sets using the out-of-bag estimator procedure
suggested by Breiman [3]: samples are drawn with
replacement until 1000 samples have been selected.
The remaining rows, typically about one-third of
the original dataset, are used as the test set. A con-
fidence measure for each sensor’s predictive model
is then obtained by using this test set. Such a con-
fidence measure is expected to be as accurate as if
the test set were of the same size as the training set,
so that confidence intervals will be small for this
data. Global prediction accuracies are computed
in two ways: simple voting, and voting weighted
by the probability with which a sensor assigns a
particular reading to a class.

The predictive model used is the
J48 decision tree implemented in WEKA
(www.cs.waikato.ac.nz/ml/weka/), although
the approach will work for any weak learner. The
achieved accuracies for both voting schemes on
this dataset are shown in Table 1. The accuracies
achieved by building a single decision tree on
the whole dataset (the centralized solution) are
included for comparison.

From these results, it can be seen that the
overall classification accuracy for both voting ap-
proaches is comparable to or better than that of the
centralized approach datasets in all cases. In ad-
dition, the weighted voting approach outperforms
the simpler voting scheme. For an explanation of
the observations and a more general experimental
evaluation, see [10].

5.2 Effect of trends during deployment We
now consider the effect of a target function, and
hence a class boundary, that changes with time.
In the following experiments, we generated data
similar to that described above, but moved the
means of the distributions incrementally.

A dataset of a 1000 samples was drawn from
two normal distributions whose means were cen-
tered at the origin and (1,1,...,1) with variance one.
Ten further datasets, each of size 1000, were gener-

ated from two normal distributions with the same
variance; the means of these two distributions were
moved in lockstep in axis-parallel steps according
to the schedule shown in Table 2 for a total distance
of 20 in each dimension. For example, attribute 1
changed by 10% of its total change at each itera-
tion, while attribute 3 made the total change only
during the last iteration. The extension to the pre-
vious deployment is that each sensor tracks its lo-
cal deployed error rate (which is derived from the
global prediction, not from the ‘true’ prediction)
When this accuracy changes sufficiently, the sen-
sor relearns its local model, using recent data and
the target class labels reported to it by the root.
Algorithm 5 outlines the approach.

Algorithm 5 Relearning during deployment
Create a local model in each sensor
Classify each new reading according to the local
model
if local accuracy deviates then

Relearn the local model
end if
Send the resulting classifications to the base
Combine the predictions from the sensors in the
base using a voting scheme

The deviation that triggers relearning was
taken to be 5 percentage points of prediction ac-
curacy for each attribute. Figures 1 and 2 show
how the accuracy changes as the target function
changes, how relearning is triggered, and how the
prediction accuracy subsequently improves.

Figure 3 shows the effect of the data change and
relearning on the overall accuracy achieved at the
base after combining the classifications sent from
the sensors using both of the voting schemes.

This strategy assumes the change in class
boundaries will not require relearning in all at-
tributes simultaneously, for then the global class
labels would not be appropriate surrogates for the
correct prediction. This assumption is reasonably
robust, since a simultaneous relearning would indi-
cate a drastic change in the target function, which
is unlikely in most realistic settings.

We make the following observations.

• Relearning corresponds to changes in target



Distance between Variance Number of Simple Weighted Centralized
means in each dimensions voting voting prediction

dimension =attributes
1 0.5 10 98.10 (0.88) 99.28 (0.30) 94.31 (1.43)
1 0.5 5 96.61 (0.65) 96.61 (0.65) 94.96 (1.07 )
1 1 10 88.05 (2.43) 89.03 (1.61) 82.75 (2.12 )
1 1 5 81.16 (3.08) 81.16 (3.08) 77.70 (2.02)
2 0.5 10 100 (0) 100 (0) 99.11 (0.56)
2 1 10 98.81 (0.48) 99.15 (0.31) 95.10 (1.21)
2 0.5 5 99.97 (0.09) 99.97 (0.09) 99.79 (0.25)
2 1 5 96.98 (0.65) 96.98 (0.65) 94.38 (1.26)

Table 1: Mean global prediction accuracies over 10 trials, using simple and weighted voting, on
datasets with different class mean separation and variances. The values in parentheses indicate standard
deviations.

Iteration 1 2 3 4 5 6 7 8 9 10 11
Attribute 1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Attribute 2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Attribute 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Attribute 4 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0
Attribute 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.2
Attribute 6 0.0 0.4 0.0 0.4 0.0 0.0 0.1 0.0 0.1 0.0 0.0
Attribute 7 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0
Attribute 8 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0
Attribute 9 0.0 0.5 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1
Attribute 10 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.1

Table 2: Change of dimension means in each iteration (as % of the total change)



1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.1 

0.1 

0.1 
0.1 

0.1 
0.1 0.1 

0.1 

0.1 

0.1 

(a) Attribute 1

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

1.0 

(b) Attribute 2

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

1.0 

(c) Attribute 3

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.5 

0.5 

(d) Attribute 4

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.4 

0.4 0.2 

(e) Attribute 5

Figure 1: Accuracies for Attributes 1 through 5 over time. Values marked with an x indicate the
accuracies after relearning was triggered. Numerical values indicate the percentage change of the target
class centers in that dimension (and so for that attribute).



1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.4 
0.4 

0.1 
0.1 

(a) Attribute 6

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.2 0.2 

0.2 
0.2 0.2 

(b) Attribute 7

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.2 

0.2 

0.2 0.2 

0.2 

(c) Attribute 8

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.5 

0.2 

0.1 
0.1 

0.1 

(d) Attribute 9

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.3 
0.3 

0.3 0.1 

(e) Attribute 10

Figure 2: Accuracies for Attributes 6 through 10 over time. Values marked with an x indicate the
accuracies after relearning was triggered. Numerical values indicate the percentage change of the target
class centers in that dimension (and so for that attribute).



1 2 3 4 5 6 7 8 9 10 11
80

82

84

86

88

90

92

94

96

98

100

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Number of Iterations

Simple Voting
Weighted Voting (dynamic data)

expected accuracy (simple Voting) 

expected accuracy (centralized approach) 

Figure 3: Overall prediction accuracy with moving class boundaries.

function. For each change in the target class
centers, and independent of the amount of
change, relearning is triggered for the local
models. This is true for all attribute values
and across all iterations. For example, the
model describing attribute 1 is relearned at
each iteration after the initial one, correspond-
ing to the change of the distribution mean in
that dimension.

• Relearning occurs occasionally even without
changes in the data. This is seen for example
in the plot for attribute 10, where relearning
occurred in iteration 4. It was observed that
over different runs of the experiment, relearn-
ing without corresponding target class changes
varied in both frequency and the timing of its
occurrence. We therefore suspect that this is
in response to occasional fluctuations in the
datasets due to the randomness of initial con-
struction and selection of the training and test
sets.

• The overall classification accuracy for both the
simple and the weighted voting scheme is as
good or better than that of the centralized data
mining approach. We know from the first ex-
periment that the overall accuracies achieved
for a dataset with a separation between dis-
tribution means of 1 in each dimension and a

variance of 1 are 88.05% and 89.03% for the
simple and weighted voting scheme, respec-
tively. In addition, the estimated value for the
accuracy for a centralized approach is 82.75%.
From the results depicted in Figure 3, we see
that the overall accuracies achieved through
the majority voting schemes with relearning
is equivalent or better to those achieved by a
centralized data mining approach.

• The global accuracy at the root is better than
the individual accuracies obtained from the lo-
cal models. This is due in part to the ensemble
effect, which allows the combined accuracy to
be superior to each of the predictors contained
in the ensemble, provided that the local pre-
dictors are both accurate and make different
errors on different data [7].

It should be noted here that the transmission of
a probability along with the class prediction from
the sensors to the base requires additional commu-
nication and might not be feasible if resources are
limited. However, the accuracy achieved by the
simple voting scheme is equivalent to the accuracy
achieved by a centralized approach and therefore
sufficient.

We have assumed that sensor reading, sensor
transmission of local prediction, and voting at the
root are synchronous. This is a moderately strong



assumption, since it would require a common clock.
In fact, this requirement can be relaxed in sev-
eral ways, which will be discussed in more detail
in a subsequent paper. For example, the root may
recalculate the vote whenever a new prediction is
reported from a sensor, freeing sensors to report
their predictions asynchronously. A major appli-
cation of sensors networks is as anomaly detectors
for complex anomalies that can only be detected
by concerted changes in the data at several sen-
sors. This can be modelled as a two-class problem
(Safe vs. Alarm). The amount of communication
required is greatly reduced if sensors only report
predictions for the Alarm class; the root can then
predict an Alarm in response to some number of
local predictions of Alarm by the sensors.

6 Conclusions

In this paper, we have presented a framework
for building and deploying predictors in sensor
networks in a distributed way, by building local
models at the sensors and transmitting target class
predictions rather than raw data to the root. At
the root, local predictions are combined using
weighted or unweighted voting. This framework
is appropriate for the limited resources found in
sensor networks, due to power, bandwidth and
computational limits. We have also showed how
the use of local predictive models enables sensors
to respond to changes in targets by relearning
local models when their local predictive accuracy
drops below a threshold. This enables effective
distributed data mining in the presence of moving
class boundaries, and also creates new possibilities,
for example the use of sensors to detect anomalies,
even when the criteria for an anomaly changes
over time. Finally, because only model predictions
rather than data are transmitted, the framework is
also suitable for settings where data confidentiality
is a concern.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E.
Cayirci, A Survey on Sensor Networks, IEEE
Communications Magazine, August 2002, pp. 102–
114.

[2] S. Bandyopadhyay, C. Gianella, U. Maulik, H.
Kargupta, K. Liu, and S. Datta, Clustering Dis-
tributed Data Streams in Peer-to-Peer Environ-
ments, 2004, Accepted for publication in the In-
formation Science Journal, in press.

[3] L. Breiman, Out-of-bag Estimation, 1996, Techni-
cal Report, Statistics Department, University of
California, Berkeley, Ca.

[4] L. Breiman, Random Forests, Machine Learning,
45(1), 2001, pp. 5–32.

[5] P. Chan and S. Stolfo, Experiments in Multistrat-
egy Learning by Meta-Learning, Proceedings of the
Second International Conference on Information
and Knowledge Management (Washington, DC),
1993, pp. 314-323.

[6] P. Domingos and M. Pazzani, Beyond Indepen-
dence: Conditions for the Optimality of the Sim-
ple Bayesian Classifier. In Proceedings of the
Thirteenth International Conference on Machine
Learning (ICML), 1996

[7] L. Hansen, and P. Salamon, Neural Network En-
sembles , IEEE Transactions on Pattern Analysis
and Machine Intelligence,(12) 1990, 993–1001.

[8] H. Kargupta, B. Park, D. Hershberger, and E.
Johnson, Collective Data Mining: A New Per-
specive Towards Distributed Data Mining, Ad-
vances in Distributed Data Mining, Eds: H. Kar-
gupta and P. Chan, AAAI/MIT Press, 1999.

[9] H. Kargupta, R. Bhargava, K. Liu, M. Pow-
ers, P. Blair, S. Bushra, J. Dull, K. Sarkar, M.
Klein, M. Vasa, and D. Handy, VEDAS: A Mo-
bile and Distributed Data Stream Mining System
for Real-Time Vehicle Monitoring, Proceedings of
the SIAM International Data Mining Conference,
Orlando, 2004.

[10] S. McConnell, and D. Skillicorn, Building Pre-
dictors from Vertically Distributed Data, Proceed-
ings of the 14th Annual IBM Centers for Ad-
vanced Studies Conference, Markham, Canada,
2004, pp.150–162.

[11] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka,
An Efficient Algorithm for the Incremental Up-
dation of Association Rules in Large Databases,
Knowledge Discovery and Data Mining, 1997, pp.
263–266.

[12] P.Utgoff, An Improved Algorithm for Incremental
Induction of Decision Trees, Proceedings of the
International Conference on Machine Learning,
1994, pp. 318–325.


