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Abstract

The analysis of microarray datasets is complicated
by the magnitude of the available information. Most
data mining techniques are significantly hampered by
irrelevant or redundant information. Hence it is useful
to reduce datasets to manageable size by discarding
such useless information. We present techniques for
winnowing microarray datasets using singular value
decomposition and semidiscrete decomposition, and
show how they can be tuned to extract some informa-
tion about the internal correlative structure of large
datasets.

1 Introduction

Microarrays have the potential to explicate the
relationships between biochemical pathways and
higher-level biological processes such as disease and
drug activity. At present, knowledge extraction
from microarrays is the bottleneck to fully exploit-
ing their potential, since a substantial amount of
human interaction is still required. This is slowly
changing as data mining is applied and customized
for the microarray setting, and more experience of
how much can be automated is gained.

1.1 Technology Background. A microarray
captures information about the levels of expression
of a large number of genes (and other proteins) in a
single sample. Collecting the results from identical
microarrays processed with different samples pro-
duces datasets with a large number of rows (corre-
sponding to the number of genes on the microarray
and typically in the tens of thousands) and rela-
tively few columns (corresponding to samples from
patients and typically in the tens to hundreds).

There are two main kinds of microarrays: those
in which each location measures the absolute ex-
pression level of a particular gene, and so which are
used with a single sample; and those in which each
location measures the relative expression level of
a particular gene, and so are used with a mixture
of two samples, one representing the background
(‘normal’) expression and one representing the fore-
ground (‘disease’), each labelled with a different
dye. These two different kinds of microarrays pro-
duce datasets with different properties that must
be taken into account in subsequent analysis.

1.2 Gene Data Issues. The main application
of microarrays is to solve an inverse problem: which
changes in gene expression account for observed



differences among arrays (representing an organ-
ism at different times or different organisms with
different conditions, e.g. patients). Such infor-
mation can reveal previously unknown subclasses
of conditions (perhaps corresponding to new sub-
types of diseases), can be used to build predictors
to predict conditions, and may reveal the biochem-
ical pathways that result in different conditions.
For example, many cancers contain subclasses that
are difficult to distinguish and for which differ-
ent treatments have dramatically different success
rates. Correct identification of subclass is therefore
critical to successful treatment.

In some cases, it is possible to classify patients,
and so samples, based on clinical knowledge (e.g.
diagnosis) and so the problem becomes to connect
this classification to its gene expression origins. In
other cases, the appropriate classification may not
be known in advance (e.g. prognosis for disease
course); even the appropriate number of classes
may not be known. Here the problem is to discover
both appropriate clusters of patients and genes,
and also the connections between them. In many
clinical settings, the problem is somewhere between
these two extremes — pragmatic classifications are
known but assigning patients to classes is not
always completely accurate, and the classes may
contain as yet unrealized subclasses.

Consider two genes that are both expressed dif-
ferently for different target classes. The magni-
tudes of their relative expression may be different:
for example one may have a moderate expression
level for one class and a high expression level for
the other class; while the second has a low expres-
sion level for the first class and a moderate expres-
sion level for the second. If each row is considered
as a point in a metric space, then the points cor-
responding to these genes may be far apart. Of
course, this may be mitigated by suitable normal-
ization of the expression levels, but such normaliza-
tion is necessarily affected by all of the values for
a particular gene and hence susceptible to noise.
It is also possible that the two genes are strongly
negatively correlated, in which case they will neces-
sarily be far apart (on opposite sides of the origin)
in a metric space representation of the dataset. In
any case, normalization will change the shape of a

localized set of genes which may mislead cluster-
ing algorithms that assume, for example, spherical
clusters.

From this we conclude that both proximity-
based methods and density-based methods should
be treated with caution as techniques for cluster-
ing gene expression data. Such clusters are not lo-
calized, and so are not easily visible to techniques
that treat the dataset as a representation of a met-
ric space. (This may partially explain why some
attempts at clustering have found large numbers
of clusters in settings where quite small numbers
might have been expected.)

On the other hand, gene expressions that are
unrelated to target classes tend to be uncorrelated
with each other, while gene expressions that are
related to target classes are correlated (positively
or negatively), even if they are not localized. In
other words, even though clusters of genes related
to classes are not localized, those genes that are
unrelated are unlocalized, and the remaining cor-
relation among the interesting genes may be visible
against that background. Hence data-mining tech-
niques that are based on correlation are likely to
detect gene expression clusters.

One obvious initial strategy is to improve
datasets by discarding genes and/or samples that
are (probably) irrelevant to any interesting bio-
chemistry. When target classes are known, the
expression level of a relevant gene should differ
between the columns corresponding to each class.
Significance tests can be applied to try to de-
tect such genes: for example, Significance Anal-
ysis of Microarrays (SAM) [13], thresholding [11],
or neighborhood analysis [4]. In a setting where
higher-order correlation is commonplace, discard-
ing genes on the basis of their individual properties
runs the risk of discarding a significant set of genes
whose expression, although small in magnitude, is
tightly correlated.

PCA and SVD are standard techniques for
dimensionality reduction and factor analysis. They
have been used to analyze microarrays in three
related ways:

e To reduce the dimensionality of the data
and/or remove ‘noise’ from the data;



e To generate ‘eigengenes’ and ‘eigensamples’
that capture concerted behavior of a number
of genes or samples [1];

e To cluster genes or samples using spectral
clustering methods [7].

1.3 Proposed Approach. In this paper we
show how two matrix decompositions, singular
value decomposition (SVD), and semidiscrete de-
composition (SDD) can be used to winnow a set
of genes to a much smaller set. Unlike the stan-
dard application of SVD, the goal is not to produce
some set of eigengenes, but to remove from consid-
eration genes whose correlative relationship to the
other genes suggests that they are not of interest
in the context of a given set of samples. The re-
duced dataset can then be analyzed using any of
a number of other data mining techniques. The
techniques described here can also be used when
the target classes are unknown, so they can be ap-
plied even when thresholding cannot.

Both SVD and SDD map the original data
into a structure with the following two important
properties:

1. Genes that are similar and/or correlated are
mapped to close locations within the struc-
ture; and

2. The structure contains a neutral point to
which genes that are either correlated with ev-
erything or correlated with nothing (and hence
are probably ‘uninteresting’) are mapped.

The second property is the key to winnowing, since
these uninteresting genes can be discarded with
little risk of losing useful information. Notice that
this is sharply different to most attribute selection
techniques which try to find the genes with the
most predictive power, a strategy that does not
work well when many genes have a small amount
of predictive power. The first property can help
with prediction since, for example, those genes that
predict a given target gene well will be close to it
within the structure.

A further advantage of these matrix decompo-
sitions is that they are symmetric with respect to
genes and samples, so that identical techniques can

be used to discover relationships among samples
(including outlier samples that may correspond ei-
ther to unexpected subclasses of disease or to pro-
cess flaws).

We will illustrate these techniques using a
dataset comparing pediatric patients diagnosed
with acute lymphocytic leukemia (ALL) and
healthy subjects. This dataset was gathered us-
ing cDNA technology and postprocessed using an
Axon GenePix scanner. Per sample analysis of the
quality of the measured expression levels showed
high reliability, so only four attributes per patient
sample were used — the median contrasts at each
laser frequency. We used a total of 24 samples from
9 different patients. The coordinates of each spot
were also included so that we could check for loca-
tion effects.

The paper is organized as follows: Section 2
outlines some of the related work. Section 3 defines
the singular value decomposition and shows how
it can be used for winnowing using correlation.
Section 4 defines the semidiscrete decomposition
and shows how it is used for winnowing using
difference. Section 5 illustrates how weighting can
be used to focus attention on particular structures.
Finally we draw some conclusions.

2 Related Work

There is a vast amount of work related to data
mining of microarray datasets and we sketch only
a few techniques that have been used for leukemia-
based data. A useful survey is Yang and Speed [14].
The unusual difficulties of mining such datasets
are (a) the large number of genes compared to
the number of samples, which makes it likely that
spurious correlations will be observed (see [12] for
a summary of these issues), (b) the wide error
bounds for microarray readings arising from the
complex processes of preparation, hybridization,
and microarray preparation and reading [2], and
(¢) the fact that most biochemical processes are the
result of multiple weak influences rather than one
strong one, whereas most data-mining techniques,
for example decision trees, look for the smallest set
of influences.

Most techniques are supervised, that is it is
assumed that the classification of samples (with



respect to subclasses of disease or prognosis) is
known. Golub et al. [4] used a measure based
on correlation with the target class to determine
the predictive power of each individual gene, and
provided lists of genes predictive of AML (Acute
Myeloid Leukemia) and ALL (Acute Lymphoblas-
tic Leukemia). Yeoh et al. [15] use two-dimensional
hierarchical classification trees to learn the genes
most predictive of six subclasses of ALL.

3 SVD Winnowing of Microarray Data

3.1 Singular Value Decomposition. Singular
Value Decompositions (SVD) [3] is a well-known
matrix transformation that is often used to reduce
the dimensionality of data. Suppose that a mi-
croarray dataset is a matrix A with n rows (corre-
sponding to genes) and m columns (corresponding
to measurements). Then the SVD expresses A in
the form

A =USV'

where U is an n x m orthogonal matrix, S is an
mxm diagonal matrix whose r non-negative entries
(where A has rank r) are in decreasing order, and
V is an m x m orthogonal matrix. The superscript
dash indicates matrix transpose. The diagonal
entries of S are called the singular values of the
matrix A.

One way to understand SVD is as an axis trans-
formation to new orthogonal axes (represented by
V'), with stretching in each dimension specified by
the values on the diagonal of S. The rows of U
give the coordinates of each original row in the co-
ordinate system of the new axes. Hence U is a
new representation for the genes. SVD measures
variation with respect to the origin, so it is usual
to transform the matrix A so that the attributes
(i.e. columns) have zero mean. If this is not done,
the first singular vector (the first axis of the trans-
formed space) represents the vector from the origin
to the center of the data, and this information is
not usually particularly useful.

The most powerful property of SVD is that the
maximal variation among genes is captured in the
first dimension, as much of the remaining varia-
tion as possible in the second dimension, and so
on. Hence, truncating the matrices so that Uy is

nx k, St is k x k and Vi is m X k gives a represen-
tation for the dataset in a lower-dimensional space.
Moreover, such a representation is the best possible
with respect to both the Frobenius and Lo norms.
(Note that SVD is a decomposition into linearly
independent components, not statistically indepen-
dent components, a distinction that is sometimes
important.)

SVD has often been used for dimensionality
reduction in data mining. When m is large,
Euclidean distance between objects, represented as
points in m-dimensional space is badly behaved
in the sense that the expected distance between
the farthest and nearest neighbors of a given point
is very small. Choosing some smaller value for k
allows a faithful representation in which Euclidean
distance is practical as a similarity metric. When
k = 2 or 3, visualization is possible.

3.2 SVD-based Information Extraction
from Microarray Data. The property of most
interest for winnowing is the following: view
each row of U as a vector in the transformed
m-~dimensional space. Two vectors that are close
together are positively correlated, and the angle
between them is small (their dot product is a large
positive number). Similarly, two vectors that are
negatively correlated are on opposite sides of the
origin, and their dot product is a large negative
number. Two vectors that are at right angles to
each other are completely uncorrelated, so their
dot product is (close to) zero. However, the space
only has m dimensions and there are many more
vectors than this. Vectors that are uncorrelated
to all of the others must have (almost) zero dot
products with all of them; the only way this can
happen is if all of their coordinates are close to
zero. In other words, genes that are uncorrelated
with most of the others will tend to be positioned
close to the origin in the transformed space, while
genes with significant correlation to other genes
will tend to be positioned further from the origin.

The structure to which SVD maps genes in
the dataset is a low-dimensional space in which
proximity corresponds to similarity or correlation,
and whose neutral point in the origin.

SVD transforms the given dataset into a struc-



ture in which distance from the origin is a surro-
gate for interestingness, in the sense of possessing
significant correlative structure. We can draw the
following conclusions about genes from their posi-
tion in a transformed SVD space:

e Genes that are uncorrelated with any other
genes will be close to the origin. Intuitively,
the point corresponding to such a gene is being
pushed in towards the origin by the other
genes. It is unlikely that processes of biological
interest will involve only a single gene, so such
genes may be removed from the dataset with
low risk of losing information.

e Genes that are correlated with many other
genes will also be close to the origin.
tuitively, the point corresponding to such a
gene is being pulled towards many of the other
genes and reaches equilibrium near the center.
Again, such genes are unlikely to be of great
interest since they have little predictive power.

In-

e Genes that are correlated with a moderate
number of other genes will tend to be far
from the origin. The distance from the ori-
gin provides some information about the tight-
ness of the correlation with other ‘interesting’
genes. Since proximity corresponds to correla-
tion, the direction from the origin is also sig-
nificant.

It is worth distinguishing two structures that
commonly occur. When a group of genes are
correlated among themselves, but also corre-
lated with many other genes, they may ap-
pear as a bulge in a central spheroid. If the
group are less correlated with other genes,
such bulges may actually be separated from
the central spheroid, and may appear as dis-
tinct clusters. This is, of course, the most in-
teresting case since it corresponds to a clear
subset of genes with mutually correlated be-
havior.

Note that we are not using SVD as a dimension-
ality reduction technique in the usual way — we
are in fact reducing the dimensionality of the pa-
tient/sample space.
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Figure 1: 3-dimensional plot of genes after SVD

3.3 Example of the application of SVD. We
now show how this strategy works using a dataset
of samples from pediatric leukemia patients. Data
related to housekeeping spots were removed, leav-
ing a total of 10752 genes, only a few of which were
duplicates. The dataset was normalized by column
to zero mean and unit standard deviation. Fig-
ure 1 shows a plot in 3 dimensions of the entire set
of genes.

The main cluster is elliptical, oriented along
the Ul axis, the axis of maximal variation in the
transformed space. This axis would typically rep-
resent the magnitude of normalized gene expres-
sion, with relatively highly expressed genes at one
end and relatively weakly expressed genes at the
other. The points far from the origin along the
U2 axis represent a process that is uncorrelated
with the process expressed along the Ul axis. The
top twenty known extremal genes in the plot of
the entire microarray dataset are (in decreasing or-
der): B2M, RPS27, RPL13A, SERPINB6, HLA-C,
RPL30, RPS6, KIAA0404, HLA-A, RPSS8, LYZ,
RPLY9, and HBE1. Note that the main cluster is
hard to analyze in any further depth because of the
sheer number of points within it.

Figure 2 shows the singular values for this
decomposition. The magnitude of these values
indicates how much variation is being captured by
each dimension. In particular, much variation is
captured by the first 10 dimensions.

We now remove genes that are unlikely to be
interesting, by removing those points closer to the
origin than the median Euclidean distance. We
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Figure 2: Magnitude of the singular values
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Figure 3: 3-d plot of genes further than the median
distance from the origin

could compute the distances in all 98 dimensions,
but having transformed the dataset using SVD and
knowing the magnitudes of the singular values,
we can instead compute the median using only
10 dimensions with confidence that those points
discarded will be essentially the same.

Figure 3 shows that the points removed are, as
expected, not extremal in any direction — indeed it
is difficult to see that half of the points have been
removed.

Removing points closer than 1.5 times the
median distance leaves only 1660 genes, but as
Figure 4 shows, the extremal points remain intact,
and it is possible to see some of the structure of
the main cluster. Note, for example, the small tight
cluster just to the left of the top of the main cluster
in this view.

us

Figure 4: 3-d plot of genes further than 1.5 times
the median distance from the origin

The list that remains after winnowing has been
examined using CONGO, which uses the GO gene
ontology to determine whether sets of genes share
common function. The list does show substantial
functional coherence [6].

Winnowing based on distance from the origin
could have been used directly on the original ma-
trix A to discard genes whose differential expres-
sion is very small. It is instructive to consider the
different effect of applying this technique to the U
matrix instead. Winnowing based on the U ma-
trix will keep as interesting groups of genes with
small differential expression provided that they oc-
cur as part of a group with similar, though small,
expression. Conversely, single genes with large dif-
ferential expression will be preserved by winnowing
on A directly, but probably not by winnowing on
U. Hence, winnowing on U is more discriminat-
ing. This argument shows some of the dangers of
blindly thresholding during early analysis.

4 SDD Winnowing of Microarray Data

SVD views the data in a geometrical way, in which
the rows and columns of matrices are regarded as
coordinates in vector spaces. In contrast, semidis-
crete decomposition works with the matrix A itself,
looking for ‘bumps’, rectilinearly aligned regions of
similar value.

4.1 SemiDiscrete Decomposition. The
semidiscrete decomposition [8-10] expresses the



matrix A as a sum

A =34

where each A; is the product of a column vector,
x;, of length n, a row vector, y;, of length m, and
a scalar, d; like this:

A; = dixy;

where the entries of z; and y; are constrained to
be only —1, 0, or +1. Note that the product
x;y; 18 n X m, that is the same shape as A itself.
This product forms a stencil or footprint that
describes the locations in A that are accounted for
by this ‘bump’ while d; describes the magnitude
of the value that is accounted for at each of these
locations. In other words, the SDD describes how
to recreate A as the sum of a set of submatrices,
each of which is (negatively or positively) constant
at the locations described by the footprint and zero
elsewhere.

Note that SDD regards values in the matrix as
correlated if they are of about the same magnitude,
whether positive or negative (corresponding to
locations where the entries of z; and y; are +1 or
—1).

SDD can be expressed as a matrix equation
similar in form to that of SVD as follows:

A = XDY

where X is the horizontal concatenation of the X;s,
Y the vertical concatenation of the Y;s, and D a
diagonal matrix whose entries are the d;s. Each
row of X corresponds to a row of A, and hence to a
gene. Collectively X defines a ternary hierarchical
decomposition of the genes: they are divided into
3 groups according to the value in the first column
of X; each of these groups is further subdivided
into three subgroups according to the value in the
second column of X, and so on.

Because SDD uses the wvolume of bumps to
decide which to remove next, it has one tunable
parameter, the relative magnitudes of the matrix
entries. If the entries are increased, say by signed
squaring, the ‘height’ of each location in the matrix
changes while the area each bump covers remains
the same — hence small, high bumps are likely

to be considered more significant. On the other
hand, if the entries are decreased, then the effect is
to make low bumps covering many locations seem
more important. This can be exploited to look for
either outlier structure or mainstream structure in
a dataset.

Genes whose expression values have similar
magnitudes will tend to fall into the same bumps.
The rows of X corresponding to genes of little in-
terest will contain zeroes — hence the zero branch of
the hierarchical classification represents the neutral
point.

4.2 SDD-based Winnowing of Microarray
Data. In an SDD, the number of columns of the
X matrix may become quite large, even larger than
m the number of columns of the original matrix. In
other words, A can be expressed as the sum of more
than m matrices. However, just as in SVD, the ear-
lier terms of this sum tend to be more important;
the magnitudes of the d;s decrease. This has two
implications for the hierarchical classification in-
duced by the columns of X: first, the higher levels
of the tree represent more important distinctions;
second, the 0 branches of the tree represent genes
that have not participated in any ‘bumps’ and so
are perhaps less interesting.

Some care is needed. Because the decision
about the next bump to include in the sum is based
on the volume of the bump, bumps of low height
but which occur in a large number of locations can
be considered more important than localized high
bumps. Hence, bumps at level 1 may not be more
‘important’ than those at level 2, although they
are certainly more important than those at level
10, say.

It is useful to visualize the classification in-
duced by SDD by overlaying it on plots of points
from SVD. This combined plot shows how SVD and
SDD agree and disagree about the classification of
genes.

Figure 5 shows the SDD classification super-
imposed on the positions from SVD. Here color is
used to indicate the first column of X (green = 0,
red = +1, the —1 branch is empty); and shape is
used to indicate the second column of X (dot =
—1, circle = 0, cross = +1).
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Figure b5:
positions

This figure shows two interesting things about
the SDD classification. First, it is clear where the
boundary between ordinary genes and those differ-
entially expressed in leukemia might be (those that
are colored green and red respectively). The genes
related to leukemia form a bump that is strongly
visible in the data. Second, further information is
provided about how unusual each of the genes re-
lated to leukemia is. For example, those genes la-
belled with red dots are clearly more unusual than
those labelled with red crosses, according to both
SVD and SDD.

Golub et al. [4] published an early paper
analyzing a dataset for genes predictive of the
difference between AML and ALL, and data from
this paper has been extensively analyzed by others
[5,15]. This dataset is in some ways easy, since
the two classes can be correctly predicted based
on a single gene (zyxin). However, Golub et al.
provide a list of the top fifty genes predictive of
each case. Figure 6 shows the SVD plot from this
dataset with these 100 genes labelled. It is clear
that SVD produces the same kind of results for
this dataset as for the dataset above: there is a
dimension that discriminates the classes well (in
both cases the U2 dimension), and the extremal
points appear to be most interesting. The original
paper makes it clear that discrimination between
the classes could be done well using other genes,
and this is clear from the plot — there are two well-
defined opposite ‘arms’ of points, each of which is
predictive of one leukemia type. Indeed, others [15]

01

Ul
o]
e}

00..% 0@ B'@.

o S

-0.1 L L L L L L L L )
0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2
u2

Figure 6: SVD plot of Golub dataset, blue circles:
genes predictive of AML, red circles: genes predic-
tive of ALL

have defined smaller sets of discriminating genes.

5 Focus as Fine Tuning of Winnowing
Techniques

When certain genes (or patients) are known to be
of interest, both matrix decompositions allow this
information to be used to focus the analysis.

For SVD, adding scalar weights to rows or
columns of the (previously normalized) data has
the effect of moving them further from the origin,
and hence making them seem more interesting.
However, as a side-effect, the points corresponding
to other genes that are correlated with the weighted
genes also move further from the origin because
of their correlation. This often reveals a cluster
of correlated genes that was previously hidden
because it was inside another larger cluster and
hence hard to see.

The amount of weight to be applied to the 20
most extremal genes in the U2 direction in the
original plot requires some experimentation. If a
weight of 10 is applied to these genes, the resulting
plot has these genes as outliers, and the remaining
genes in one undifferentiated cluster. However,
it is clear from this weighting that these genes
divide themselves into four subclusters: HLA-A
and HLA-C; LYZ; HBE1; and the rest. Such a
clustering is at least superficially plausible. When
a weight of 2 is applied to these genes, there is some
movement of related genes outward from the main
cluster. Although this improves the visualization



of these genes, no new information results because
they were detected by sorting the data positions.
Some examples of such genes are: RPS7, VRP, and
TPT1.

Weighting of the columns (corresponding to
patients) can also reveal properties of genes. For
this dataset, we have physician ratings of patient
risk (normal versus high risk) for the patients in
this dataset. Increasing the weight on high-risk
patients induces different positions for genes in the
SVD plot. In effect, we are now able to examine
those genes that are associated with high-risk ALL
leukemia, rather than just with ALL leukemia.

Figure 7 shows the SVD plot when the weight
on the high-risk patients is increased to 8. There
is little visible change from the unweighted case.
However, when the SDD classification is overlaid,
as shown in Figure 8, a new set of genes, labelled
by green dots, begin to separate from the main
cluster. There are also an increasing number of
genes separating from the main cluster along its
long axis.

u3

-0.25

-03 004 u2

Figure 7: SVD plot of genes with high-risk patients
weighted

6 Conclusions

Microarray datasets plausibly contain a great deal
of information that is not helpful for determin-
ing the biochemical structures underlying particu-
lar conditions. Most data mining techniques, even
those with built-in abilities to perform attribute
selection, do not perform well in the presence of
irrelevant or redundant information. We have pre-

[V

Figure 8: SDD labelling of SVD plot of genes with
high-risk patients weighted

sented two techniques, based on singular value de-
composition and semidiscrete decomposition, that
are able to generate a kind of ranking of the pre-
sumptive interestingness of genes. This ranking
can be used to discard substantial fractions of the
genes, allowing more sophisticated techniques to
be applied robustly to what remains. The two ma-
trix decompositions interact in ways that are more
revealing than using them separately; each also al-
lows for some tuning to allow particular structures
to be searched for. We have illustrated these tech-
niques on a dataset of patients with pediatric ALL,
where more than 80% of the genes appear not to
be significant.

Matrix decompositions have the potential to
extract clustering information from datasets, but
background knowledge and fairly sophisticated use
of the techniques is required. Here we only consider
their use as a preprocessing step to reduce dataset
size and complexity for other, downstream model
building techniques.
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