UNIVERSITY OF WATERLOO

CS 842 Research Project Report:
Designing by Contract with JIML
for Aspect-Oriented Programs

Prepared By: Matthew Stephan
Prepared for: Professor Macdonald
Student ID: 20098161
Userid: mdstepha
4B Software Engineering
April 13, 2007

Table of Contents

TADIE OF CONMTENTS......citieciiitee e h e e bt E e bR e s e bt e R e s e e bt e R e s e e Rt e R e se bt e R e neeb e e R e seebearennenennenneneas i
BLI= o] L=) o U =SS ii
I (Y Ko A7 LA o OSSPSR PSSP PP 1
1.1. Obliviousness and Pre and POSt CONUITIONS o .vvvveeeeiiiiiiieeee ittt e e e e s e e e eee e s
1.2. Design by Contract and Java Modelling LANQUAGE.ocuueiiieeiiiiiiiie ettt 2
R TR S (=T o Lo T O 11 1T o 1= T PP PPTT TP PUPR 3
B2 = - =0 Yo S 3
2.1. Design by Contract SOIULIONS iN AOP ... ereeeiiieiee e e e et se e e e e e e e aeeae e e e e et e e e e e eeaeeeeeeresrnnanas
A o | o - PP PP TP P TOTTPPRPPP 4
2R T O] = TP TP PPPPTTP 4
3. PrOPOSEA SOIULION ...ttt ettt et bbb e s heeh e e e e b e s b e sb e e b e s aeeae e e e besbesbeebeeaeene e e ebeseesaeneas 5
3.1. Method of Analysis/ BasiS Of RESEAICH e
I] o =T o= 1T L PP P SR PPTP 5
3.2.1. Base COUE SPECITICALION.uuuurrtmeiiieiieiiiiiee e e e e ee e e e e e et e st ss s sarre e e eereeeeeeaeaeeseesassananssnsnnnrnnes 6.
3.2.2. ASPECE SPECITICALIONuveiiie ettt e e e e bbbt e e e s sttt e e e e e s snbb e e e e e ennns 6
3.3. Aspect Interaction With BaS@ COUEcoiiiiiiiiiiiii it e e e e e e aaaaaeeas 7.
3.4. Aspect Interaction With Other ASPECTS ..t e e e e e e e e e e e aeaees
4. EXTENSION OF JIML TOOIS ...ttt e b et e e bt e nn et n et nn s 9
L U) I = 1 o U 10
2 T Yo U [=Y 1 = U1 T o R 10
4.3. Static SPecification CRECKING......... i e s aareeee s 10
5. Limitations Of the SOIULIONccuiiiiiie ettt s re st es e se e testeseeeseeneenaenannseseennnns 11
L U 1= YAV o S SRSRS 11
T CONCIUSION 1.ttt et h et b e et E e R h e SR e e e R AR e e e R AR e e e R e e R e e e R e e R et eb e s R et e bt e r et e bt s r et nnenn s 12
REFEI EINCES......ceee et bR e bR e R Rt R R R R R R R R R R R R n et r e n s 14

Table of Figures

Figure 1: Typical Base Code Example. Copied from [6]

Figure 2: Aspect Specification Example

Figure 3: Execution Sequence. Taken from [12]

1. Motivation

Aspect-Oriented Programming (AOP) [1], the notion of programming by idergigma
isolating cross-cutting concerns, is becoming extremely popular in both inbasttiacademic
environments. It isolates these concerns by utilizing the concept of pointcutsrarmbints,
which identify both static and dynamic places that the concerns are apphdtitethe code
being cross cut. One of the main advantages gained by using AOP is the idea @isi@ss,
which entails the ability of the component encapsulating a cross-cuttingraiogic, known
as an aspect, to be unknown from the perspective of the base code on which the aspect is being
applied to. While this is clearly amicable because it involves a one sided depetidasoy
makes testing increasingly difficult. Because of AOP’s incre§simgle-spread adoption in
industry and academia, especially the use of AspectJ [2], the issugngf AP programs is
one of paramount importance. Even though [3] argues that it can be viewed as both harder and
easier to test AOP systems, the easier-to-test side of the argumerandet®g on AOP testing

principles that are not yet solidified or well established.

1.1. Obliviousness and Pre and Post Conditions

This obliviousness property makes AOP very cumbersome to test, as noted in both [3]
and [4]. One specific factor alluded to in both these papers that contribute to thidtgiifi
testing is the fact that aspects have the ability to break both preconditions anshpdgirns set
forth by a method due to their ability to insert code, known as advice, before, aftepamd ar
method call. [4] recommends dealing with this issue by testing the amaigamithe base
code and aspect with the original test data used to test the base codetivespany aspect
interference. While this will likely identify many of the possible fauitthe program, the
preconditions of the base code method that are a function of the test data may be mottiged b
aspect. This original test data solution will identify only post conditions that hatxeeot
adhered to. Preconditions will not be verified because the original test data in conjwnittti

an aspect’s advice may still allow for a successful test, that is, teasatin of post conditions.

Another issue that arises from the solution put forth is that localization of faolties
very difficult to accomplish in the case where many aspects are beirgwiuw a single
method. This is because there is no easy way of identifying which aspefetul af breaking
the pre or post condition that was violated. Using the original test data doesawttdoc any
of the specific aspects being applied, it only identifies faults on a systéenlaviel. It is possible
to create test data that can isolate problems in specific aspects usingahehiotegration
testing and incrementally testing one aspect, but this would be a time consuockesspr
Ideally, the system should be able to run holistically with varying test ddtat@l allow for the

problem area(s) to be identified precisely.

1.2. Design by Contract and Java Modelling Language

One possible way of ensuring that pre and post conditions are not violated at any point
during the runtime of an OOP program is to utilize the design by contract (DBRargdigm.
This is a mode of specification that entails having each method within a progranteindica
explicitly, or as explicitly as possible, the pre and post conditions that must rectihduring
the execution of the method and that these conditions are verified dynamically. giha&l ori
DBC works on the basis that every object in an Object-Oriented Programming $§sDéth
enters into a binding “contract” with one another [5]. By operating on this pendijpsé
possible to detect condition violation during execution. It should, thus, be possible to extend this

concept to aspects.

One implementation of DBC for Java programs that is on the rise, is the Java iMpdelli
Language (JML) described in [6]. JML can accomplish DBC through the usaat#ions at
the source code level to indicate the preconditions and post conditions for a method bheise of t
“requires” and “ensures” keywords, respectively. It allows for both infoemdlformal
specification of these conditions, however only the formal variety can be dhatckentime. As
noted in the paper [6], it facilitates information hiding practices, non-null checkilg
invariants at the class level. There are also a number of tools availdlgeothde more

features such as documentation, unit testing, and static checking.

Something important to keep in mind when discussing JML is when a condition or an
invariant is broken, a runtime error occurs and a program ceases to executs.typiisilly not
the type of behaviour one desires in a system that has gone to production, ratheheuldrbe
handled in a more graceful manner. From a non-production/testing perspective, howkver, JM
specification and verification could be utilized in conjunction with aspects fagssign, unit,

and other types of tests that can benefit from it.

1.3. Report Outline

The following report addresses the problem of testing preconditions and post conditions
in an AOP system by considering a solution implemented with JML DBC thaidsxte aspects.
It begins by discussing related work in Section 2 and continues in Section 3 by goughttire
proposed solution, that is, the way JML can be applied/extended to AOP. Section 4 then
analyzes the existing JML tools with respect to the way they can be extenakssist with a
JML AOP solution. Section 5 presents the possible problems that such a solution may encounte
and the shortcomings that may arise. Section 6 follows with a presentation efWotlt The

paper finishes in Section 7 by drawing conclusions.

2. Related Work

This section presents related work to that of this report.

2.1. Design by Contract Solutions in AOP

It is important to make the distinction between the idea proposed in this paper and the
concept of DBC being implemented using AOP. Solutions such as Contract4J [7] amtbe ty
solution discussed in [11], are not DBC solutions for aspect programs but rather DBC
implementations accomplished in AOP for use in Java programs. [11] is a pat@nésesits a

high-level framework for solutions that will implement DBC using AOP.

Contract4J [7] is one such solution. It facilitates DBC by using Aspecthtavita the
cross-cutting concern of method specification. It allows for two different snoleethod
specification; annotations and method naming. The annotations option contains annotations of

pre and post conditions that are in the form of boolean expressions that are evaluette

Similar to JML, if these boolean expressions are not satisfied, the prtg@ns a runtime
error and stops executing. The naming/signature option uses a principle sidéeaBzans
[8], in which condition tests are inline instance methods that are evaluated dgaespected
conditions. Again, program execution is halted in the case of a violated condition. Aswather
solution is Moxa [9] that differs from Contract4J in that it is more focusedsartamss that are
cross cutting rather than on the individual method level. Both of these differ froregbis in

that they are implementations of DBC using AOP technologies.

2.2. Pipa

Pipa [10] is a JML extension that is made to specify AspectJ aspeatidslia few language
constructs, such as “proceeds” and “assignable”, facilitating speicficataspects similar to
the way JML does for methods and classes. It also discusses the idea dfrtgega$tgpa
program into a JML one allowing for the JML toolset to be utilized. While this imaeea
similar to this report, there is an important difference. Pipa does not considenitBC
specification approach. It is more concerned with specifying aspectsadnmost
importantly, does not consider the idea of aspects breaking a base prograorigiposs or
post conditions, that is, DBC at a higher level. While Pipa is useful for programs deviel@pe
more aspect-aware fashion, this report’s solution is suited more for progteoss base code is
truly oblivious and thus focuses at the compilation level on the contract between aisaueice
and post condition and the pre and post condition of the base code being effected.

2.3. Cona

Cona [12] is mainly a solution like the ones described above that implement DBC using
aspects, but tries to go one step farther and incorporate DBC for aspeetk H?] provides an
execution sequence and blame assignment evaluation that is used in this paper. €&erisodiff
the solution presented in this report, however, because, as described above, it use®aspect
solve the DBC problem on an OOP level while simultaneously tries to solve the DBEmprobl
for aspects, a problem discovered/considered after the initial design and plarthiig ®fstem.
Furthermore, it differs from the solution put forth in this paper because Cona israly ent
standalone/fresh application while the solution proposed in this report is an exterddvin &m

already established specification tool for Java programs. It also apgeagavgork on the Cona

project is somewhat stagnate as indicated by [13], which says that the tool has tseifeincy
since 2004.

3. Proposed Solution

This section discusses the idea of a JML extension that facilitates DBificspien for
aspect-oriented programs. It ensures that both pre and post conditions are adbetsutto f
aspect and base code alike while maintaining the obliviousness chaiacéAP. The
section begins by providing some insight on the way the research was studied aatlytie an
was performed. The section then gives information on the specifications to be Usedhsit
solution and in what manner they will appear. It then continues by focusing on thehesseaw
aspect is interacting with base code. Lastly, it handles the more comgéeafcaultiple aspects
applying to a single method, thus involving some aspect-to-aspect interactiore nd/Bpecific
implementation is given, enough analysis and information is provided such that, gieeani

implementation can be realized.

3.1. Method of Analysis/ Basis of Research

The following solution was derived by the author of this report by looking at the various
related works and combining that with the knowledge acquired in class from the nesoers
The specifications component came as a result of the author’s experigmosing JML and
aspects, separately. The aspect specification was based on this, sonrerw@ikf as noted in

the section, and analysis performed by the author.

The section evaluating the aspect interaction is based on the author’sriigmwité the
workings of the AspectJ compilation and runtime semantics acquired from the pegsanted
in class. The author then performed analysis of the different requiremetitsiions of a

compiler that would support AOP DBC.

3.2. Specifications

This section considers the specifications required to have a DBC version of Adifes |
not consider the runtime checks or behaviour of a compiled program; rather, it isocdyred

with how to indicate the various contracts among the different pieces.

3.2.1. Base Code Specification

In order to adhere to the obliviousness constraint in AOP, the base code must specif
in a non-aspect-aware fashion. Given this restriction, there is really oo rebhy it is
necessary to change any of the basic JML specification for standard javatasklethod and
class invariants can continue to cause runtime errors and be specified ineHfadadon. As
such, the only real consideration the compiler will have to account for, witldssigar
specification/syntax, is the specification of aspects. Figure 1, takerj6jpsmows the typical
JML DBC example of the square root function. Regardless of who calls this methodnbe it
aspect or a base-code method, the precondition is having a positive number and the post
condition is having the correct result. Note the “\result” symbol which refers tesb# of the
method and the JMLDouble variable, which provides type checking, both of which aratiilit

by [6].

Ff B reguires = = 0.0;

F*@ ensures JMLDouble

[.approximatelyEgqualTo

@ (%, ‘“result ¥ “result, sp3):

B/
public static double sgrt (double =) {
Froo0xf

'

Figure 1. Typical Base Code Example. Copied from [6]

While the example appears trivial, JML can handle many Java types. Also,ahform
specification allows non-action (documentation) handling of cases when condigdresyand
the scope of JML to formally specify. While this can not be run against during exedugion, t
information specification will still provide valuable information to aspeemnts who have the

ability/option of looking at the method(s) they are affecting, which is notyaltyee case.

3.2.2. Aspect Specification

At the specification/code level, aspects can be viewed in terms of the adviceipipdy.
Each piece of advice is fundamentally the same as a method in the base cod®etteefdct
that it is run in the context of before, after, or around a base-code method. As such,amvice ¢

be treated analogously to base-code methods in that advice can be viewedrasldahrathas

pre and post conditions. Figure 2 showcases a simple before advice that utilizeselsystax

as JML. It continues from the square root example from earlier, outputting ageekthe

variable is less than 0. In this case, there are no post conditions, as indicatet@boyrem [6],

and the pre condition for the advice is the number must not be -9999, which may be a special

indicator value.

/TR regquires x |= -9999;
[ensures true

@/
hefore (double x) : call(double Class.zgrt (double)) L& args ()

{

ifix < 0.0} 4
Svstem.out,println(*Thizs will not bode well.™);

'

Figure 2: Aspect Specification Example

There is one important consideration that must be made however when dealing with
around advice. This is the fact that around advice need not proceed into a method @aftargexe
or can proceed at any time. The way that this should be handled in this case is tvaygame
around advice as dealt with in [10]. [10] handles this by means of adding a “processtisater
that indicates what must be true during the execution of the around advice. It alad‘tirsn”
keyword to indicate what happens before and after the “proceed” call is made. [Hdj€ant

much more detailed description that can be referred to when necessary.

3.3. Aspect Interaction with Base Code

The meanings of the pre and post conditions at a high level vary depending on the type of
advice. This section looks at the different types of advice and the way itistesith the base
code both conceptually and logically. Figure 3, taken from [12], provides the technical
execution/placement of the pre and post conditions and corresponds with basicalyehe sa
notion the author of this report came up with before reading [12] except the author gidhis re
failed to consider the preconditions of the method being checked prior to the before advice
preconditions. The [12] description of this process is strictly technical, quitedsrtedoes not
provide any conceptual view of it, which are all important considerations, dbpactae

context of documentation, maintenance, and testing. It does, however, segregatetitiere

sequence into three useful categories; prologue, method, and epilogue. Alphatgfnese
advice and “m” represents the base-code method that the advice is being apgleith¢ case

of around advice, it can be split up into the before and after advices.

Execution Time | Execution Seqguence

T Denloons 1 e Delore Telore elore
Prologue TiMpre ﬂ]_f'p?eﬂﬂ'e oy oTOTe ﬂ]_:;sclu.re TN e
Method T
. . aft aft after .,
Epilogue T post Gpre. @ Opger TiMipost

Figure 3: Execution Sequence. Taken from [12]

The prologue segment of time deals strictly with before advice. Thengligion of
before advice in the context of a single aspect should be consistent with the pi@m®odithe
base-code method because it executes before it. As noted in the figure, sintedhbeca
method knew not of the before advice, the first thing that should be checked are the
preconditions of the method call. The advice should run as normal and then verified against the
post conditions of the before advice. In this singular aspect case, these post cornditiithbes

consistent with the preconditions of the base-code method.

After the base-code method executes, the post conditions for that method must be
validated. This should be followed by the testing of the preconditions of the after abihued,
which, in the case of a single aspect, should be consistent with the post conditiorizastthe
code method. After the execution of the after advice, the post conditions of the after advic
should be checked to ensure it has fulfilled its contract. This should be followed by the
rechecking of base-code method post conditions to make sure the after advice dichteotheol
method’s post conditions, which, as mentioned earlier, is a large issue in testirgy&t@nRs

and a reason that some people are hesitant to use AOP.

3.4. Aspect Interaction with Other Aspects

The notion of DBC with AOP becomes much more complex when multiple aspects are
thrown into the mix. Rather than the relatively straightforward scenasemte in the

previous section, multiple aspects entail a much more complex interactionlthi&ely be

more difficult to codify in a compiler. Also, the notion of aspect precedence mustdaensex

for.

The way this could be handled is similar to the way advice is chosen to be ran istthe fir
place. While this may not be entirely efficient, it is the most conceptuallystemswith the
notion of treating advice as simple methods. What this entails is each time isdvin before
the base-code method, either as before or around advice, the pre and post conditions of each
advice should be run before the next advice is ran. The same goes for after sano afier
advice. An issue that arises here is the question of whether or not aspects shouldooe obli
with respect to one another. If so, they are not “entering contracts” withasihects, so, why
should they expect to bide by the preconditions of those other aspects. The counter to this
argument is that this is the way that advice is run currently, at least intAspeeven if there
was no pre or post condition enforcement, these aspects would be running in this order. As such,
the problem would still exist, but this would at least allow a tester or developdetoute

which aspect interaction is causing the unexpected behaviour.

The author of this report found this solution of imitating/following the advice tzalks
preferable to the alternative that has all the preconditions of the befarathftee checked at
once, followed by the execution of all advice, concluding with the post conditions of the
before/after advice. This seemed conceptually incorrect because albofvibes’ pre or post
conditions would be seen the conjunction of each advice’s pre or post conditions, respectively
As such, this would fundamentally translate to a single advice with a singiemeconditions

and post conditions, making localization of fault more of challenge.

4. Extension of JML Tools

This section proposes possible extensions to the existing set of JML toolsysjranal
these tools and seeing the benefit they could provide AOP DBC. The extensions would be done

with the intent to provide the same functionality, but more geared toward AOP DBC.

4.1. Unit Testing

The unit testing tool for JIML unit testing [6] tests units on the basis of IML spawfs
rather than standard JUnit tests. A question that needs to be answered that \aesedlgo[B],
however, is the notion of whether or not an Aspect can be considered an autonomous unit. If so,
then unit testing is appropriate, if not, it may not be. In the case of the solution put fbiith i
report, it is technically feasible for the most part to accommodate this bexhuses are treated
as methods, so they can be tested independently. The only place an issue nsatharaea of
around advice, in which the “proceed” statement may cause different behaviouzgaittis to

the specifications, and, thus, is dependent on base code.

4.2. Documentation

Documentation of AOP DBC code can be made possible by extending the jmldoc
application alluded to in [6]. It performs relatively simple Javadoc transtamseon base-code
methods to retrieve Javadoc and JML specifications. Doing these transformatio@$ dnBC
would be analogous to the traditional JML and likely not very difficult. This would go quite a
long way in furthering understanding of an AOP program. Since Javadoc can bermeddfo
hypertext mark-up language (HTML), a linked structure could be used that could shav wher
statically-resolvable aspects are being applied within a programldpeve would be able to
trace through the aspects that apply to join points within their base code and legusiine post
conditions (formal or informal) of the aspect align with the preconditions of thetirad. The
inverse, aspect developers ensuring they are abiding by method preconditions, wilmbe a

possible.

4.3. Static Specification Checking

In cases where join points can be statically resolved, static speoifichtecking of
aspects can be facilitated in the same way as the extended static doeskEom [6]. This
means that a large portion of AOP DBC can be statically checked/testestiinces where
compilation is not required. This may be somewhat infrequent though, due to the likelihood of
dynamic join points, like Cflow, and the dynamic ordering of aspect advices instheica
multiple aspects acting on a single base-code method.

10

5. Limitations of the Solution

As noted in class, a solution combining two or more ideas not only yields the benefits of

both, it also inherits the weaknesses of both unless otherwise counteracted.

In the case of this solution, all of the shortcomings associated with JML areadheri
some of which were described above. Firstly, the solution does not deal with alaAgdRges,
only AspectJ since that is what is supported by JML and considered in the reporthéf anot
language needs to be supported, than a base other JML would have to be used and, in this case,
some of the solution dealing with implementation specifics would not be applicable entGuirr
JML can only handle a few primitive types. Much like JML, the solution presentedegquir
specialized compiler in order for the specification annotations to be picked up apceet
Otherwise the program will run as it would without specification. Another proldehat JML
relies solely on annotations, something that many people discourage/dislike luasstly, a
consequence of using JML is the solution is intended only for testing/verification esiighos to
the fact that JML throws only runtime errors. If a solution was desired thatepdrts

specification violation without program termination, then a different base would needisede

The limitations that arise due to use of AspectJ with JML are not as bad as ode woul
expect, mostly because Aspectl] itself is an extension of Java much like thegbropose
solution/extension is to JML. Obviously, the complexity of comprehension and saigoific
increases, especially in cases where multiple aspects are concereatkfifition of pre and
post conditions becomes somewhat ambiguous when dealing with multiple advicetiapglica
however, this may be a result of the lack of a formal way of dealing with advieengyd This
issue was raised in class as it was brought up in the [4] paper, leaving h@Etheontent with
the current system of aspects non-explicitly declaring aspect preeeai®hthe other half

wanting a more explicit precedence system.

6. Future Work

The most critical future work for this system is to implement a prototype qirtiposed

solution using the principles and ideas put forth in this report. The specificatimngacti

11

conjunction with work done in [10] and [12] should be more than enough to produce a formal
specification and to begin from there. Basing the multiple-aspect inberan the current way

it is done in AspectJ significant lessens the problem of having to decide how to hangilke mult
advices applying to a single base-code method. From the analysis put forthepahisit

seems to be the ideal solution, at least for the Aspect] DBC

After the initial creation of the prototype, it is likely that optimizatioaa be made. As
described earlier, there is going to be a significant amount of precondition andrmudisbn
checks going on. Each time a method is called, there is a check of the preconddipnsta
conditions for every before advice, every after advice, and for the base-cdubel mstwvell.
Given the already slow nature of JML, as learned from experience, thosypetvill likely be
very slow as well. Optimizations should be made and observations of these optimziatiolals

be recorded and analyzed perhaps leading to a variation of the solution presenteépoithis

7. Conclusion

This report determined the requirements and issues that will arise wheptaiteto
create a JML DBC facility that works with/for aspects, specificaspectd. It was determined
that very few specification keyword constructs are needed to be added to JMLritodeddity
specification of aspect pre and post conditions, specifically, it is only requiree case of
around advice. Furthermore, it was determined that while multiple aspects gpplgitase-
code method may be difficult to accommodate from a DBC perspective, it isa@asier
conceptually correct to accomplish it by mimicking the advice call orderlgpdefault in

AspectJ.

The pre-existing extensions/tools for JML DBC all seem relatively asxtend yet all
provide extreme benefits to AOP in terms of comprehensibility and testing eStiitgt can be
accomplished, assuming it is deemed acceptable by the AOP societyasptadt as
independent units. Documentation is hugely beneficial in that HTML documentationtthroug
Javadoc can provide traceability links bidirectionally between aspect code armbdasestatic

checking of aspects is also available in instances where join points catidalgtresolved.

12

Although, it is not entirely clear how helpful static checking would be in the cooitésOP

system since many join points are dynamic.

The limitations of the work were also presented. The fact the solution is based on JML
implies it receives all of its shortcomings. As such, the proposed AspectJ BE&G1san
formalize only primitive types and is required to specify via annotationisolirzherits the
problems associated with aspects. One such problem, the order of checking pre and post
condition of advice, is likely one that will be resolved when the issue of Aspectd aspetng

is fully settled.

Future work is presented outlining the steps to take next. A prototype should be created
so further analysis and tweaking can be performed. Soon after, optimization should occur i
order to increase quality of the system and to obtain important observations about advice
ordering and precedence as it relates to evaluation of pre and post conditioresythestdmio

more findings.

13

References

[1] Kiczales, G., et al. “Aspect-Oriented Programmirlg?.Proceedings of the European
Conference on Object-Oriented Programming (ECOCHYinger-Verlag, Finland
(1997)

[2] Kiczales, G., et al. “An overview of AspectJ”.: BCOOP 2001: Object-Oriented
Programming Lecture Notes in Computer Science 2072, 2001, pp. 327-355.

[3] Ceccato, M., et al. “Is AOP code easier or harder to test than OOP cad&¥drkshop on
Testing Aspect-Oriented Progran005.

[4] Alexander, R., et al. “Towards the Systematic Testing of Aspectit@dePrograms”. In:
Workshop on Testing Aspect-Oriented Progra?@5.

[5] Meyer, B. “Applying design by contractComputey 25(10):40-51, October 1992.

[6] Leavens, G., and Cheon, Y. “Design by Contract with JML”". Internet:
ftp://ftp.cs.iastate.edu/pub/leavens/IML/jmidbc.pdf , September 28, 2006. [Adcesse
April 12, 2007]

[7] Wampler, D. “Contract4J for Design by Contract in Java: Design PattkenPlrotocols and
Aspect Interfaces”. InFifth AOSD Workshop on ACP4I1S, Bonn, 2006

[8] Sun Developer Network. “JavaBeans”. Internet:
http://java.sun.com/products/javabeans/index.jsp , 2007 [Accessed April 12, 2007]

[9] Yamada, K., et al. “An Aspect-Oriented Approach to Modular Behavioural Sgeeciin”
Submitted to ABMB 200fternet:
http://www.win.tue.nl/ABMB/3Yamada_Watanabe.pdf , 2005 [Accessed April 12, 2007]

[10] Zhao, J., et al. “Pipa: A Behavioral Interface Specification Langtaag&spectJ”, IniProc.
Fundamental Approaches to Software Engineera@f3.

[11] Lopes, C., et al. “Design by contract with aspect-oriented programmirfg.’ Ratent
6442750, Oct 22, 1999.

[12] Skotiniotis, T., et al. “Cona: Aspects for Contracts and Contracts for ASpkct
OOPSLA'040ct. 24-28, 2004, Vancouver, British Columbia.

[13] Skotiniotis, T. “Welcome to Cona”, Internet: http://www.ccs.neu.edu/homéiteiodna/ ,
2004. [Accessed April 12, 2007]

14

