

Constraint Programming Model for
WSN Routing Problems

Course: CS 886v
Professor: Peter van Beek

Date Submitted: December 21,2007
Group Members:

1) Jun (Carol) Fung, 20269045
2) Matthew Stephan, 20098161

 i

Table of Contents

Table of Contents... i

List of Equations ... ii

List of Figures .. iii

List of Tables ... iv

Introduction... 1

Background Material .. 2

Constraint Programming... 2

Wireless Sensor Networks .. 3

Review of Previous Work... 4

Description of Solution... 6

Choice of Constraint Programming System ... 6

Constraint Model .. 7

Transmitting and Receiving model ... 7

Constraint model... 8

Variables ... 8

Spanning Tree Constraints.. 9

Energy constraints... 10

Optimization Goal... 10

Domain Filtering Through Arc Consistency... 10

Evaluation ... 12

Results... 12

Performance .. 13

Future Work and Conclusions .. 14

References... 16

Appendix... 17

Routing Sensor Code with Choco Constraints.. 17

Code use to Generate Sensors and Calculate Transmission Cost................................. 20

 ii

List of Equations

Equation 1: Calculation of transmission cost [3].. 7

Equation 2: Calculation of Reception Cost [3] ... 7

Equation 3: Domain of Parent Node for Sensor Nodes .. 8

Equation 4: Domain of Depth for Sensor Nodes .. 9

Equation 5: Domain of Round Duration Variable .. 9

Equation 6: No-Cycle Constraint on Depth Variable ... 9

Equation 7: Energy Constraint.. 10

Equation 8: Maximization of Round Durations Constraint .. 10

 iii

List of Figures

Figure 1: Example of Data Aggregation... 3

Figure 2 A illustration of arc consistency propagation in spanning tree search 11

Figure 3: Result for a Small Wireless Sensor Network .. 12

Figure 4: Program Running Time Versus Number of Nodes ... 14

 iv

List of Tables

Table 1: Network Lifetime given Network Size and Schedule Length 13

 1

Introduction

Recently, advances in wireless sensor technology have resulted in sensors being

cheaper to produce and increasingly smaller in size, thus fuelling an increased interest in

the use of wireless sensor networks. A sensor network consists of many sensor nodes

with each sensor collecting data such as imaging, sound, temperature, and humidity and

then sending that data to the data sink either directly or through other sensors [2]. Sensor

networks have uses in many domains including the military, environmental, health,

home, and a myriad of others [2]. A wireless sensor network is simply a sensor network

comprised of wireless sensors that utilize wireless radio communication rather than wired

communication. Because the sensors are immobile and the data destination, that is, the

sink node, of all sensor nodes is the same, it is possible to compute the routing paths in a

centralized location before activating the network and to broadcast the routing

paths/decisions to each sensor. Sensors can then route the data through these pre-

calculated paths. However, when computing the routing protocol for the entire wireless

sensor network, there are many constraints that need to be considered such as the limited

battery life for each wireless sensor and delay sensitivity of the data that is recorded by

the sensors. In this report, an approach is described that utilizes constraint programming

techniques for the routing problem in a wireless sensor network that allows one to find

the optimal routing decisions for each node while adhering to the constraints of the

wireless sensor network domain.

The problem can be described as D by D square region, in which N wireless

sensor nodes are deployed randomly, following a uniform distribution. The sink node is

chosen randomly inside of this square region. It is important to note that the sensing data

rate on each node is constant and the energy consumption for transmitting a unit of data is

a function of the distance between the two nodes that are communicating. Every node

begins with the same amount of battery life remaining. As such, for each node, the

transmission cost to other nodes, the receiving cost, the initial energy reserves, and the

maximum length of schedule are known. The problem then becomes to find an optimal

routing schedule that will maximize the network lifetime as well as take into account

 2

possible limitations on the number of routing decisions/schedules a sensor node can hold

in memory. As implied earlier, this problem is important because replacing sensor nodes

is expensive and sensors have limited battery and memory, therefore it is necessary to

maximize the utilization of each sensor node while constraining the amount of routing

decisions a sensor node can store.

This report will begin by providing background information on constraint

programming and wireless sensor networks in order to facilitate an understanding of the

material that will follow. Subsequently, a review of related work will be provided that

includes the algorithm that the solution presented in this report is competing with. The

solution will then be described in detail including the various constraints and models that

are utilized as well as the variant of the arc-consistency method that was used in the

solution. The report will then perform an evaluation of the solution by providing and

discussing results as well as commenting on the performance. Future work will then be

outlined and conclusions will be made. The code utilized for this solution is attached in

the Appendix for any parties that may be interested.

Background Material

Constraint Programming

 Constraint programming refers to a programming approach that places constraints

that specify an acceptable solution [1]. It is modelled by specifying variables that define

the problem, the domains of those variables, and the constraints that apply to the

variables that comprise a desirable solution. Using this model, an acceptable or optimal

solution is found by utilizing one of many approaches. The approach that is utilized in

the solution presented in this report is backtracking search, which simply tries all possible

combinations until an acceptable or optimal one is found [1]. However, backtracking

also utilizes pruning which entails ignoring certain decisions when it is appropriate to do

so.

 3

Wireless Sensor Networks

In a wireless sensor network, sensors are deployed randomly or manually in the

sensing field. Sensors take measurement of their surrounding environment regularly and

send this data to another node with the purpose of that data eventually reaching the sink

node through a routing path. In order to save energy, data aggregation can be performed

on data to remove redundancy and to save energy [3]. As an example, as shown in Figure

1, sensor 2’s sensing data is 30oC, sensor 3’s sensing data is 28oC, and sensor 1’s sensing

data is 30oC. Sensor 2 and sensor 3 send their data to sensor 1. If the lowest temperature

is the value that the nodes are responsible for reporting, then sensor 1 takes the minimum

temperature of the 2 received data packets and its local data and then sends the value

from sensor 3, 28oC, to its parent. In this way, node 1 only needs to send one unit of data

instead of 3, which saves energy used for transmissions. The wireless sensor networks

being discussed in this report are dealing with only wireless sensors networks that

perform data aggregation. That is, it is assumed that all nodes will be sending out only a

single packet of data.

Figure 1: Example of Data Aggregation

In the recent years, much work has been done related to routing algorithms in

sensor networks. Routing algorithms are typically divided into two categories, namely

distributed routing and centralized routing. In a distributed routing algorithm, nodes

collect information from the other nodes that they have contact with. The routing tables

on nodes are dynamic and are updated based on the information they receive during

message exchanging. In the centralized routing category, the routing decision is

calculated by a third party offline and before the network is initialized. The routing

schedule will be sent to nodes after the calculation. The routing tables on nodes are

 4

usually fixed after the initial table filling process. The routing algorithm described in this

report is in the centralized category because all of the information needs to be pre

calculated and sent out to all the nodes.

In the context of this report, the activity of receiving and sending packets is said

to occur in a single unit of time. This is the time interval that one data packet is

generated to the time that the next data packet is generated. It is assumed that the data

will be sent out immediately after it is generated and it will reach the sink before the

beginning of the next unit time, which is the standard case in wireless sensor networks

[3]. In each unit time, the nodes should know which neighbour they send their data to.

Since each node can choose only one neighbour to send their packet in each unit time, the

collective routing decision of all nodes must form a spanning tree rooted at the sink node.

The spanning tree for each unit of time can be different. As mentioned earlier, the

transmission cost from one node to another is a function of the distance between them.

The routing schedule for a single node refers to what routing decision it will make for a

given unit of time. However, due to the memory limitations that sensor nodes have, the

length of the routing schedule/number of different routing decisions a sensor can store

must be considered in the solution proposed in this report.

Review of Previous Work

In this section, previous literature that is related to this project will be reviewed.

Specifically, the routing algorithms in wireless sensor networks and related tree

constraint work will be discussed.

In the distributed routing category, flooding and gossiping are two classical

mechanisms. In flooding [2], each sensor broadcasts the packets to all of its neighbours

and this process continues until the packet arrives at the destination node. Gossiping [2]

is a slightly enhanced version of flooding where the nodes send packets to a randomly

selected neighbour, which then picks another random neighbour to forward the packet to

until the destination is reached. Another popular method of distributed routing is

 5

minimum cost forwarding protocol [2], which aims at finding the minimum-cost path in a

sensor network. This process is comprised of two phases: the setup phase and the sending

phase. In the setup phase, the cost value to transmit packets to other nodes for each node

is setup. In the sending phase, the packets will be sent out by flooding and the packets

and corresponding paths are disregarded when the path is not the minimum. The packets

will then reach the destination through the minimum cost path. Energy aware routing [2]

proposed the use of a set of sub-optimal paths instead of just one minimum-cost path.

These paths are chosen by means of a probabilistic function, which depends on the

energy consumption of each path. Energy-aware routing can balance the energy

consumption of sensors in the network and try to avoid the situation that some nodes

exhaust much faster than the others. The constraint programming algorithm proposed in

this report differs in that it is a centralized routing algorithm. Furthermore, the algorithm

in this report provides the optimal solution to maximize energy while the energy-aware

routing solution tries only to balance the workload.

Maximum lifetime data routing [3] is a routing algorithm that belongs to the

centralized routing category. In this algorithm, the cost of all possible transmission links

between nodes is known beforehand and integer programming is used in conjunction with

a greedy algorithm. A set of routing spanning/aggregation trees, which are trees that

define how data packets are transmitted and received by the base station, are discovered

and these trees’ corresponding time durations are calculated. The time durations represent

the amount of time that the aggregation tree will be used as the routing protocol. So, for

example, a network with a lifetime of 100 rounds (of unit time) could be comprised of an

aggregation tree of length 60 rounds and an aggregation tree of length 40 rounds. A

notable issue with this approach is that it does not guarantee the maximum lifetime of the

network. A positive implication of this, however, is that it has polynomial running time.

Another problem of this approach is that the set of aggregation trees/the number of

routing destinations may be too large for each of the individual sensor to store due to the

sensors’ limited memory capacity. As discussed earlier, the approach proposed in this

report guarantees the optimal solution by using the backtracking variant of constraint

programming and considers the limitation of sensor memory with regards to the schedule

 6

length. The algorithm proposed in [3] is what the constraint-model algorithm proposed in

this report will be compared against.

Over the last few years graphical constraints have become of interest to the

constraint programming community. In [4], two constraint models are proposed for a

rooted spanning tree constraint. One uses a n-ary constraint with an inherent structure in

which each node stores the index of the parent node. The domain of each node is updated

to eliminate any possible cycles. The second model uses a set method and incrementally

adds edges into the spanning tree set. Each time an edge is added that causes a cycle, it

will be removed. [5] proposes an arc-consistency algorithm for the tree constraint which

the authors claim can check in)(ε+vO time. However, the problem with these

approaches is that, to implement these models, it is necessary to develop code for tree

pruning and domain propagation so, as such, they are very complicated to code. Rather

than utilize these models for the purposes of facilitating a tree constraint, the algorithm

proposed in this report introduces redundant variables representing a node’s depth and

utilizes its own arc-consistency algorithm in order to make the spanning tree

implementation easy and fast. This will explained in more detail in a subsequent section.

Description of Solution

In this section, the solution used to solve the wireless sensor network routing

problem is presented. Firstly, the decision of which existing constraint programming

system to use is discussed. Following this, the constraint model will be described in detail

including the transmitting and receiving model and the main constraint model. Lastly,

the arc-consistency domain filtering technique that was used to select the depth of the

nodes will be discussed.

Choice of Constraint Programming System

 The authors of the report decided to use the Choco Constraint Programming

System found at [7] as their constraint enforcement system. The main reason the authors

chose this solution is that it provided a Java library for the constraint satisfaction domain

and both of the authors are very comfortable with Java programming. Furthermore,

 7

Choco supports many different advanced constraints such as the all different and global

cardinality constraints [7]. It should also be noted that the system has an in-depth

Javadoc and User Guide that assisted the authors immensely. Lastly the system is

continually updated and supported as it includes algorithm improvements such as newer

generalized arc consistency and arc consistency algorithms [7].

Constraint Model

Transmitting and Receiving model

After the deployment of sensor nodes in a wireless sensor network, the location

information of nodes can be detected by a Global Position System (GPS) and then sent to

the control center. At this point, the distance between any pair of nodes will be known.

The algorithm discussed in this report uses the formulae presented in [3] to determine

transmission cost and receiving cost for each sensor node. As shown in Equation 1, the

communication cost between any two nodes is a function of the distance between two

nodes and the size of the packet. In Equation 1, jiTX , denotes the energy cost on node

i when node i transmits one data packet to node j . For Equation 2, iRX denotes the

energy cost for node i to receive a packet. For both Equation 1 and Equation 2, elecε is the

energy required to run the transmitter or receiver circuitry, respectively, ampε
 is the

energy required for transmitter amplifier, and k is the number of bits in the packet. In the

constraint model described in this report, it is important to note that nodes are deployed in

the deployment region randomly via uniform distribution and that the transmission cost

matrix is based on the nodes’ geological relations.

Equation 1: Calculation of transmission cost [3]

kdkTX jiampelecji ××+×= 2
,, εε

Equation 2: Calculation of Reception Cost [3]

kRX eleci ×= ε

 8

Constraint model

In this section the constraint model is presented with respect to its variables,

constraints, and optimization goal.

Variables

The first variable used is the parent index ikPnode , which is the index of the

parent node for nodei in roundk . It is important to note that the term “round” refers to

the period of time in which a particular routing/aggregation tree will be used.

00 =kPnode for all k because node 0 is the sink node and it sends nowhere/ to itself. For

all other nodes 0≠i , jPnodeik = , where ji ≠ . That is, as shown in Equation 3, the

domain of the parent node variable for all the sensor nodes is 0 to n-1 excluding node i

itself.

Equation 3: Domain of Parent Node for Sensor Nodes

}{\}1,...1,0{)(0 inPnodedom i −=≠

The next variable used is Depth ikD , which is the depth of node i in the tree in

roundk . 00 =kD because the sink node is the root of the tree. In the case of sensor nodes

or i not equal to 0, then jDik = means the depth of node i is j , where the domain, as

shown in

Equation 4, is 1 to n-1 because depth of the sensor nodes could be anywhere from

right below the sink to n-1 in the case of a straight-line tree. The purpose of introducing

the depth variable is to prevent cycles in the spanning tree. It is important to note that the

introduction of ikD does not produce redundant solutions for ikPnode . This can be proved

via proof by contradiction. Assuming this statement is not true, then there exists two

solution sets
DPnode +

and
'' DPnode + , where

'PnodePnode = and
'DD ≠ .

However, this cannot be true because every unique spanning tree can have only unique

assignments of depth for each node. Therefore, a contradiction exists and the negation of

our statement must be false.

 9

Equation 4: Domain of Depth for Sensor Nodes

}1,...,2,1{)(0 −=≠ nDdom i

The last variable utilized is round duration kL , which is the amount of unit time

that the spanning tree utilized in round k is to be used as the routing tree/protocol. In all

cases, Mk ≤ where M is the maximum length of the schedule and is specified by the

user based upon a sensor’s specific memory capabilities. That is, M would be set to the

maximum amount of routing/spanning trees that an individual sensor within a wireless

sensor network can store. The domain of kL , as shown in Equation 5, is simply 0 in the

case of a redundant round to the upper bound for that round duration. The upper bound

for a round duration can be calculated by finding the maximum lifetime of the spanning

tree contained in that round. The maximum lifetime is the minimum value found by

investigating all the nodes and finding the energy reserve divided by the amount of

energy used each unit time.

Equation 5: Domain of Round Duration Variable

)}(,...,0{)(LUpperLdom k =

Spanning Tree Constraints

The constraints necessary to ensure only spanning trees are considered include the

connectivity constraint and the no-cycle constraint. The connectivity constraint enforces

that all the nodes are connected with only one other node. This is implied in the

constraint model because, as stated in Equation 3, all nodes except the sink node have

one parent node and the parent node cannot be themselves. The no-cycle constraint

ensures that there cannot be any cycle in the resulting tree. This can be enforced by the

constraint on the depth variables, as indicated in Equation 6, which says that the depth of

a child node is always one level more than the parent node for each round, k.

Equation 6: No-Cycle Constraint on Depth Variable

1),(+= kiPnodeik DD

 10

Energy constraints

As noted earlier, each sensor node consumes energy when transmitting or

receiving a data packet. The total energy reserve of each node is given by iER and is

something that would be provided by the user and stored in the form of an n by 1 matrix.

Given this, the energy constraint becomes what is shown in Equation 7 below, which is

only a slight variation to the energy constraint found in [3]. This constraint is saying that

for each node in the wireless sensor network, the total energy reserve for each node must

be greater than or equal to the summation of the total energy consumed by both

transmitting,]][[ikPnodeiTX , and receiving,
∑

=

×
iPnode jk

iRX 1][

, data packets for all the

rounds, ∑
−

M

k
kL

1

.

Equation 7: Energy Constraint

∑ ∑
= =

×+×≥

−∀
M

k iPnode
ikki

jk

iRXPnodeiTXLER

ni

1

)1][]][[(

},1,...,1,0{ε

Optimization Goal

The last constraint considered is the one providing the optimal solution based on

all of the spanning trees discovered using the constraints described previously. Since the

optimization goal is to find the maximum lifetime of the network, it is necessary only to

maximize the sum of durations of all rounds because these are equivalent, which is

shown in Equation 8. Optimality is accomplished through the use of backtracking search,

which guarantees the optimal solution if allowed to run to its entirety.

Equation 8: Maximization of Round Durations Constraint

∑
=

M

k
kL

1

)max(

Domain Filtering Through Arc Consistency

The arc-consistency domain filtering will be executed for the assignment of the

depth variable described in the constraint model just presented. Whenever a new parent

 11

index is assigned to a node, the domain of depth will be filtered to satisfy the constraint

described in Equation 6. An example of this domain-filtering arc-consistency technique is

illustrated in Figure 2. In the beginning, T1, all source nodes have a full domain of

{1,..,4}. At time period T2, node 1 is been assigned a parent node 0, therefore, its depth

can be only 1 according to the constraint in Equation 6. At time T3, node 2 is assigned a

parent node 3. At this point, arc consistency is performed and the depth variable domains

for node 2 and node 3 are filtered accordingly. At T4, node 4 becomes the parent node of

node 3. Arc consistency is performed once again and the depth domains for node 2,3, and

4 are {3,4}, {2,3}, and {1,2}, respectively. At this point, a parent node for node 4 is

searched for and, according to the constraint in Equation 6, the parent node of node 4

must have a depth of one level smaller than node 4, implying a value of 0 or 1. At time

point T5, the assignment of node 2 as the parent of node 4 is illegal since it violates the

depth constraint, thus, the satisfied node can be only node 0 or node 1. In T6, node 0 is

assigned to be the parent node of node 4 and a rooted spanning tree is yielded.

Figure 2 A illustration of arc consistency propagation in spanning tree search

In this procedure, arc consistency is performed to filter the domain of the nodes’

depth. The complexity to check the spanning tree constraint is)(εO , where, ε is the

number of edges in the graph. This result is competitive with the tree arc consistency

 12

complexity in [5], which was)(ε+vO . The fact that it is competitive and easier to

implement motivated the decision to use this simplified arc consistency method

compared to the one presented in [5].

Evaluation

Results

In this section, the preliminary results of the constraint programming algorithm

for wireless sensor routing are provided. Figure 3 shows the sample results for a small

network of 3 nodes. In this example, a directed graph, shown with red arrows, is given

on the top showing the transmission cost between any pair of nodes. The transmission

cost matrix, receiving cost array, energy reserve array are given on the left of the figure.

In this case, the receiving cost was set to the value one and the energy reserve for each

sensor, including the sink, was set to 100. Also, the maximum schedule length, M, is set

to two which means that only two different spanning trees are allowed in the solution.

The results show that the optimal network lifetime was found by utilizing the spanning

trees underneath left and underneath right of the top graph, tree 1 and tree 2, respectively.

Specifically, tree 1 will run for 13 unit time and tree 2 will be executed for 24, as

indicated by the values of L1 and L2, respectively. This implies that the maximum

lifetime of the network is 37 cycles.

Figure 3: Result for a Small Wireless Sensor Network

 13

In another set of experiments, nodes are added randomly, via a uniform

distribution, into a 20x20 region. The transmitting cost/matrix is then calculated as a

function of the square distance between the nodes. The receiving cost and battery budget

remain the same as shown in Figure 3. Table 1 shows that the network lifetime varies

with the number of nodes deployed in the region and the maximum schedule length M.

As expected, the network lifetime increases with the number of nodes in the region. This

is because the increase of nodes increases the density of the network, which, in turn,

decreases the average distances among nodes. As such, the average cost to transmit

packets is lower. The increment of schedule length/number of allowable spanning trees

also increases the network lifetime. This is because using multiple spanning trees can

decrease the heavy workload put on individual nodes and can allow nodes to take turns

being the high-energy consumer/busy worker. Therefore, the network lifetime increases.

As shown by these results, the constraint model algorithm provides the optimal solution

and allows the sensors’ memory capacity to be considered.

Table 1: Network Lifetime given Network Size and Schedule Length

 3 Nodes 4 Nodes 5 Nodes 6 Nodes 7 Nodes 8 Nodes
1 Tree Allowed

M=1
12 12 12 12 12 16

2 Trees Allowed
M=2

12 13 13 14 14 16

 Regarding the question of whether or not the test cases/results shown are

representative, the answer is that they are for small-scale wireless sensor networks only.

As will be addressed in the performance section, it is only possible to run the algorithm

on small-scale networks with less than 15 nodes. The authors of this report, however,

are quite confident that if the performance issues are addressed that the algorithm will

work for medium and large scale networks because the constraint model appears

mathematically and logically.

Performance

The programming running time is graphed in Figure 4. In this experiment, only

one spanning tree is allowed, that is, M is set to 1. As shown in the graph, the running

 14

time of the program increases slowly in the beginning in conjunction with the number of

nodes. As soon as the number of nodes reaches 15, however, the running time jumps up

dramatically. This is a typical exponential running time increment. The justification for

this is that the number of spanning trees in the n-nodes network increases in the order

of)(2−nnO as noted in Cayley’s formula [6]. Although constraint programming can

improve the performance of a NP-Complete search problem greatly in many cases, the

worst case running time is still high.

Algorithm Running time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15

number of nodes

ru
n

n
in

g
 t

im
e

(m
s)

Figure 4: Program Running Time versus Number of Nodes

Compared to the integer programming and greedy algorithm model provided in

[3], the constraint programming model running time is not satisfactory. Currently, it can

only be used on small networks while [3] provides a polynomial running time model and

can be used on median scale network. It is important to note, however, that the constraint

model algorithm has in no way attempted to be optimized and more work can be done to

refine the model and improve the running efficiency of the model, as will be addressed

when discussing future work.

Future Work and Conclusions

Firstly, the authors of this report are going to investigate variable-ordering and

value-ordering heuristics, as discussed in [1] to see if the algorithm can be improved.

Typically, constraint programming solutions are far from optimized when first developed

 15

and heuristics such as these often yield great performance benefits. It would be ideal if

the running time could be improved to a point where medium and possibly large-scale

sensor networks can have an optimal solution that is yielded from the algorithm presented

in this paper.

Another area that the authors want to explore is to attempt to improve the

algorithm running time by using local search. While utilizing local search instead of

backtracking while lose the solution’s guarantee of an optimal solution, the running time

would likely be less than or equal to the solution presented in [3], thus providing a

constraint programming alternative to the solution in [3] for medium and large scale

networks.

Another possible area of work is to improve the solutions from [3] by applying

local search on their resulting spanning trees. That is, execute the algorithm as presented

in 2, but then, rather than just using the resulting spanning trees, utilize local search to

find better solutions. Lastly, it would be interesting to investigate a hybrid approach that

uses Constraint Programming with Integer Programming.

The goal of any wireless sensor network routing protocol should be to maximize

the lifetime of the network due to the expense incurred in replacing nodes within the

network. The algorithm presented in this report provides an optimal solution of network

lifetime for small-scale wireless sensor networks and allows the memory of the sensor

nodes to be considered in the calculations. This is accomplished by utilizing constraint

programming with constraints that ensure that the routing schedule forms a spanning tree

and that network lifetime is extended as much as possible. The strength of the algorithm

lies in its optimality guarantee, but the weakness that comes as a result of this is that the

running time grows exponentially with the number of nodes. The authors are quite

hopeful, however, that the runtime can be improved significantly in order to allow this

algorithm to be usable on both medium and large-scale wireless sensor networks. If this

was the case, optimal solutions would be achievable for all wireless sensor networks and

the benefits would be considerable.

 16

References

[1] F. Rossi, P. van Beek, T. Walsh (eds.) Handbook of Constraint Programming.
Elsevier. 2006.

[2] K. Akkaya, M. Younis, A survey on routing protocols for wireless sensor networks,

Journal of Ad Hoc Networks, 2003.

[3] K. Kalpakis, K. Dasgupta, P. Namjoshi, Maximum lifetime data gathering and

aggregation in wireless sensor networks, in: Proceedings of IEEE International
Conference on Networking (NETWORKS ’02), Atlanta, GA, August 2002.

[4] P. Prosser and C. Unsworth, Rooted tree and spanning tree constraints, in 17th ECAI

Workshop on Modeling and Solving, 2006

[5]N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In: R. Bartak and M.

Milano (editors), Proceedings of CP-AI-OR'05, pp. 64-78. Lecture Notes in
Computer Science, volume 3524. © Springer-Verlag, 2005

[6]A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889), 376-378; Collected Papers,

Cambridge f 13 (1897), 26-28.

[7] “Choco constraint programming system”, http://choco-solver.net/ (last accessed
December 19, 2007)

 17

Appendix

Routing Sensor Code with Choco Constraints

// ** **
// * CS886 Course Project *
// * University of Waterloo (2007) *
// * Sensor network routing problem *
// * using constraint programming model *
// * problem statement: *
// * There exist a set of sensor nodes and *
// * a set of edges. The weight of the edge(ij) *
// * represents the energy cost to transmit one *
// * packet from sensor i to sensor j. We also *
// * know the energy cost to receive one packet *
// * for each sensor. The budget of the sensors *
// * are give and the data can be aggregeated in*
// * each sensor. We need to find a packet *
// * delivering schedule for each sensor so that*
// * the life time of the whole network is max *
// * *
// * authors:Jun Fung, Matthew Stephan *
// * *
// ** **

import choco.*;
import choco.real.*;
import choco.set.SetVar;
import choco.integer.IntDomainVar;
import choco.integer.IntExp;
import choco.integer.IntVar;
import choco.set.search.*;
import java.util.*;
import choco.real.exp.RealIntervalConstant;

public class RoutingSensor_schedule {

 public static int N = 3;//number of sensors in the network
 public static int M = 2;//maximum number of schedule round can fit in the sensor memory

 public static int[][] tmp = {{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{10,0,8,7,12,3,8,8,11,13,6,13,13,14,4,9,5,9,8,10},
{7,8,0,10,5,5,5,5,15,16,2,11,5,6,10,7,11,5,2,8},
{7,7,10,0,15,8,13,6,5,6,8,7,15,14,11,5,3,7,11,5},
{12,12,5,15,0,9,5,10,21,21,7,16,1,6,13,13,17,10,4,13},
{9,3,5,8,9,0,5,7,13,15,3,13,10,11,5,9,8,8,5,10},
{12,8,5,13,5,5,0,10,18,19,5,16,6,9,8,12,13,10,3,13},
{2,8,5,6,10,7,10,0,11,11,5,6,10,8,12,2,9,1,7,3},
{11,11,15,5,21,13,18,11,0,2,14,10,21,19,15,9,6,12,16,9},
{11,13,16,6,21,15,19,11,2,0,15,9,21,19,17,9,8,12,17,8},
{7,6,2,8,7,3,5,5,14,15,0,11,7,8,8,7,9,5,2,8},
{4,13,11,7,16,13,16,6,10,9,11,0,15,12,17,4,11,6,13,3},
{11,13,5,15,1,10,6,10,21,21,7,15,0,5,14,12,17,10,5,13},
{8,14,6,14,6,11,9,8,19,19,8,12,5,0,16,10,17,7,7,10},
{14,4,10,11,13,5,8,12,15,17,8,17,14,16,0,13,9,12,9,14},
{2,9,7,5,13,9,12,2,9,9,7,4,12,10,13,0,8,2,9,1},
{10,5,11,3,17,8,13,9,6,8,9,11,17,17,9,8,0,10,12,8},
{2,9,5,7,10,8,10,1,12,12,5,6,10,7,12,2,10,0,7,3},
{9,8,2,11,4,5,3,7,16,17,2,13,5,7,9,9,12,7,0,10},
{2,10,8,5,13,10,13,3,9,8,8,3,13,10,14,1,8,3,10,0}};
 public static int[][] TX = new int[N][N];//transmition cost per unit of data
 public static int[] RX = new int[N];//receiving cost per unit of data
 public static int[] ER = new int[N];//energy budget for each sensor

 public static void main(String[] args) {

 18

 Date start = new Date();
 System.out.println(new RoutingSensor_schedule().demo());
 System.out.println("Running time = "+(new Date().getTime()- start.getTime()));
 }

 public String demo() {

 for (int i=0; i<N; i++){
 RX[i]=1;
 ER[i]=100;
 for (int j=0; j<N; j++)
 TX[i][j]=tmp[i][j];
 }
 Problem pb = new Problem();

 // create variables
 IntDomainVar[][] OE = new IntDomainVar[M][N];//out edge array

 //Rank of nodes, parents nodes have higher rank that children nodes. We use this to prevent cycles.
 IntDomainVar[][] Rank = new IntDomainVar[M][N];
 IntDomainVar[][] RankPlus = new IntDomainVar[M][N];//Rank + 1

 //connection matrix conn[k][i][j]=1 represents sensor i send data to sensor j at round k
 IntDomainVar[][][] Conn = new IntDomainVar[M][N][N];
 IntDomainVar[][][] Conn_rev = new IntDomainVar[M][N][N];//connection matrix reverse

 IntDomainVar[][] Cost = new IntDomainVar[M][N];//The communication cost for sensors per unit time in each round
 IntDomainVar[] roundLen = new IntDomainVar[M];//The time span for each round
 IntDomainVar life = pb.makeBoundIntVar("lifetime",0,ER[0]);//the lifetime of the network(min lifetime of sensors)
 IntDomainVar[][] Sensor_erg = new IntDomainVar[N][M];//the communication cost for sensors in each round

 //instant the variables and append them to the problem
 for (int k = 0; k<M; k++)
 for (int i = 0; i<N; i++){
 OE[k][i] = pb.makeEnumIntVar("OE[" + k + "][" + i + "]", 0, N-1);
 Rank[k][i] = pb.makeEnumIntVar("Rank[" + k + "][" + i + "]", 0, N-1);
 RankPlus[k][i] = pb.makeEnumIntVar("RankPlus[" + k + "][" + i + "]", 1, N);
 Cost[k][i] = pb.makeBoundIntVar("Cost[" + k + "][" + i + "]", 0, ER[i]);
 Sensor_erg[i][k] = pb.makeBoundIntVar("Sensor[" + i + "][" + k + "]", 0, ER[i]);
 }
 for (int k = 0; k<M; k++)
 for (int i=0; i<N; i++)
 for (int j=0; j<N; j++){
 Conn[k][i][j] = pb.makeEnumIntVar("Conn[" + k + "][" + i + "][" + j + "]", 0, 1);
 Conn_rev[k][i][j] = pb.makeEnumIntVar("Conn_rev[" + k + "][" + i + "][" + j + "]", 0,
1);
 }
 for (int k = 0; k<M; k++)
 roundLen[k] = pb.makeEnumIntVar("L[" + k + "]", 0, ER[0]); //upper bound ??

 // add constraints to problem
 //constraints among variables (relation between IE and OE)
 for (int k = 0; k<M; k++){
 pb.post(pb.eq(OE[k][0],0)); //OE[k][0] = 0 sink has no out edge
 pb.post(pb.eq(Rank[k][0],N-1));//sink has the highest rank
 }
 for (int k=0; k<M; k++)
 for (int i=0; i<N; i++){
 pb.post(pb.eq(Conn[k][0][i],0));//sink node has no out edge
 }
 for (int k=0; k<M; k++)
 for (int i=1; i<N; i++){
 pb.post(pb.eq(pb.sum(Conn[k][i]),1));//only one out edge is allowed for each node
 }

 IntVar one = pb.makeConstantIntVar(1);//temp usage

 for (int k = 0; k<M; k++)

 19

 for (int i = 1; i<N; i++){
 pb.post(pb.neq(OE[k][i],i)); //edge should point to some other nodes
 pb.post(pb.nth(OE[k][i],Rank[k],RankPlus[k][i]));//parent node rank = child node rank+1
 pb.post(pb.nth(OE[k][i],Conn[k][i],one));//the parent node always has one level higher rank
 }
 for (int k = 0; k<M; k++)
 for (int i = 0; i<N; i++)
 pb.post(pb.eq(RankPlus[k][i],pb.plus(Rank[k][i],1)));

 for (int k = 0; k<M; k++)
 for (int i=0; i<N; i++)
 for (int j=0; j<N; j++)
 pb.post(pb.eq(Conn[k][i][j],Conn_rev[k][j][i]));

 //energy constraints for each sensor
 for (int k = 0; k<M; k++)
 for (int i=0; i<N; i++)
 pb.post(pb.eq(Cost[k][i],pb.plus(pb.sum(Conn_rev[k][i]),pb.scalar(TX[i],Conn[k][i]))));

 for (int i = 0; i<N; i++){
 for (int k = 0; k<M; k++)
 pb.post(pb.times(Cost[k][i],roundLen[k],Sensor_erg[i][k]));
 pb.post(pb.leq(pb.sum(Sensor_erg[i]),ER[i]));
 }
 pb.post(pb.eq(pb.sum(roundLen),life));

 //Solver.setVerbosity(Solver.PROPAGATION);

 Solver solver = pb.getSolver();
 //pb.solve(false);
 pb.maximize(life,false);

 System.out.println("feasible: " + pb.isFeasible());
 System.out.println("nbSol: " + pb.getSolver().getNbSolutions());

 //packSolutions(pb);

 StringBuffer s = new StringBuffer();

 s.append("The " + solver.getSearchSolver().solutions.size() + " last solutions (among " +
 solver.getNbSolutions() + " solutions) are:\n");
 List solutions = solver.getSearchSolver().solutions;
 s.append("The solutions for rooted spanning tree are: \n \n");
 s.append(solutions.size() + " solutions : \n");
 for (int i = 0; i < solutions.size(); i++) {
 Solution solution = (Solution) solutions.get(i);
 s.append("lifetime:"+solution.getValue(0) + " ");
 for (int j = 0; j<M; j++){
 for (int k = 1; k<5*N; k=k+5){
 s.append(solution.getValue(j*N*5+k) + " ");
 }
 s.append("(L["+j+"]=" +solution.getValue(M*N*5+M*N*N*2+j+1) + ") ");
 }
 s.append("\n");
 }
 s.append(pb.solutionToString());
 return s.toString();
 }

}

 20

Code use to Generate Sensors and Calculate Transmission Cost

// ** **
// * CS886 Course Project *
// * University of Waterloo (2007) *
// * Generate sensorsin a square region, *
// * calculate the communication cost *
// * for each pair of node and store the *
// * into a transmission matrix. *
// * *
// * authors:Jun Fung, Matthew Stephan *
// * *
// ** **
import java.util.*;
public class GenMatrix{
 public static int N = 10;
 public static void main(String[] args) {
 int[] x_axis = new int[N];
 int[] y_axis = new int[N];
 int[][] trans = new int[N][N];
 Random r = new Random(5);

 //generate positions
 for (int i=0; i<N; i++)
 {
 x_axis[i] = r.nextInt(N);
 y_axis[i] = r.nextInt(N);
 }
 //calculate transmission cost
 for (int i=0; i<N; i++)
 for (int j=0; j<N; j++)
 {
 if(i==0)
 trans[i][j] = 0;
 else if(i==j)
 trans[i][j] = 0;
 else{
 trans[i][j] = (int)Math.pow((x_axis[i]-x_axis[j])*(x_axis[i]-x_axis[j]) +
(y_axis[i]-y_axis[j])*(y_axis[i]-y_axis[j]),0.5);
 }

 }
 //print the cost
 for (int i=0; i<N; i++){
 System.out.print("{");
 for (int j=0; j<N; j++){
 System.out.print(trans[i][j]);
 if(j<N-1) System.out.print(",");
 }
 System.out.println("},");
 }

 boolean valid = true;
 for (int i=1; i<N; i++)
 for (int j=0; j<N; j++)
 if (trans[i][j]==0 && (i!=j))
 valid=false;
 System.out.println("valid data:"+valid);

 }
}

