Constraint Programming Model for
WSN Routing Problems

Course: CS 886v

Professor: Peter van Beek

Date Submitted: December 21,2007
Group Members:

1) Jun (Carol) Fung, 20269045

2) Matthew Stephan, 20098161

Table of Contents

TaDIE Of CONIENES ... e e e e e e e e e e e eeeeeeaaeees [
LISt Of EQUALIONSceitie ettt e e e et e e e e et e e e e e e e et e e e e e eatbaeeeeeeennes I
LIST Of FIQUIES ...ttt et ettt e e e e e e e e e e e e e e e e e e e nanabbeenees iii
] 0 N =] =R \Y
T goTo (3 o3 1 o] o USSP PPPPTPPUPRTRR 1
Background Materialcoooiiiiiiii e 2
COoNSEraiNt ProgramiMiNguuueeeeeeeeieeeeeeee eeaaeeaaaaaaannes 2
WireleSs SENSOIr NEIWOIKScoiiiiieeiiiiiiiiisee e e e e e e e s s e e e e e e e e e e e e e e eeeeeeennnnn s 3
REVIEW Of PreVIOUS WOTKuuiiiiiiei ettt e e e e e e e eeees 4
DeSCrptioN Of SOIULIONuuiii e e e e e e e aaaaaas 6
Choice of Constraint Programming SYSIEMcoooviiiiiiiiiiiiiiiiiiiiie e 6
(@0] o 511 7=] 18817/ 0T [P 7
Transmitting and Receiving MOAEL..........ccooiuiiiiiii i 7
CONSLrAINT MOAEN ... e e e e e e 8
VariABIES ... e aaa 8
SpPanNINg Tree CONSIIAINTSoiiiiiiieii it 9
ENErgy CONSIIAINTS........uuiiiiiiiiiii e e e e e 10
OPLMIZAtION GOAI........ceiiiiii e 10
Domain Filtering Through Arc CONSISTENCY.........uuuuiiiiiiiiiiiiiieeeee e 10
V7= 18P 1o] o 12
R SIS e a e e 12
PeITOIMANCE ... e e et as 13
Future Work and CONCIUSIONScoooiiiiiiiiieeiiris s e e e e e e e e e e e e e aaeeeees 14
] (=] €= o = USSR 16
Y o] = o | PP 17
Routing Sensor Code with Choco CoNStraintS..........coovvviiiiiiiiiiiii e 17
Code use to Generate Sensors and Calculate Transmission COSt..............uvvvveieeeeeeennn. 20

List of Equations

Equation 1:
Equation 2:
Equation 3:
Equation 4:
Equation 5:
Equation 6:
Equation 7:
Equation 8:

Calculation of transmISSION COSt [3]....cciiiiiiiiiie e 7
Calculation of Reception COSt [3]....uuuiiiiiiiiiiiiiieieeiiii e 7
Domain of Parent Node for Sensor NOdEeSccooovviiiiiiiiiiiiiiiiiiieeeeeeee e 8
Domain of Depth for SENSOr NOAEScoooiiiiiiiiiiiiieeeeeeee e 9
Domain of Round Duration Variable ... 9
No-Cycle Constraint on Depth Variable ... 9
ENErgy CONSIIAINT.......uuiiiiiiiiiiiiiee et e e e e e 10
Maximization of Round Durations Constraint............ccccceeeeevvvvveeeeeevinnnnnnnnnn 10

List of Figures

Figure 1: Example of Data AggQregation...........u.iiiieiiiiiiiieee e 3
Figure 2 A illustration of arc consistency propagation in spanning tree search............... 11
Figure 3: Result for a Small Wireless Sensor Networkcooooiiiiiviiiiiiiiiiiiiiieeeeeeen 12
Figure 4: Program Running Time Versus Number of NOdescccccviiiiiiiiiiiiiiiinns 14

List of Tables

Table 1: Network Lifetime given Network Size and Schedule Length

Introduction

Recently, advances in wireless sensor technology have resulted in $&msgrs
cheaper to produce and increasingly smaller in size, thus fuelling an irchei@sest in
the use of wireless sensor networks. A sensor network consists of many sensor nodes
with each sensor collecting data such as imaging, sound, temperature, andylamdidit
then sending that data to the data sink either directly or through other senssen§2y.
networks have uses in many domains including the military, environmental, health,
home, and a myriad of others [2]. A wireless sensor network is simply a sensor network
comprised of wireless sensors that utilize wireless radio communicatnen th&an wired
communication. Because the sensors are immobile and the data destination, that is, the
sink node, of all sensor nodes is the same, it is possible to compute the routing paths in a
centralized location before activating the network and to broadcast the routing
paths/decisions to each sensor. Sensors can then route the data through these pre-
calculated paths. However, when computing the routing protocol for the enetessir
sensor network, there are many constraints that need to be considered sucimésdhe li
battery life for each wireless sensor and delay sensitivity of thelgdtes recorded by
the sensors. In this report, an approach is described that utilizes constraint priogram
techniques for the routing problem in a wireless sensor network that allows ame to fi
the optimal routing decisions for each node while adhering to the constraints of the

wireless sensor network domain.

The problem can be described as D by D square region, in which N wireless
sensor nodes are deployed randomly, following a uniform distribution. The sink node is
chosen randomly inside of this square region. It is important to note that the sertsing da
rate on each node is constant and the energy consumption for transmitting a unit of data is
a function of the distance between the two nodes that are communicating. Every node
begins with the same amount of battery life remaining. As such, for each node, the
transmission cost to other nodes, the receiving cost, the initial energy sesee¢he
maximum length of schedule are known. The problem then becomes to find an optimal

routing schedule that will maximize the network lifetime as well asitgkeaccount

possible limitations on the number of routing decisions/schedules a sensor node can hold
in memory. As implied earlier, this problem is important because replacirny senkes

is expensive and sensors have limited battery and memory, therefore it sangtes
maximize the utilization of each sensor node while constraining the amountingrout

decisions a sensor node can store.

This report will begin by providing background information on constraint
programming and wireless sensor networks in order to facilitate an understaniiag of
material that will follow. Subsequently, a review of related work will be piexvithat
includes the algorithm that the solution presented in this report is competing with. The
solution will then be described in detail including the various constraints and models that
are utilized as well as the variant of the arc-consistency method that was tise
solution. The report will then perform an evaluation of the solution by providing and
discussing results as well as commenting on the performance. Future Waohnlervbe
outlined and conclusions will be made. The code utilized for this solution is attached in

the Appendix for any parties that may be interested.
Background Material

Constraint Programming

Constraint programming refers to a programming approach that placstsaous
that specify an acceptable solution [1]. It is modelled by specifyingblas that define
the problem, the domains of those variables, and the constraints that apply to the
variables that comprise a desirable solution. Using this model, an acceptabimal opt
solution is found by utilizing one of many approaches. The approach that is utilized in
the solution presented in this report is backtracking search, which simplyltpessible
combinations until an acceptable or optimal one is found [1]. However, backtracking
also utilizes pruning which entails ignoring certain decisions when it is apgeprido

SO.

Wireless Sensor Networks

In a wireless sensor network, sensors are deployed randomly or manually in the
sensing field. Sensors take measurement of their surrounding environmentyegaar
send this data to another node with the purpose of that data eventually reaching the sink
node through a routing path. In order to save energy, data aggregation can besgerform
on data to remove redundancy and to save energy [3]. As an example, as shown in Figure
1, sensor 2's sensing data iSGPsensor 3’s sensing data iSR8and sensor 1's sensing
data is 36C. Sensor 2 and sensor 3 send their data to sensor 1. If the lowest temperature
is the value that the nodes are responsible for reporting, then sensor 1 takes tienminim
temperature of the 2 received data packets and its local data and then sends the value
from sensor 3, 2&, to its parent. In this way, node 1 only needs to send one unit of data
instead of 3, which saves energy used for transmissions. The wireless sensksnetw
being discussed in this report are dealing with only wireless sensorgkeetinvat
perform data aggregation. That is, it is assumed that all nodes will be sendingyaut onl

single packet of data.

30°C

®

30°C 28°C

Figure 1: Example of Data Aggregation

In the recent years, much work has been done related to routing algorithms in
sensor networks. Routing algorithms are typically divided into two categorieslyname
distributed routing and centralized routing. In a distributed routing algorithm, nodes
collect information from the other nodes that they have contact with. The routiag tabl
on nodes are dynamic and are updated based on the information they receive during
message exchanging. In the centralized routing category, the routingmiesis
calculated by a third party offline and before the network is initialized r@ineng

schedule will be sent to nodes after the calculation. The routing tables on nodes are

usually fixed after the initial table filling process. The routing algoriti@scribed in this
report is in the centralized category because all of the information needpr® be

calculated and sent out to all the nodes.

In the context of this report, the activity of receiving and sending packetd is sa
to occur in a single unit of time. This is the time interval that one data packet is
generated to the time that the next data packet is generated. It is assatrtiesl data
will be sent out immediately after it is generated and it will reackitilebefore the
beginning of the next unit time, which is the standard case in wireless sensarksetw
[3]. In each unit time, the nodes should know which neighbour they send their data to.
Since each node can choose only one neighbour to send their packet in each unit time, the
collective routing decision of all nodes must form a spanning tree rootedsatkheode.
The spanning tree for each unit of time can be different. As mentioned earlier, the
transmission cost from one node to another is a function of the distance between them.
The routing schedule for a single node refers to what routing decision it will forake
given unit of time. However, due to the memory limitations that sensor nodes have, the
length of the routing schedule/number of different routing decisions a sensor ean stor
must be considered in the solution proposed in this report.

Review of Previous Work

In this section, previous literature that is related to this project will bewewd.
Specifically, the routing algorithms in wireless sensor networks artedelee

constraint work will be discussed.

In the distributed routing category, flooding and gossiping are two classical
mechanisms. In flooding [2], each sensor broadcasts the packets to all of its nsighbou
and this process continues until the packet arrives at the destination node. G{&siping
is a slightly enhanced version of flooding where the nodes send packets to a randomly
selected neighbour, which then picks another random neighbour to forward the packet to

until the destination is reached. Another popular method of distributed routing is

minimum cost forwarding protocol [2], which aims at finding the minimum-cost path in a
sensor network. This process is comprised of two phases: the setup phase and the sending
phase. In the setup phase, the cost value to transmit packets to other nodes for each node
is setup. In the sending phase, the packets will be sent out by flooding and the packets
and corresponding paths are disregarded when the path is not the minimum. The packets
will then reach the destination through the minimum cost path. Energy aware routing [2]
proposed the use of a set of sub-optimal paths instead of just one minimum-cost path.
These paths are chosen by means of a probabilistic function, which depends on the
energy consumption of each path. Energy-aware routing can balance the energy
consumption of sensors in the network and try to avoid the situation that some nodes
exhaust much faster than the others. The constraint programming algorithrnregripos

this report differs in that it is a centralized routing algorithm. Furtbesnthe algorithm

in this report provides the optimal solution to maximize energy while the eneayg-aw

routing solution tries only to balance the workload.

Maximum lifetime data routing [3] is a routing algorithm that belongs to the
centralized routing category. In this algorithm, the cost of all possiblentisgien links
between nodes is known beforehand and integer programming is used in conjunction with
a greedy algorithm. A set of routing spanning/aggregation trees, which arthatees
define how data packets are transmitted and received by the base statistover el
and these trees’ corresponding time durations are calculated. The timendurgpresent
the amount of time that the aggregation tree will be used as the routing protocol. So, for
example, a network with a lifetime of 100 rounds (of unit time) could be comprised of an
aggregation tree of length 60 rounds and an aggregation tree of length 40 rounds. A
notable issue with this approach is that it does not guarantee the maximum lifetirae
network. A positive implication of this, however, is that it has polynomial running time.
Another problem of this approach is that the set of aggregation trees/the number of
routing destinations may be too large for each of the individual sensor to store due to the
sensors’ limited memory capacity. As discussed earlier, the approach praptss
report guarantees the optimal solution by using the backtracking variant ohatns

programming and considers the limitation of sensor memory with regards to tdalsche

length. The algorithm proposed in [3] is what the constraint-model algorithm proposed in
this report will be compared against.

Over the last few years graphical constraints have become of interest to the
constraint programming community. In [4], two constraint models are proposad for
rooted spanning tree constraint. One uses a n-ary constraint with an inhretatesin
which each node stores the index of the parent node. The domain of each node is updated
to eliminate any possible cycles. The second model uses a set method and intyementa
adds edges into the spanning tree set. Each time an edge is added that calesas a cyc
will be removed. [5] proposes an arc-consistency algorithm for the treeaiotsathich

the authors claim can check@(v| +|¢]) time. However, the problem with these

approaches is that, to implement these modes niécessary to develop code for tree

pruning and domain propagation so, as such, treyery complicated to code. Rather
than utilize these models for the purposes ofitatithg a tree constraint, the algorithm

proposed in this report introduces redundant véegtepresenting a node’s depth and

utilizes its own arc-consistency algorithm in orttemake the spanning tree

implementation easy and fast. This will explaiivedhore detail in a subsequent section.

Description of Solution

In this section, the solution used to solve theelgss sensor network routing
problem is presented. Firstly, the decision ofchtexisting constraint programming
system to use is discussed. Following this, thesitaimt model will be described in detalil
including the transmitting and receiving model #mel main constraint model. Lastly,
the arc-consistency domain filtering technique thas used to select the depth of the

nodes will be discussed.

Choice of Constraint Programming System

The authors of the report decided to use the CRmetstraint Programming
System found at [7] as their constraint enforcensgatem. The main reason the authors
chose this solution is that it provided a Javaalipifor the constraint satisfaction domain

and both of the authors are very comfortable watbeJorogramming. Furthermore,

Choco supports many different advanced constrainth as the all different and global
cardinality constraints [7]. It should also beetbthat the system has an in-depth
Javadoc and User Guide that assisted the autharensely. Lastly the system is
continually updated and supported as it includgsrahm improvements such as newer

generalized arc consistency and arc consistencyigims [7].
Constraint Model

Transmitting and Receiving model

After the deployment of sensor nodes in a wiretessor network, the location
information of nodes can be detected by a Globait®a System (GPS) and then sent to
the control center. At this point, the distancen®ssn any pair of nodes will be known.
The algorithm discussed in this report uses thexfitae presented in [3] to determine
transmission cost and receiving cost for each sersate. As shown in Equation 1, the
communication cost between any two nodes is aifomctf the distance between two

nodes and the size of the packet. In EquatiofiX}, denotes the energy cost on node

i when nodé transmits one data packet to nople For Equation 2RX, denotes the

energy cost for nodeto receive a packet. For both Equation 1 and Eou&, fuecis the

energy required to run the transmitter or recedhauitry, respectively,g aw is the

energy required for transmitter amplifier, akis the number of bits in the packet. In the
constraint model described in this report, it ipartant to note that nodes are deployed in
the deployment region randomly via uniform disttibo and that the transmission cost
matrix is based on the nodes’ geological relations.

Equation 1: Calculation of transmission cost [3]

— 2
TX, | = Egee XK+ &, xd7; XK

Equation 2: Calculation of Reception Cost [3]
RX, = &4 XK

Constraint model

In this section the constraint model is presentid mespect to its variables,

constraints, and optimization goal.

Variables

The first variable used is the parent ind%@(c’dq& which is the index of the

parent node for nodén roundK . It is important to note that the term “roundfems to
the period of time in which a particular routinggaggation tree will be used.

Pnode,, =0 for all k because node 0 is the sink node anénts nowhere/ to itself. For

0, Pnode, = j ’ wherel # |

all other noded # . That is, as shown in Equation 3, the

domain of the parent node variable for all the sensdes is 0 to n-1 excluding node i

itself.

Equation 3: Domain of Parent Node for Sensor Nodes

dom(Pnode,) = {01,..n-1}\ {i}

The next variable used is Dep@*, which is the depth of nodein the tree in
roundK . Doc =0 because the sink node is the root of the trethdicase of sensor nodes

or i not equal to O, thePik =] means the depth of nodiés | , Where the domain, as

shown in

Equation 4, is 1 to n-1 because depth of the sarsides could be anywhere from
right below the sink to n-1 in the case of a stigigqe tree. The purpose of introducing

the depth variable is to prevent cycles in the spantree. It is important to note that the

introduction of Di does not produce redundant solutioné3 I%Qko. This can be proved

via proof by contradiction. Assuming this statemiemiot true, then there exists two

solution setd "°d€ +D o Pnode + D . wherePnode=Pnode gngD#D'.

However, this cannot be true because every unipaersng tree can have only unique
assignments of depth for each node. Thereforen@artction exists and the negation of

our statement must be false.

Equation 4: Domain of Depth for Sensor Nodes
dom(D.,,) = {12,...,n-1}

The last variable utilized is round durati&rh, which is the amount of unit time
that the spanning tree utilized in round k is taubed as the routing tree/protocol. In all

casesK<M whereM is the maximum length of the schedule and is sigeciy the
user based upon a sensor’s specific memory capediliThat is, M would be set to the

maximum amount of routing/spanning trees that dividual sensor within a wireless

sensor network can store. The domairjrb,fas shown in Equation 5, is simply O in the
case of a redundant round to the upper bound &nrtiund duration. The upper bound
for a round duration can be calculated by findimg maximum lifetime of the spanning
tree contained in that round. The maximum lifetiséhe minimum value found by
investigating all the nodes and finding the eneaperve divided by the amount of
energy used each unit time.

Equation 5: Domain of Round Duration Variable

dom(L,) ={0,....Upper (L)}

Spanning Tree Constraints

The constraints necessary to ensure only spanrgaeg are considered include the
connectivity constraint and the no-cycle constraliie connectivity constraint enforces
that all the nodes are connected with only oneratbde. This is implied in the
constraint model because, as stated in Equatialh 3pdes except the sink node have
one parent node and the parent node cannot beehassThe no-cycle constraint
ensures that there cannot be any cycle in thetieguiee. This can be enforced by the
constraint on the depth variables, as indicatdggnation 6, which says that the depth of

a child node is always one level more than therarede for each round,

Equation 6: No-Cycle Constraint on Depth Variable

Di = Dpnodeivy 1

Energy constraints

As noted earlier, each sensor node consumes embigy transmitting or

receiving a data packet. The total energy resefreach node is given tER and is
something that would be provided by the user aokdtin the form of an n by 1 matrix.
Given this, the energy constraint becomes whdtasva in Equation 7 below, which is
only a slight variation to the energy constrainirfd in [3]. This constraint is saying that
for each node in the wireless sensor network,dted €nergy reserve for each node must
be greater than or equal to the summation of tta émergy consumed by both

RX[i]x >1

TX[i][Pnode] , and receiving, Priode;, =

transmitting, , data packets for all the

M
rounds,» L, .

k-1

Equation 7: Energy Constraint

ig{04,...,n -1},
ER = i L x (TX[i][Pnode,] + RX[i]x >'1)

Optimization Goal

The last constraint considered is the one provittiegoptimal solution based on
all of the spanning trees discovered using thetcainss described previously. Since the
optimization goal is to find the maximum lifetimétbe network, it is necessary only to
maximize the sum of durations of all rounds becdlsse are equivalent, which is
shown in Equation 8. Optimality is accomplishedtigh the use of backtracking search,

which guarantees the optimal solution if alloweduo to its entirety.

Equation 8: Maximization of Round Durations Constraint

M
max(>_L,)
k=1

Domain Filtering Through Arc Consistency

The arc-consistency domain filtering will be exexlifor the assignment of the

depth variable described in the constraint modsl puesented. Whenever a new parent

10

index is assigned to a node, the domain of depttbe/ifiltered to satisfy the constraint
described in Equation 6. An example of this donfdiering arc-consistency technique is
illustrated in Figure 2. In the beginning, T1, sdlurce nodes have a full domain of
{1,..,4}. At time period T2, node 1 is been assigjiaeparent node 0, therefore, its depth
can be only 1 according to the constraint in Eque. At time T3, node 2 is assigned a
parent node 3. At this point, arc consistencyeisggmed and the depth variable domains
for node 2 and node 3 are filtered accordinglyTAf node 4 becomes the parent node of
node 3. Arc consistency is performed once againlamdepth domains for node 2,3, and
4 are {3,4}, {2,3}, and {1,2}, respectively. At thipoint, a parent node for node 4 is
searched for and, according to the constraint uaign 6, the parent node of node 4
must have a depth of one level smaller than nodmplying a value of 0 or 1. At time
point T5, the assignment of node 2 as the parentdé 4 is illegal since it violates the
depth constraint, thus, the satisfied node cambermde 0 or node 1. In T6, node O is
assigned to be the parent node of node 4 and adgpinning tree is yielded.

@{0}
@{1 23,4} @

{0} {0}
@ (o2 @

{1,234} {1,23,4} {1.234}
{1,2,3,4} {1,2,3,4} {1,234} {1,234} {1.234} {1.234}
(T1) (T2) (T3)

{1.234] {1234 {1,234} {1234} {1.234) {1254
(T4) (T5) (T6)

Figure 2 A illustration of arc consistency propagation in spanning tree search

In this procedure, arc consistency is performefiter the domain of the nodes’

depth. The complexity to check the spanning trewstaint i<O(¢]) , where,|¢] is the

number of edges in the graph. This result is coitipetwvith the tree arc consistency

11

complexity in [5], which waO(|v| +|e]) . The fact that it is competitive and easier to

implement motivated the decision to use this sifigaliarc consistency method

compared to the one presented in [5].
Evaluation

Results

In this section, the preliminary results of the stoaint programming algorithm
for wireless sensor routing are provided. Figush@ws the sample results for a small
network of 3 nodes. In this example, a directexpgr shown with red arrows, is given
on the top showing the transmission cost betwegrpaim of nodes. The transmission
cost matrix, receiving cost array, energy reservayaare given on the left of the figure.
In this case, the receiving cost was set to theevahe and the energy reserve for each
sensor, including the sink, was set to 100. Aise,maximum schedule length, M, is set
to two which means that only two different spanntiregs are allowed in the solution.
The results show that the optimal network lifetiweaes found by utilizing the spanning
trees underneath left and underneath right ofdpegtaph, tree 1 and tree 2, respectively.
Specifically, tree 1 will run for 13 unit time amte 2 will be executed for 24, as

indicated by the values of;land Ly, respectively. This implies that the maximum

A;
2
—

lifetime of the network is 37 cycles.

000
TX=|4 0 2
2 20 @
RY=(1 1 1) 2 1
ER = (100 100 100) .)

Schedulelength M =2

Number of nodes N =3 @) 5 G}/ 3
2

4 L1=13 L2=24

Figure 3: Result for a Small Wireless Sensor Networ k

12

In another set of experiments, nodes are adde@malgdvia a uniform
distribution, into a 20x20 region. The transmitto@st/matrix is then calculated as a
function of the square distance between the nddesreceiving cost and battery budget
remain the same as shown in Figure 3. Table 1 stimatshe network lifetime varies
with the number of nodes deployed in the regiontaednaximum schedule length M.
As expected, the network lifetime increases withrihmber of nodes in the region. This
is because the increase of nodes increases thigydafrihe network, which, in turn,
decreases the average distances among nodes.Adhiaverage cost to transmit
packets is lower. The increment of schedule lengtiber of allowable spanning trees
also increases the network lifetime. This is beeatsng multiple spanning trees can
decrease the heavy workload put on individual n@aescan allow nodes to take turns
being the high-energy consumer/busy worker. Theegetbe network lifetime increases.
As shown by these results, the constraint modeirdgtgm provides the optimal solution
and allows the sensors’ memory capacity to be densd.

Table 1: Network Lifetime given Network Size and Schedule Length

3 Nodes| 4 Nodes 5Nodéds 6 Nodes 7 Nodes 8 Nbdes
1 Tree Allowed 12 12 12 12 12 16
M=1
2 Trees Allowed 12 13 13 14 14 16
M=2

Regarding the question of whether or not thedasés/results shown are
representative, the answer is that they are fotlssnale wireless sensor networks only.
As will be addressed in the performance sectias,dnly possible to run the algorithm
on small-scale networks with less than 15 nod&@he authors of this report, however,
are quite confident that if the performance issaresaddressed that the algorithm will
work for medium and large scale networks becauseanstraint model appears

mathematically and logically.

Performance

The programming running time is graphed in Figurtn4his experiment, only

one spanning tree is allowed, that is, M is sdt. té\s shown in the graph, the running

13

time of the program increases slowly in the begignn conjunction with the number of
nodes. As soon as the number of nodes reacheswdyér, the running time jumps up
dramatically. This is a typical exponential runniimge increment. The justification for
this is that the number of spanning trees in tides network increases in the order

ofO(n"?) as noted in Cayley’s formula [6]. Although consitaprogramming can

improve the performance of a NP-Complete searchi@no greatly in many cases, the

worst case running time is still high.

Algorithm Running time

2000

1800
1600 -
1400 -
1200

1000 /
|

800
600 -
400 ~
200

o oo

running time (ms)

T T T T T T T T T T T T
1 3 5 7 9 11 13 15

number of nodes

Figure 4: Program Running Time versus Number of Nodes

Compared to the integer programming and greedyi#igo model provided in
[3], the constraint programming model running timaot satisfactory. Currently, it can
only be used on small networks while [3] providgsolynomial running time model and
can be used on median scale network. It is impbttanote, however, that the constraint
model algorithm has in no way attempted to be aggchand more work can be done to
refine the model and improve the running efficien€yhe model, as will be addressed

when discussing future work.

Future Work and Conclusions

Firstly, the authors of this report are going teastigate variable-ordering and
value-ordering heuristics, as discussed in [1@ithe algorithm can be improved.

Typically, constraint programming solutions areffam optimized when first developed

14

and heuristics such as these often yield greabpeence benefits. It would be ideal if
the running time could be improved to a point whaeglium and possibly large-scale
sensor networks can have an optimal solution thgieided from the algorithm presented

in this paper.

Another area that the authors want to explore &tempt to improve the
algorithm running time by using local search. Whitilizing local search instead of
backtracking while lose the solution’s guarantearobptimal solution, the running time
would likely be less than or equal to the soluwesented in [3], thus providing a
constraint programming alternative to the solutio8] for medium and large scale

networks.

Another possible area of work is to improve thessohs from [3] by applying
local search on their resulting spanning treesat 1) execute the algorithm as presented
in 2, but then, rather than just using the resgl§panning trees, utilize local search to
find better solutions. Lastly, it would be inteieg to investigate a hybrid approach that

uses Constraint Programming with Integer Progrargmin

The goal of any wireless sensor network routindgqoal should be to maximize
the lifetime of the network due to the expense lirediin replacing nodes within the
network. The algorithm presented in this reporwvpmtes an optimal solution of network
lifetime for small-scale wireless sensor netwonkd allows the memory of the sensor
nodes to be considered in the calculations. Bhécomplished by utilizing constraint
programming with constraints that ensure that thtimg schedule forms a spanning tree
and that network lifetime is extended as much asipte. The strength of the algorithm
lies in its optimality guarantee, but the weakrteéss comes as a result of this is that the
running time grows exponentially with the numbenoties. The authors are quite
hopeful, however, that the runtime can be imprasigdificantly in order to allow this
algorithm to be usable on both medium and largéeseaeless sensor networks. If this
was the case, optimal solutions would be achieviablall wireless sensor networks and

the benefits would be considerable.

15

References

[1] F. Rossi, P. van Beek, T. Walsh (eds.) HandbafoRonstraint Programming.
Elsevier. 2006.

[2] K. Akkaya, M. Younis, A survey on routing pratals for wireless sensor networks,
Journal of Ad Hoc Networks, 2003.

[3] K. Kalpakis, K. Dasgupta, P. Namjoshi, Maximlifetime data gathering and
aggregation in wireless sensor networks, in: Prdiogs of IEEE International
Conference on Networking (NETWORKS '02), AtlantadGAugust 2002.

[4] P. Prosser and C. Unsworth, Rooted tree andrspg tree constraints, in 17th ECAI
Workshop on Modeling and Solving, 2006

[5]N. Beldiceanu, P. Flener, and X. Lorca. The teastraint. In: R. Bartak and M.
Milano (editors), Proceedings of CP-AI-OR'05, pp- . Lecture Notes in
Computer Science, volume 3524. © Springer-Verl@gs2

[6]A. Cayley, A theorem on trees, Quart. J. MatB(2889), 376-378; Collected Papers,
Cambridge f 13 (1897), 26-28.

[7] “Choco constraint programming system”, httghéico-solver.net/ (last accessed
December 19, 2007)

16

Appendix

Routing Sensor Code with Choco Constraints

// *%
/I'* CS886 Course Project *
/I'* University of Waterloo (2007) *

/I'* Sensor network routing problem *

/I'* using constraint programming model *
/I* problem statement: *

/I'* There exist a set of sensor nodes and

/I'* aset of edges. The weight of the edgé(ij)
/I'* represents the energy cost to transmit’one
/I packet from sensor i to sensor j. We atso
/I'* know the energy cost to receive one patket
/I'* for each sensor. The budget of the ser’sors
/I* are give and the data can be aggregeated i
/I'* each sensor. We need to find a packet

/I'* delivering schedule for each sensor s¢*tha
/I'* the life time of the whole network is maix

// * *

/I'* authors:Jun Fung, Matthew Stephan *

// * *

// *%

import choco.*;

import choco.real.*;

import choco.set.SetVar;

import choco.integer.IntDomainVar;

import choco.integer.IntExp;

import choco.integer.IntVar;

import choco.set.search.*;

import java.util.*;

import choco.real.exp.ReallntervalConstant;

public class RoutingSensor_schedule {

public static int N = 3;//number of sensors ia tietwork
public static int M = 2;//maximum number of schidround can fit in the sensor memory

public static int[][] tmp = {{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{10,0,8,7,12,3,8,8,11,13,6,13,13,14,4,9,5,9,8,10},
{7,8,0,10,5,5,5,5,15,16,2,11,5,6,10,7,11,5,2,8},
{7,7,10,0,15,8,13,6,5,6,8,7,15,14,11,5,3,7,11,5},
{12,12,5,15,0,9,5,10,21,21,7,16,1,6,13,13,17,184,1
{9,3,5,8,9,0,5,7,13,15,3,13,10,11,5,9,8,8,5,10},
{12,8,5,13,5,5,0,10,18,19,5,16,6,9,8,12,13,10,3,13}
{2,8,5,6,10,7,10,0,11,11,5,6,10,8,12,2,9,1,7,3},
{11,11,15,5,21,13,18,11,0,2,14,10,21,19,15,9,6 4,.2}1
{11,13,16,6,21,15,19,11,2,0,15,9,21,19,17,9,8,18}17
{7.6,2,8,7,3,5,5,14,15,0,11,7,8,8,7,9,5,2,8},
{4,13,11,7,16,13,16,6,10,9,11,0,15,12,17,4,11,8}1.3,
{11,13,5,15,1,10,6,10,21,21,7,15,0,5,14,12,17,18)5,
{8,14,6,14,6,11,9,8,19,19,8,12,5,0,16,10,17,7,7,10}
{14,4,10,11,13,5,8,12,15,17,8,17,14,16,0,13,9,12)9,
{2,9,7,5,13,9,12,2,9,9,7,4,12,10,13,0,8,2,9,1},
{10,5,11,3,17,8,13,9,6,8,9,11,17,17,9,8,0,10,12,8},
{2,9,5,7,10,8,10,1,12,12,5,6,10,7,12,2,10,0,7,3},
{9,8,2,11,4,5,3,7,16,17,2,13,5,7,9,9,12,7,0,10},
{2,10,8,5,13,10,13,3,9,8,8,3,13,10,14,1,8,3,10,0}};

public static int[J[] TX = new int[N][N];//transntion cost per unit of data

public static int[] RX = new int[N];//receivingost per unit of data

public static int[] ER = new int[N];//energy bueligfor each sensor

public static void main(String[] args) {

17

Date start = new Date();

System.out.printin(new RoutingSensor_schedulef)afy;

System.out.printin("Running time = "+(new Date€tTime()- start.getTime()));
}

public String demo() {

for (int i=0; i<N; i++){
RX[i]=1;
ER([i]=100;
for (int j=0; j<N; j++)
TX[0]=tmpil(il;

Problem pb = new Problem();

/I create variables
IntDomainVar[][] OE = new IntDomainVar[M][N];6ut edge array

/IRank of nodes, parents nodes have higherthailchildren nodes. We use this to prevent cycles
IntDomainVar[][] Rank = new IntDomainVar[M][N];
IntDomainVar[][] RankPlus = new IntDomainVar[{#]];//Rank + 1

/lconnection matrix conn[K][i][j]=1 represerdensor i send data to sensor j at round k
IntDomainVar(][][] Conn = new IntDomainVar[M][NN];
IntDomainVar(][][] Conn_rev = new IntDomainVarf][N][N];//connection matrix reverse

IntDomainVar(][] Cost = new IntDomainVar[M][N}The communication cost for sensors per unit timeach round
IntDomainVar(] roundLen = new IntDomainVar[M]fhe time span for each round

IntDomainVar life = pb.makeBoundIntVar("lifetet,0,ER[0]);//the lifetime of the network(min lifete of sensors)
IntDomainVar(][] Sensor_erg = new IntDomain\sj{M];//the communication cost for sensors in eastind

/linstant the variables and append them to thiel@mo
for (int k = 0; k<M; k++)
for (inti=0; i<N; i++){

OE[K][i] = pb.makeEnumIntVar("OE[" + k + "][" ++ "", 0, N-1);
Rank[K][i] = pb.makeEnumIntVar("Rank[" + k + "]f i + “]", O, N-1);
RankPlus[K][i] = pb.makeEnumIntVar("RankPlus[k+ "][" + i+ "]", 1, N);
Cost[K][i] = pb.makeBoundIntVar("Cost[" + k +["]+ i + "]", 0, ERTi]);
Sensor_erg[i][k] = pb.makeBoundIntVar("Senser[i'+ "][* + k + 1", 0, ER{[i]);

}
for (int k = 0; k<M; k++)
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)X
Conn[K][il[j] = pb.makeEnumintVar("Conn[" + k {J[" + i+ "][" +j+"]", 0, 1);
Conn_rev[K][i][j] = pb.makeEnumIntVar("Conn_rgw k + "][" +i+"]["+j+"]", O,
1);

}
for (int k = 0; k<M; k++)
roundLen[k] = pb.makeEnumintVar("L[" + k + "]", ®R[0]); //upper bound ??

/I add constraints to problem
/Iconstraints among variables (relation betweearl@ OE)
for (int k = 0; k<M; k++){
pb.post(pb.eq(OE[K][0],0)); /OE[K][0] = O sinkak no out edge
pb.post(pb.eq(Rank[k][0],N-1));//sink has thgtnést rank

}
for (int k=0; k<M; k++)
for (int i=0; i<N; i++){
pb.post(pb.eq(Conn[k][0][i],0));//sink node has out edge
}
for (int k=0; k<M; k++)
for (int i=1; i<N; i++)Y{
pb.post(pb.eq(pb.sum(Conn[K][i]),1));//only ooet edge is allowed for each node
}

IntVar one = ph.makeConstantIntVar(1);//temp usage

for (int k = 0; k<M; k++)

18

for (inti=1; i<N; i++){
pb.post(pb.neq(OE[K][i],i)); //edge should pdiatsome other nodes

pb.post(pb.nth(OE[K][i],Rank[k],RankPlus[K][i})jparent node rank = child node rank+1
pb.post(pb.nth(OE[K][i],Conn[K][i],one));//theapent node always has one level higher rank

}
for (int k = 0; k<M; k++)
for (inti=0; i<N; i++)
pb.post(pb.eq(RankPlus[K][i],pb.plus(Rank[kI.,));

for (int k = 0; k<M; k++)
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)
pb.post(pb.eq(Conn[k][i][j],Conn_rev[K][][i]})
/lenergy constraints for each sensor

for (int k = 0; k<M; k++)
for (int i=0; i<N; i++)

pb.post(pb.eq(Cost[K][i],pb.plus(pb.sum(Conn[kii]),pb.scalar(TX[i],Conn[K][i]))));

for (inti=0; i<N; i++){
for (int k = 0; k<M; k++)
pb.post(pb.times(Cost[Kk][i],roundLen[k],Sensag[d[K]));
pb.post(pb.leq(pb.sum(Sensor_erg[i]),ERIi]));

pb.post(pb.eq(pb.sum(roundLen),life));

/ISolver.setVerbosity(Solver.PROPAGATION);

Solver solver = pb.getSolver();
/Ipb.solve(false);
pb.maximize(life,false);

System.out.printin(“feasible: " + pb.isFeasfpte
System.out.printin("nbSol: " + pb.getSolverétlgbSolutions());

/lpackSolutions(pb);
StringBuffer s = new StringBuffer();

s.append("The " + solver.getSearchSolver()temig.size() + " last solutions (among " +
solver.getNbSolutions() + " solutions) &r®;
List solutions = solver.getSearchSolver().5ohx;
s.append("The solutions for rooted spanning are: \n \n");
s.append(solutions.size() + " solutions : \n");
for (inti = 0; i < solutions.size(); i++) {
Solution solution = (Solution) solutions.ggt(
s.append("lifetime:"+solution.getValue(0) 9
for (int j = 0; j<M; j++){
for (int k = 1; k<5*N; k=k+5){
s.append(solution.getValue(j*N*5+k) + " ");

s.append("(L["+j+"]=" +solution.getValue(M*N*SW*N*N*2+j+1) + ") *);
}
s.append("\n");
s.append(pb.solutionToString());
return s.toString();

}
}

19

Code use to Generate Sensors and Calculate Transmission Cost

// *%k
/I'* CS886 Course Project *
/I'* University of Waterloo (2007) *

/I'* Generate sensorsin a square region,*
/I * calculate the communication cost *
/I * for each pair of node and store the *

/I'* into a transmission matrix. *

// * *

/I'* authors:Jun Fung, Matthew Stephan *

// * *

// *%

import java.util.*;
public class GenMatrix{
public static int N = 10;
public static void main(String[] args) {
int[] x_axis = new int[N];
int[] y_axis = new int[N];
int[][] trans = new int[N][N];
Random r = new Random(5);

/lgenerate positions

for (int i=0; i<N; i++)

{
x_axis[i] = r.nextInt(N);
y_axis[i] = r.nextInt(N);

/Icalculate transmission cost
for (int i=0; i<N; i++)
for (int j=0; j<N; j++)

if(i==0)
trans[i][j] = 0;
else if(i==j)
transi][j] = 0;
else{
trans[i][j] = (int)Math.pow((x_axisl[i]-x_ax[§)*(x_axis[i]-x_axis[j]) +
(y_axis[i]-y_axis[j])*(y_axis[i]-y_axis[j]),0.5);
}

/lprint the cost
for (int i=0; i<N; i++){
System.out.print("{");
for (int j=0; j<N; j++)}
System.out.print(trans[i][j]);
if(;<N-1) System.out.print(",");
}
System.out.printin("},");
}

boolean valid = true;
for (int i=1; i<N; i++)
for (int j=0; j<N; j++)
if (trans[i][j]==0 && (i'=j))
valid=false;
System.out.printin("valid data:"+valid);

20

