A comparative look at model transformation languages

Matthew Stephan
Queen’s University
Kingston, Canada

matthew.stephan@queensu.ca

ABSTRACT

Model-driven development is an emerging area in software
development that provides a way to express system require-
ments and architecture at a high level of abstraction through
models. It involves using these models as the primary
artifacts during the development process. One aspect that
is holding back MDD from more wide-spread adoption is
the lack of a well established and easy way of performing
model to model (M2M) transformations. We propose to
explore and compare popular M2M model transformation
languages in existence: EMT , Kermeta, and ATL. Each
of these languages support transformation of Ecore models
within the Eclipse Modeling Framework (EMF). We attempt
to implement the same transformation rule on identical meta
models in each of these languages to achieve the appropriate
transformed model. We provide our observations in using
each tool to perform the transformation and comment on
each language/tool’s expressive power, ease of use, and
modularity. We conclude by noting that ATL is our
language / tool of choice because it strikes a balance
between ease of use and expressive power and still allows
for modularity. We believe this, in conjunction with ATL’s
role in the official Eclipse M2M project will lead to wide-
spread use of ATL and, hopefully, a step forward in M2M
transformations.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: [Interface definition lan-
guages]

General Terms
Languages

Keywords
Model transformations, Model-driven development, model
transformation languages, meta modeling

1. INTRODUCTION

Andrew Stevenson
Queen’s University
Kingston, Canada

andrews@cs.queensu.ca

Model-driven development(MDD) is a paradigm in which
software is constructed in a model-centric fashion. Models
are the main artifacts of interest to stakeholders and system
developers and the underlying code that implements the
system is generated from these models. In a perfect model-
centric development project, models are the only elements
that change as the implementing software code is generated
and updated automatically.

One large area of importance in MDD is the notion of model
transformations, that is, the ability to transform one model
to another through modifying the model itself or by creating
a new version of the model. Model transformations can be
split into two categories, model-to-model transformations
and model-to-text/code transformation [5]. The model-
to-text transformation task, sometimes referred to as code
generation, is relatively more mature and explored compared
to model-to-model(M2M) transformations.

Progressing in the area of model-to-model transformations
is crucial in continuing to foster the adoption of MDD as
noted in [5, 9] as these are important operations. Although
there are many classifications of model transformation ap-
proaches [3], all with much promise, it is still unclear which
approach is the best for M2M transformations in practice or
if some are best suited to specific contexts.

In this paper, we utilize and evaluate 3 fairly well known
M2M model transformation languages each belonging to a
different category of M2M as defined in [3]. The languages
that we compare, along with their corresponding categories,
are EMF Model Transformation Framework [1], a graph-
transformation based approach; KerMeta [7], a direct-
manipulation approach; and Atlas [6] (ATL), which is a
hybrid approach and is part of the official Eclipse M2M
project.

Section 2 begins by first providing a brief summary of M2M
transformations and Eclipse Modeling Framework (EMF)
Ecore models and continues with the M2M approaches
that we discuss in the remainder of the paper. Section 3
outlines the procedure that we will follow in order to
perform the comparison, which includes a discussion of
the M2M transformation that will be attempted on all 3
languages and the various dimensions that the 3 approaches
will be compared on. Section 4 presents the observations
we make when using each of the respective approaches to
accomplish the M2M transformation. The paper concludes

with Section 5, in which we summarize our observations and
chose which tool we consider the best given our criteria.

2. BACKGROUND

This section provides brief background information on M2M
transformations, EMF Ecore, and the three languages we
use.

2.1 M2M Transformations

M2M transformation refers to the process of modifying a
model to create either a new model or update itself [8].
Generally model transformation can be seen as an operation
that takes existing model elements, follows some guidelines
or rules as to what should be modified and how it should
modified, and then produces either an entirely new model
containing appropriate elements or the modified version of
the model with the new/modified elements. Model-to-model
transformations involve the process of going from platform-
independent models (PIM)s to either other PIMs or from
PIMs to platform-specific models (PSM)s not in the form of
code.

2.2 Ecore

Ecore [10] is Eclipse’s implementation of the Essential Meta-
Object Facility (EMOF). It provides the M2 layer, which is
the Ecore language that allows modelers to develop meta
models, called Ecore models. Ecore models are the M1 layer
and can be used to specify systems or a family of systems
that can later be instantiated (MO layer). That is, Eclipse’s
implementation allows users to develop Ecore meta models
(M1 layer) to allow for instantiation of system models (MO
layer) that can be developed within an Eclipse application.
A completed Ecore (meta) model allows for code generation,
validation, and instantiation of Ecore instance models. It is
widely used in both industry and research and all three of
the model transformation languages discussed in this project
work with Ecore models.

2.3 Languages Used

The three modeling transformation languages used by us
for this project all work with Ecore models as we figure
this will provide a common foundation for comparison. We
attempt to select languages that are prevalent in research
and industry, based on quantity of documentation and other
information sources, and that are different enough that
a comparison will exhibit the benefits and drawbacks of
various approaches to achieving M2M transformation.

2.3.1 Atlas Transformation Language

The ATLAS Transformation Language (ATL) is one of
three transformation engines within the Eclipse Model-
To-Model subproject, which, itself, is part of the Eclipse
Modeling Project. The other two engines are based on
the Query/View/Transformation (QVT) standard set by the
Object Management Group, but their implementations are
still relatively immature so we consider them out of scope
for the work in this paper.

ATL is a ruled-based domain-specific language that de-
scribes transformations from one Ecore metamodel to an-
other Ecore metamodel. It supports an interesting mix
of declarative and imperative language paradigms, and

provides many useful built-in collection operations such
as iterators, filters, and common set operators. An ATL
program is composed of rules that indicate how model
elements are identified and subsequently modified in order
to obtain the target model.

Figure 1 illustrates a sample rule we have taken from the
ATL user guide. The rule has a source and a target
metamodel, MMAuthor and MMPerson, respectively. The
Authors within the MM Author metamodel, denoted by !Au-
thor following the source Metamodel name, are represented
by the variable a. Persons in the target metamodel, bound
to variable p, are new model objects that have their features
name and surname set to name and surname found in the
corresponding Author object.

There are three types of rules in ATL: Matched rules, such
as the one presented in Figure 1 that are automatically
called; lazy rules, which are ones only executed when
called by another rule; and called rules, which do not
include a source pattern and may contain optional local
variables/parameters. There are two types of execution
modes in ATL: the normal mode and the refining mode. The
refining mode is used to focus on specific transformations
the program, for example, to transform one source model
element into one target model element and focus while
leaving the rest implicitly copied.

rule Author {
from
a : MMAuthor! Author
to
p : MMPerson! Person (
name <— a.name,
surname <— a.surname

Figure 1: Sample ATL Rule

2.3.2 EMF Model Transformation Framework

The EMF Model Transformation (EMT) framework pro-
vides an entirely graphical interface to describe in-place
transformation rules on an Ecore model. It includes a
compiler and a code generator so that the transformations
created within it can be reused. EMT is built upon
AGG [11], which is a graph transformation tool.

As shown in Figure 2, the Eclipse editor is divided into Left-
Hand Side (LHS) and Right-Hand Side (RHS) panes that
show how model elements are structured before and after the
transformation. Optionally, a negative application condition
(NAC) pane can be used to show the one or more situations
where a rule should not be applied. Model elements in
the LHS can be mapped to corresponding elements in the
RHS and NAC section to indicate their identity, and are
represented visually by having the same colour in those
panes. Unmapped elements in the LHS are deleted in the
transformation and unmapped elements in the RHS are
created. The example in Figure 2, is an example of a
transformation that will move all Eclasses with name equal
to 'n’ to the package with its name equal to ’p’. The
NAC pane indicates that any packages already containing
the Eclass to be moved can be ignored. EMT has been

MAC: Class exists

eClassifiers :EClass
3:EPackage
ePackage = name=n
LHS: RHS:

ZiEPackage F:EPackage Z:EPackage HEPackage

=1 name =p
=Package ePackage

amy [+][)

eClassifiers
eClassifiers

1:EClass
L:EClass

O name = n

%P MoveClass | %0 Checkattribute | %0 Pullpattribute | %9 Deleteattribute | %8 Deleteannotation | %

Figure 2: Move Class Example [1]

approved for inclusion in the Eclipse Modeling Framework
under the name EMF-Tiger, with an initial release scheduled
for Summer 2010.

2.3.3 KerMeta

Kermeta is a language intended for meta modeling but
provides many features found in a general-purpose program-
ming language. It allows for navigation and manipulation
of a model in an object-oriented way with a syntax heavily
influenced by Eiffel. Like ATL, KerMeta is strongly typed
and supports built-in collection modifiers. M2M model
transformation is accomplished in KerMeta by using actual
instances located within the target model in conjunction
with those from the source model. Users then implement
a transformation model that uses the elements in both the
source and the target meta models to create the desired
elements in the target meta model.

Figure 3 provides a snippet of some model transformation
code used in the example from [7] of transforming object
oriented classes to database tables. It contains elements
from both the source metamodel, for example classes bound
to the ¢ variable, and the target metamodel, the table
variable.

3. PROPOSED PROCEDURE

As a use case we decided to transform a tree model into
a list model. For the source and target meta models,
we use the ones provided in the ATL example [4] but do
not follow the rest of the example. That is, we develop
the ATL transformation independently. We choose this
example because it represents the common case where a
software project wants to change the underlying platform-
independent implementation. Without a transformation
language or approach to accomplish this it can be quite
difficult to do manually. Using a common use case for these
tests ensures that any differences we observe will be a result
of the transformation tool and not due to a difference in the
source or target meta models.

The bulk of the testing phase will likely be taken up learning
how to use each tool and in particular how to express our
desired transformation in each tool’s syntax. However, this
aspect of learning is also important as it will help show
the ease of adoption of each of the tools. Running the
tests should be a relatively simple task of invoking the
transformation engine within each tool. The output of

class Class2RDBMS

/*% The trace of the transformation x/
reference class2table Trace<Class, Table
>
/x% Set of keys of the output model x/
reference fkeys Collection <FKey>
operation transform (inputModel
ClassModel) : RDBMSModel is do
// Initialize the trace
class2table := Trace<Class, Table>.new
class2table.create
fkeys := Set<FKey>.new
result := RDBMSModel.new
// Create tables
getAllClasses (inputModel) .select{ ¢ | c.
is_persistent }.each{ c |
var table : Table init Table.new
table .name := c.name
class2table.storeTrace(c, table)
result.table.add(table)

// Create columns
getAllClasses (inputModel).select{ ¢ | c.
is_persistent }.each{ c |
createColumns (class2table.
getTargetElem(c), ¢, 77)

// Create foreign keys
fkeys.each{ k | k.createFKeyColumns }
end

(...

Figure 3: Sample KerMeta Code

the transformation will then be compared to our expected
output. If they do not match, the transformation rules may
need to be debugged if we notice they do not accurately
express the intended transformation.

3.1 Method of Evaluation

Expressing model transformations well is a difficult problem
because of the complexities involved. The transformation
writer needs to have a mental map of both the source
and target meta models simultaneously and visualize the
transition from one to the other. The transformation
language should do as much as possible to make this task
easier. We focus on three independent evaluation areas for
comparison:

1. Expressiveness: The expressiveness of the language
determines the complexity of the transformations that can
be performed by the tool. We expect all the languages
to have sufficient expressive power to represent the trans-
formation we wish to perform, but we will also examine
language elements that provide additional expressiveness.
For example, we will investigate whether each language
has the ability to apply transformations recursively to
newly created model elements. A tool that supports the
choice to execute transformations recursively would be more
expressive than a language that forces one option in all cases.

2. Ease of Use: The simple design and small learning
curve of a tool is important to its widespread acceptance,
especially in the field of model-driven development where the
chain of tools used, that is, compilers, interpreters, parsers,
IDEs, modelers, meta-modelers, is already extensive. For
example, is it more natural to use a graphical user interface

or syntax to express model transformations? For syntactic
transformation languages we will be considering whether
the structures and concrete syntax are intuitive and lend
themselves well to expressing transformations. Finally, we
will investigate the cohesion between the various tools and
the Eclipse/EMF framework. A tool that integrates well
into Eclipse and reuses concepts and terminology familiar to
EMF modelers will make it much easier to learn compared
to one that doesn’t leverage existing EMF concepts.

3. Modularization: Cuadrado and Molina [2] suggest
that modularization is an important criteria for a model
transformation language because it promotes reusability and
helps manage complexity. Modularization can come in many
forms and depends on the nature of the transformation
language used. Modularization constructs can be built
into the transformation language itself, or modularity can
be achieved through adopted practices such as the way
transformations are decomposed.

These evaluation criteria above are of a qualitative nature
rather than a quantitative one, but taken together should
provide a good insight into the maturity and effectiveness of
the various transformation tools.

4. OBSERVATIONS

The following sections detail our impressions and experi-
ences working with ATL, EMT, and Kermeta in light of our
evaluation criteria.

4.1 Atlas Transformation Language

s One immediate positive we found in using ATL is the
complexity of model transformations can be managed by
ATL in several ways, the most basic being the use of helper
functions. As the name implies, helper functions are used
by modelers to modularize transformation rules by hiding
periphery details in a separate function and calling that
function within the rule body. This greatly increases the
readability and comprehension of the transformation rule
and is often used to iterate and collect elements from a
repeating or recursive model structure.

Much of the power behind ATL comes from its imperative
language constructs, but we found that this makes the
transformation code harder to read and understand. The
philosophy of ATL is to avoid these constructs in favour
of splitting the complex transformation into two or more
simpler transformations that run in sequence. By having
modelers transform the source model first into an inter-
mediate model and then into the target model allows for
the complexity of the transformation to be divided among
the various transformation steps and can then be expressed
using the more desirable functional constructs of ATL.

The distribution of ATL comes with a transformation
debugger and, similarly to Eclipse’s Java debugger, it allows
the user to set breakpoints and view the variable values of
the currently executing thread. The debugger reflects the
implementation of the ATL resolve algorithm rather than
a model-level view of how the transformation is evolving.
The debugger is beneficial if the user is already familiar
with the ATL resolve algorithm or if they want to learn how
it works but seems removed from the metamodel that the

user will be more familiar with. It does, however, provide
excellent correspondence between the ATL statements and
the execution state of the transformation engine.

ATL is a well-rounded transformation language, with an
easy to use declarative syntax and a more expressive imper-
ative syntax. Modularity is achieved using helper functions
and transformation staging.

4.2 EMF Model Transformation Framework

We found EMT’s graphical rule editor to be far more
intuitive and comprehensible than a syntax-based transfor-
mation language. The user interacts with elements of a
model familiar to them and the visual differences between
the LHS and RHS are far more concrete than mentally
interpreting a syntax-based rule and visualizing how it
affects the model. By eliminating this cognitive burden
from the user, EMT’s visual editor allows users naturally sto
grasp and manipulate more complex transformations easier
than they could with a similar transformation expressed in
a syntax-based transformation language.

EMT is best suited to when the source and target meta
models are the same. It is possible to write transformation
rules from one metamodel to another, but this requires
the user to first create a reference metamodel that relates
the source metamodel elements to the target metamodel
elements.

Unfortunately EMT does not currently have supporting
tools such as a debugger, profiler, test framework, et cetera.
The background work required to interpret and run the
transformation rules must be written by the developer in
Java manually and the feature to automatically generate
code to run the transformation appears to be broken. With
these difficulties, we were not able to run our transformation
rules in the current build.

The EMT editor is easy and natural to use, but the tool
support and expressiveness leave a lot to be desired. These
issues should improve as the tool matures.

4.3 Kermeta

Kermeta is a powerful language but takes a while to pick up.
Unlike ATL and EMT, the metamodel is defined within the
Kermeta language itself rather than in a separate Ecore file,
although, an Ecore-equivalent Kermeta model is available to
help bridge the two formats.

Kermeta transformations are achieved using its object-
oriented model navigation commands and imperative lan-
guage constructs. The lack of explicit transformation rules
sets it apart from both ATL and EMT. As a model trans-
formation language Kermeta is expressive and powerful,
however it lacks the simplicity of a rule-based language
where the before and after model is clearly defined.

The programming-language nature of Kermeta allows it
to utilize common modularization paradigms from existing
programming languages, such as object-oriented program-
ming, aspect-oriented programming, and generics. All
these techniques can be brought to bear on the model

transformation problem to help reduce complexity and
increase understandability.

Kermeta’s more mature programming library also includes
useful tools such as a unit test framework called KUnit,
based on Java’s JUnit framework. A test suite can be cre-
ated to exercise and verify model transformations, which is
especially important for regression testing if the metamodel
or model constraints should change.

5. CONCLUSIONS

We compared briefly three model transformation tools,
ATL; EMT; and Kermeta, for expressiveness, ease of use,
and modularity by attempting the same transformation in
each language. Each tool had some positive and negative
characteristics. As a fully fledged programming language,
Kermeta is powerful and expressive, but takes the longest
to learn and was not designed with transformations in mind.
EMT’s visual editor is very easy to use but the lack of
automatic build tools makes running the transformations
problematic. As a rule-based language with declarative
and imperative constructs, ATL strikes a good balance
between ease of use and expressiveness. All three tools
showed instances of modularity, albeit in different forms.
Of all three tools used to perform the transformation, we
choose ATL as the best because it is not overly difficult to
use and is still quite powerful. We found the modularity
to be relatively equal to the other two tools. Seeing as
ATL is being integrated into official Eclipse’s M2M project
stream, we believe that it will eventually establish itself as
a prevalent approach to perform M2M transformations and
will hopefully prove to be the next step forward in M2M
transformations and MDD adoption.

6. REFERENCES

[1] E. Biermann, K. Ehrig, C. Kohler, G. Kuhns,

G. Taentzer, and E. Weiss. Graphical definition of
in-place transformations in the eclipse modeling
framework. Lecture Notes in Computer Science,
4199:425, 2006.

[2] J. Cuadrado and J. Molina. Modularization of model
transformations through a phasing mechanism.
Software and Systems Modeling, 8(3):325-345, 2009.

[3] K. Czarnecki and S. Helsen. Classification of model
transformation approaches. In Proceedings of the 2nd
OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, 2003.

[4] C. Faure and F. Allilaire. The tree to list example.
http://www.eclipse.org/m2m/atl/basicExamples_
Patterns/article.php?file=Tree2List/index.html,
July 2007.

[5] A. Gerber, M. Lawley, K. Raymond, J. Steel, and
A. Wood. Transformation: The missing link of MDA.
Lecture notes in computer science, pages 90-105, 2002.

[6] F. Jouault and I. Kurtev. Transforming models with
ATL. Lecture Notes in Computer Science, 3844:128,
2006.

[7] P. Muller, F. Fleurey, D. Vojtisek, Z. Drey, D. Pollet,
F. Fondement, P. Studer, and J. Jézéquel. On
executable meta-languages applied to model
transformations. In Model Transformations In
Practice Workshop, 2005.

[8] I. Porres. Model refactorings as rule-based update
transformations. Lecture Notes in Computer Science,
pages 159-174, 2003.

[9] B. Selic. The pragmatics of model-driven development.
IEEE software, 20(5):19-25, 2003.

[10] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF' Eclipse Modeling Framework. Addison
Wesley, second edition, 2009.

[11] G. Taentzer. AGG: A graph transformation
environment for modeling and validation of software.
Lecture Notes in Computer Science, 3062:446-453,
2004.

