UNIVERSITY OF WATERLOO
Software Engineering

SE 499 Report:
Feature Modeling and Configuration
of Ecore Elements within Eclipse

Prepared By
Matthew Stephan
Student ID: 20098161
Userid: mdstepha
4B Software Engineering
May 1, 2007

Report Summary

The following report summarizes the author’s work during their SE 499 project
term. It begins by providing an introduction to the project the student engaged in during
their previous work term, specifically, the amalgamation of Ecore modellingijpsEcl
with feature modelling and feature configuration. It then alludes to the fathéna
were many improvements and issues outstanding with the project at the conclus&®n of
student’s work term naturally leading into the author’s participation in the SE df@g@etpr

the subsequent term.

Background information is provided that gives readers enough information on
Ecore modelling, feature modelling and configuration, and the state of thet @rftgec
the author’s initial work term such that the reader will be able to fully apecitie
problems presented and the solutions that were devised and implemented to deal with
them. A number of problems are presented during the discussion of the state of the
project after the initial iteration. Most notably is the fact that there wigstacoupling
between the graphical components and logic related to displaying features mbldeie
is also discussion of an indirect recursion problem and incomplete implementation of

some of the feature configuration options.

The solution discussion begins with the most critical change that occurred. The
feature modelling component was extracted from the graphical components and was
transformed into an Ecore model such that automatically generated code could be

utilized. This resolved a great number of the issues and also facilitated code

generalization, a task that is also described in the report. The indirectaaqunsdlem
was fixed as a side effect of the feature Ecore model-generated code duahibtihef
an Ecore object to be aware of its container/parent. Lastly, the progressymeghads

to feature configuration is discussed as well any significant and outstarglieg.is

The report then concludes, noting that the newly autonomous feature modelling
component makes the system much more reusability and less cluttered tharftiewas a
the initial iteration. It is also noted that the recursion problem no longer exésthat

feature configuration is complete barring a few exceptions.

Recommendations are made in regards to investigating and possibly improving
the method in which feature code generalization is achieved and to ensure completion of
the feature configuration functionality to ensure that Ecore FMP is abkesand useful

project for many people in varying domains.

Table of Contents

REPOI SUMMIAIY ...t e ettt e e e e e e e e e e e e e e e e e e nn e s il
JLIE= Lo (=30 @ o (T o £ P UPSUP v
LIz 1] (20 B T U= S %
I [0] (o o (8 T 1o o OO PPPPUPTUURTRR 1
2. Background INFOMMEATIONuiiiiiiiieii ettt e e e e 3
2.1. Ecore Metamodel Within ECHPSEcccciiiiiiiiiiiiieieeeeeeee e 3
2.2. Feature Modelling and Configuration............cccooiiiiiiiiiiiiiiis e 4
2.3. First Iteration of the ProjecCt ... 6
2.3.1. Tight Coupling with Graphical COmpPONENntcccccevviiiiiiiiiiiieee 6
2.3.2. No Ability to Deal with Features AlONE ... 7
2.3.3. Recursion Deeper than One Level (Indirect Recursion)..........cccceeeeeeeeeeieneeeeenn. 8
2.3.4. Feature Configuration INCOMPIELEcoovviiiiiiiiiii e 9
3.Upgrading ECOIre FIMPouu st e e 10
3.1. Feature MetamOUelooviiiiiiiiiiiee e e e e e e e e e e 10
3.2. Feature Code GeNEraliZatioN..........ccouueieeeeeee et s e e e e e e e e e e e e e e e as 13
3.2.1. ADSIIACE CIAaSSES ...uuuiiiiiiiiie ettt e e e e e 13
3.2.2. INherited FEALUIES........coiiiiiieiietee e e e e e reaaaae 14
3.2.3. POSSIDIE AIEINALIVES........ccieeeeeeee e e e e e e e e e e e e e eeeanne 14
3.3. Identifying Direct and INdireCt RECUISIONcc.uuiiiiiiiiiiiiiiiieeeeeee e 15
3.4. Advancement in Feature Configuration.............ccooovvviiiiiiiieeeeiii e 16
3.4.1. INSTANCE VIEWING ..vvuiiiieiiiiiie ettt e e et e e e e et e e e e e et e e e e e e aaa e eas 16
3.4.2. INStaNCe CONFIGUIATIONeiiiiiiiiiiieee e e e e e e e e e e 17
o] o 11153 o] 1SS 19
5. RECOMMENAALIONSottt e e e e e e e e e e e e e e e bt bbb e eas 20
B. RETEIEINCES ...ttt e e e e e e e e et et e e e 21

Table of Figures

Figure 1: Example Ecore Model EditOr...........uuuuiiiiiiiiiiiiiiiiiieeeeeeeee e 4
Figure 2: A sample Feature Model. Taken from [2] ... 5
Figure 3: Example of Simple and Complex ReCUrsioncccceveiiiiiiiiiiieeeeciiee e 9
Figure 4: Feature ECOre MOdElcoooiiiiiiii e 11
Figure 5: Comparison of the Feature LOgIiC LOCALION...........evviiiiiiiiiiiiiiieiieeeeeeiiiiie 12
Figure 6: Logic for Generalizing Abstract ClasSSes..........ccccuvviiiiiiiiiiiiiiiieieeeeee s 13
Figure 7: Inherited Features Generalization Code...........cccveiiiiiiiiiiiiic e, 14
Figure 8: Feature Model of Recursive EXamPplescoouiiiiiiiiiiiiiiicccceiis e 15

1. Introduction

The combination of feature modelling and configuration is an extremely useful
way of viewing and controlling certain features or properties of a systteisialso an
important component in many generative software development methodologies in that it
can be used to instantiate a system/application based on a model/specificatgstefa
[1]. As noted in [2], a feature is any property of a system/component that isamtpart
specifying the system. In the context of this report, feature modelling tefeiewing
features in a hierarchal fashion [2], thus indicating features/propeantiezk@tionships
they can have, somewhat like a template for an instance of a component. Feature
configuration, on the other hand, refers to creation of an instance by utiliziageefe
model by means of choosing what features and relationships will be upheld in the

instance.

While feature modelling is an extremely useful tool for describing thaidgfi
properties of a system, Ecore is useful for facilitating the anaysiglesign of object-
oriented systems. Ecore is a metamodel for object-oriented programs andfdipart
Eclipse Modeling Framework (EMF) for use within the Eclipse platform [Zart be
used to model object-oriented programs, notably, packages, classes, attributrgagfe
et cetera, and then facilitate dynamic instantiation and Java code genefdhose

programs.

During the past work term, fall 2006, a project was initiated by the author and his

supervisor that provides feature modelling and configuration to Ecore models withi

1

Eclipse through the Eclipse plugin mechanism. While the project was aledtte at

the end of the term, there were a number of possible improvements and issues #uat exist
in the created plugin. As such, the student and the supervisor decided to continue this
work through the SE 499 project course offered at the University. The following repor
describes the work accomplished by the author for his SE 499 project. Enough
background information is provided on both feature modelling, feature configuration, and
Ecore such that any reader familiar in software modelling and Eclipse should be
comfortable with the material discussed. The report begins by presdmsing t

background information and then continues by defining the problem, specificallytihe sta
of the project at the end of the work term/first iteration and the outstanding issues
surrounding it. It then outlines the solutions employed to deal with these issues, draw

conclusions about the work, and makes recommendations about the future of the project.

2. Background Information

The following section provides a brief explanation on both the EMF Ecore
metamodel and feature modelling and configuration to facilitate understandimeytafa
technologies for any reader who may not be familiar with them. It then coadiyde
summarizing the state of the Ecore Feature Modelling project aftenitiaiteration

and the issues about it that needed to be addressed during the SE 499 project course.

2.1. Ecore Metamodel within Eclipse

The Eclipse development environment facilitates object-oriented spé&otfidesy
means of the Ecore metamodel. By saying Ecore is a metamodel referdacttthat
Ecore is a model of model, that is, it is a model of an object-oriented specificedc®i.
Eclipse allows creation and modification of an Ecore metamodel through the sample
Ecore model editor. As shown in Figure 1, the Ecore model editor allows browsing
through an Ecore model through the hierarchy. Packages are at the top levaltlotasse
next, and references, attributes, and annotations follow. At any level, siblicigtdoen
can be created if the current model allows for it. In this particular instdrecenodel
being shown in the editor is the Ecore model itself, which is the basis for all tfaodes

instances.

= platform:/pluginforg.eclipse. emf . ecore/model{Ecore. ecore ~

EAnnotation - = EModelEler My Child ik EAnnotakio
o = source - ESkring Mew Sibling M o Eop
- &% details + EStringToStrin :
= eModelElement : EMad
i = contents § ECbjeck :
w3t references | EObject | |
Eclass - = EClassifier e
EClassifier - EMamedEler -E gty
EDataType - = EClassifier
E EEnum -3 EDataType

|y L

+i

- BB

Figure 1: Example Ecore M odel Editor

2.2. Feature Modelling and Configuration

As noted in [2], a feature model is a model that organizes features based on their
structure within the domain being modeled. It is useful in that it provides aedifferay
of seeing systems, specifically in terms of the features that make it urkkquidermore,
feature models can make use of cardinalities, as discussed in [4], which provide more
information and power in modelling because it facilitates the addition of reésienc
attributes, and feature cardinalities to feature models. Figure 2, taker2lr@hdws a
feature model in Eclipse as allowed by a feature model plugin previouatgdre [2].
The example shown is that of an electronic shop and also exhibits the cardinadities an
the affordances they provide. Each of the symbols, such as mandatory and root features
have different meanings and are explained in [2]. This report will explain rtieosy

only when necessary if and when they arise throughout the document.

-4 Eshop Feature Mo
- A Payment
- # PaymentTypes
-
® CredibCard
m DchibCard
® Purchaselrdes
& FraudDetection
=k Shipping
- W CustornMethods
-1 # [L.*] Method (String)
® FlaRate Flnah
+-- W Shippingzateways
- M PaszworcPolicy
-] # Exgirabon
-
® InD=ys (Integer)
L =T
-] & Chars
- <o
® | owerCase
= LperCase
= [Digits
® SoecizliChars
=--# EShop
ref Payment
o ref shipping
ref PasswordPolicy

Figure2: A sample Feature Model. Taken from [2]

Feature configuration refers to instantiating a feature model bstisgl@vhich
features and relationships will be upheld in the specific instance being codfi§are
continuing from the example above, an actual EShop would pick the features applicable
to them, assuming they are optional, in order to configure its specific instaraterere
configuration also allow for feature cloning/replicating and attribueegen [2]. Once
a configuration is complete, the idea is that an application or subset of an applcati
be generated automatically using knowledge and inference about the domain based on the
features and options configured. It is similar in structure and appearancedbaha

feature model, however, it has check boxes for optional features and attribaves, s

only non-abstract classes, and shows all inherited references and attiih#eslues of

a specific instance are shown and are also editable within that configuration vie

2.3. First Iteration of the Project

During the previous academic term, fall 2006, the supervisor of the author of this
report and one of the supervisor’s graduate students came up with the idea of
amalgamating the concept of feature modelling and configuration with thabd Ec
modelling within Eclipse. Thus, the Ecore Feature Modelling Plugin (Ecore FMP)
project was born. The aim of the project is to have Ecore models created, viewed, and
managed through a feature modelling view. Furthermore, configuration of ancmsta
feature model can be achieved through the feature configuration editor/view. ofkhe w
was assigned to the author of this report, who was doing a cooperative work term under
the supervisor for that term. At the conclusion of the work term, the project was at a
stable state. Specifically, feature modelling was complete and featiiguration was
well on its way. While it was stable, there were a number of serious improwinéne
project that needed to be made. As such, the author of this report and their supervisor
began the SE 499 project course with the intention of making these improvements and
furthering the project. This section outlines the various problems that existethevi

project after the work term that needed to be addressed during the SE 499 term.

2.3.1. Tight Coupling with Graphical Component

In order to create a tree-like viewer or editor within Eclipse, one mustnmeple
the interfaces of both the ITreeltemContentProvider and litemLabelPronidefaces

for each of the entry types within the tree. That is, each Java object tyetthbei

represented in the tree structure must have an ItemProvider that implemberusthese
interfaces. Each time the tree is created/drawn, an adapter is calledhfizsatach object

to a specific ItemProvider. The first of the required interfaces, [E@&ontentProvider,
allows an ItemProvider to retrieve its children and its parent, which is eegéssause

a tree entry must be able to contain and display zero or more children. The itéseof
interfaces, the llitemLabelProvider, gives the ItemProvider the alalitgttieve the text

and image that should be displayed for a specific entry within the treaustruéts such,

the three main methods that an implementer should be concerned with are the ones that
retrieve the children of the object, retrieve the text, and retrieve the tmagplay in

the tree for the object.

ItemProviders should be seen as purely graphical components such that they
should only be concerned with how to display an object for a given context. The first
iteration of the project did not abide by this. Two different FeatureltemPrewidee
created for both modelling and configuration that were meant to deal with featties
two different domains. Each of these contained a significant amount of logic that
pertained to determining the properties of the features, such as their mappiongeto Ec
and the calculation of their children. Not only is this a problem because of the tasfgling
feature logic and display code, but there was a significant amount of duplicatioemetwe

the two FeatureltemProviders.

2.3.2. No Ability to Deal with Features Alone

A somewhat implicit side effect of the issue described in the previous sexction i

that features are not autonomous. That is, if one wanted to utilize the featuanlbgic

7

deal with features that map to Ecore without being tied to IltemProviders, d woube
possible using the first iteration of the project. This issue became apparagttteri
first iteration work term when a fellow member of the author’s group wasstést in
manipulating Ecore components as features without utilizing the GUI. Intordeal
with features in the way they needed, the group member was forced to use the
ItemProviders method that retrieved children and had to extend it to get more
functionality. This is clearly incorrect because the intent of the ItemdRars’ children
retrieval method is for children in the tree structure, not necessarithillaeen of a
feature. It became quite clear that the logic related to featurdechtebe extracted and

localized as a separate part of the project.

2.3.3. Recursion Deeper than One Level (Indirect Recursion)

A relatively important problem with the first iteration was its inabiidydeal with
Ecore models that had indirect recursion, that is, recursion that occurs deemerethan
reference level. Figure 3 shows an example of both direct and indirect rectirson.
Ecore class “R” has a direct containment reference of type R, which wieldcap
infinite recursion from a feature perspective because R would contain R, whiah woul
contain R, et cetera. The indirect recursion is represented in the remaianegciasses.
The class AContainer has a reference to A, which has a reference to B, whach has

reference back to A. From a feature hierarchy perspective, this is iméouesion.

= test
- E =]
hrec R
= F: EString
=
=B B
Be
(= S}
E AiZonkainer
=N

Figure 3: Example of Simple and Complex Recursion

In the first iteration of the project, the feature modelling and featurégcoafion
views could both support the direct form of recursion by having an Ecore class check if
any of its immediate references are of the same type or subtypdfofTise indirect
recursion support was not in place for either modelling or configuration and caused an
error in the program because the children retrieval occurred infinitely efitar was
non-trivial as it seemed to occur in many examples derived by the author and the group

members.

2.3.4. Feature Configuration Incomplete

As noted earlier, the feature configuration view/editor needs to be able to allow a
user to configure an instance of a feature model by selecting, clicking, ¢lanohg
editing an instance of that model. It needs to show all the same elements ofutlee feat
that are applicable to configuration, for example, only non-abstract classedhanted
features. The viewing aspect of feature configuration was completedhaftenst
iteration, but only a subset of the interaction part was finished. Specificafyeaitihg

of an attribute was completed at the end of the first iteration.

3. Upgrading Ecore FMP

Given all the shortcomings from the first iteration of the project, it seegnsal
to have the SE 499 project focus around improving the Ecore FMP system and dealing
with these issues. This section describes the various solutions that deal pitbbtbeens
presented in the past section and other general improvements to the systenethat we

made.

3.1. Feature Metamodel

The most basic and prevalent problem from the first iteration was the
entanglement of feature code within the ItemProviders as discussedlrartger to use
ltemProviders the correct way, the solution chosen is to refactor by way ofiingpties
feature concept in Ecore and then using the automatically generated code 4Fsgows
the Ecore model of the feature concept underneath the feature model (fm) pdtkage.
begins with an abstract class, Node, which both Feature and FeatureGroupromerit f
A Feature is a feature in the traditional sense as discussed in this reparAso fa
FeatureGroup, on the other hand, is a derived or annotated grouping of features under a
class such that it contains a grouping of them abiding by some cardinality cudastrai
The only difference, with respect to the model, between a Feature class and a
FeatureGroup class, is the representation enumeration, which indicates thiefégtere

or feature group itis.

10

S8 20 platform: fresourceca,.uwaterloo, gp. ecore, Frnfmodelffm, ecore
= # Fm
= H Mode
5 min ; EInk
5 max : EInk
o=k children ; Node
5 ecoreClass @ EClass
= grorestruckuralFeature | EStructuralFeature
=+ gcoreConkainingFeature : EReference
= ecorelnstance : EQbject
Feature - = Mode
T representation ; FeatureRepresentation
FeatureGroup - = MNode
T representation | GroupRepresentakion
FeatureRepresentation

oo .o

ng s

GroupRepresentation

Figure 4: Feature Ecore M odel

The Node abstract class contains all the information required to perform the
mapping from feature model to Ecore as accomplished in the first iterationtrii¢ters
feature is used in the case the feature or group is representing an attriieteecoice.

The Instance variable is used only in the case where an actual instance afuitee fe
exists, for example, during feature configuration, instances are created atidghus
attribute would take on the value of that instance. The children reference colhtains a
Nodes that are logical children of the Node. Min and max refer to cardinalityaiotsst
and the containing feature is the Ecore reference that contains the node thestlgss
attribute refers to the Class that the feature represents in the cadassf f@ature. In the
case of an attribute or reference it represents the containing class. Aeteled and
technical version of the mapping between Ecore and the feature Ecore model will be

provided in a technical report to be done by the author of this report in the near future.

11

After generating the code, it became necessary to modify the terméns to
utilize these new Node objects. A FeatureltemProvider and FeatureGnoRpitader
were created in both the feature modelling view and feature configuratiorcergexts.
Both of these contain relatively zero feature logic and only make cadtrieve
attributes of the Node class in question in order to take care of the main three methods
retrieving children, retrieving text to display on the tree, and retriemage to display
on the tree. The modelling and configuration versions of the ItemProviders ditfier in t

way they use these 3 methods to provide content to the tree.

This is ideal because, as shown in Figure 5, there is now only a one-way
dependence between the graphical ItemProviders and the features beingarmamdell
configured. The feature modelling component/package has no dependencies torany othe
part of the system, as such, it can be used autonomously. This includes users who want
to have the use of features and feature groups that correspond to the definition in the

feature model, but not necessarily use the ItemProviders or any graptadalce at all.

First lteration

ItemProviders
ModeliConfig View) Fealure

Ralated
ProvideContentTo Cada

After Refactoring
1

ltemProviders f- ———— > .
ModeliCanfig View % FeatureModelling

PravideContentTo

Figure5: Comparison of the Feature L ogic L ocation

12

3.2. Feature Code Generalization

In order to provide a single code base for features that would support the
requirements of both feature modelling and feature configuration, it was ngdessar
generalize the feature logic code. The main example of this is the childienaletr
method of a feature. The concept of children/sub features in a hierarchy differs
depending on the context one is interested in. There are two main differences e featur
modelling and feature configuration regarding the notion of children; abstrasésland
inherited features. The following two sections outline how these differereresdsalt

with in order to make the code more general.

3.2.1. Abstract Classes

The problem of including abstract classes is solved by allowing the user of the
update/get children method to determine if they would like to include abstracsaasse
not. This flag is given to the feature and is used when retrieving the metadata (non
instance) children. Figure 6 shows the code snippet that is called to fadiiate t
generalization of allowing abstract classes or not. Every time acalde to add either
a class or a subclass of a reference to the children list, there is aakeekftthe class
being added to the children list is abstract or if abstract classes rgarbzuded in the

addition. This ensures that abstract classes are only shown when the flagessic

if [(includedbstractClasses || !classOfreference. isihstract ()] {
| fdehildren.addi...,includeSuper3cructuralFeatures, includelbstractClasses)) ;
i

Figure 6: Logic for Generalizing Abstract Classes

13

3.2.2. Inherited Features

Inherited features refer to features that are inherited by a subyolasa
super class. So, if a super class has an attribute, then a sub class should also have the
same attribute. The same applies for references. In the firsbieohthe project, this
was accomplished by iterating different lists; one that includes the inth&r#tires and
one that does not. In the newer version, this basic idea remains, however it is
accomplished slightly differently. In order to achieve this cleanly, theqinoges the
“for each” facility provided by Java 5.0 that allows a user to iterate throggrea list
and get the value placed in an object pointer. This is used in conjunction with a flag
provided by the feature method caller that indicates if super/inheritedusédueiatures
should be included. As exhibited in Figure 7, the list that is chosen is dependent on the
flag that indicates if inherited features should be included. If the flagasttren the list
returned is one that contains all inherited structural features, otherwis¢hetbgal
structural features are returned. The “for each” loop then iterataggtihthat list,

proceeding identically from that point on irrespective of which list is used.

EList structuralFeatures = includeluper3tructuralFeatures? this.getEcoreClassi).getEAll3tructuralFeatures()
: this.getEcoreClass|).getE3tructuralFeatures|);
for [Object aux : structuralFeatures) {

A

}

Figure 7: Inherited Features Generalization Code

3.2.3. Possible Alternatives

While flags are sometimes considered bad practice, they seemed to be afgpropri
in this instance, providing the user of the feature component some ability to control what

children will be returned. A possible alternative, however, that may be suigenarse

14

something like the strategy pattern or an analogous design pattern thatfalow
different ways of accomplishing a similar goal. The author of this redbasfé¢hough
the overhead in classes and calls inherent in the strategy pattern was not wioatihethe

off in good design. Given more time, however, a deeper analysis should be performed.

3.3. Identifying Direct and Indirect Recursion

Now that the system is utilizing the generated feature Ecore model catiegde
with both types of recursion is much less troublesome and borderline trivial. By using
the generated code, all instances of Nodes, which are Ecore Objects or “EObject
because they are from an Ecore model, have access to their container through the
retrieval method eContainer() that can be called on any EObject. Bigorgains the
correct feature model of the Ecore model presented in Figure 3. Becausesfeature

know their containers, this diagram/feature model is possible.

-ﬁ_.Fr:qature Maodel X

= 8 test
P b 8¥ [0, rec (RY
~ & F{EString)
= aContainer
[=
B8 B
o (A

LS

Figure 8: Feature M odel of Recur sive Examples

Both indirect and direct recursion is checked for and dealt with in the same
manner. It is checked for by continually traversing a feature contaideramparing it
with the current reference type until recursion is discovered or the top |evieéba hit.

In the direct recursion case, as shown in feature R in the figure, it checks thiestery f

15

reference type against the first container, that being R. Recursion is discandrine

chain is broken. In the indirect case, as shown in feature AContainer in the figure, t
reference C of type A that B has is first checked against B. A is not equivaigrga

this search continues by checking reference type A and all its subtypes Bgains
container A. Here, recursion has been detected and the chain is broken. This traversal

through containers can continue indefinitely until the highest level has been reached.

3.4. Advancement in Feature Configuration

At the conclusion of the first iteration there were a number of outstanding issues
remaining in the feature configuration aspect. After utilizing the fedfaore model, the
correctness of the metadata (non-instance) feature configuration viest i@spained
intact. So, only the non-metadata configuration component remained. The two main
components of this aspect are the instance viewing and the instance modification. The

following section will indicate the work that was done for both.

3.4.1. Instance Viewing

The main idea behind instance viewing is that the configuration view needs to be
aware of the instances of features that have already been instantititeclsgr. The
feature model accommodates instances through the Ecore instance atitibhdtafthe
Node abstract class. Regarding the actual coding that is required to asbaimplithe
amount of additions is quite significant. Every time a feature has its chiletreaved, an
instance must be checked for. This will work in both feature modelling and feature
configuration because there is no way of an instance being set in the czeeief f

modelling. If an instance is found, then it needs to be displayed as either a checkbox if i

16

is optional or a black dot if it is a mandatory feature or clone, as was done in tloaiprevi
feature plugin from [2]. There must also be a check of cardinality when an mstanc
present because if there are a number of instances to a reference equaktarthenm
amount allowed, then no modelling/metadata should be displayed. This functionality is
now present in the Ecore FMP project with very few issues left to tackles 8otnem
include displaying feature group instances, refreshing instances that eavadoed

recently, and others. All of which can be tackled given time.

3.4.2. Instance Configuration

All of the instance configuration methods are quite similar. Selection, cloning,
and removal all require analogous modification of the feature. Before modificsiti
allowed however, the cardinalities of the references or attributes mustdieedragainst
the number of instances. If the number of instances is equal to the max, then theze will
no option to select or clone. If the number of instances is equal to the min, then there will

be no option to remove.

Every time an instance is created, through selection or cloning for example, the
containing reference of that instance must be accessed through the pngrexssiince
of the container. In other words, if feature A has a reference, C, to featune tBe user
selects to clone or select B under A the following must transpire: C mastbssed
through reference C’s container, namely A. Once A is acquired and thenoef€eas
retrieved from the actual instance of A, a new instance of B must be credtadded to

C’s reference list in the context of instance A.

17

For an instance to removed, the same principle applies in acquiring the
appropriate reference. The only difference here is that removal of amcestaist
remove recursively all features that are contained by the feature owkerse
underneath its hierarchy. This is because those feature instances have raatsitkx

that of the feature if the containment property is true.

One problem that has arisen that has not been significantly dealt with is that of
creating new instances of objects or attributes that are not primitivatifAei objects and
attributes have a default value that can be put effect for all new instdviaag.non-
primitive objects and attributes, however, do not have any default value or sefthigs
is typically for non-primitive objects and attributes that do not have an emputdefa
constructor such as the Integer class. For the time being, the make-shidihsslto
provide a string containing the character ‘0’. This works for the majority s¢éetathat
take a single string parameter, but it is clearly not the correct solutio& p&3sible
solution is some kind of switch statement or analogous design pattern that actsfon all
the Ecore types that are non-primitive. Then a default value will be chosen agphppria
Another solution is to create a very simple wizard that pops up when a new instance of a
non-primitive object or attribute is created. This will then have a field for eaampger
of the base constructor that the user can fill in order to configure the newly

created/cloned instance of the non-primitive object or attribute.

18

4. Conclusions

It comes as no surprise that separating out the feature domain logic from the
graphical/display logic is extremely beneficial. Having the fealogic as its own
autonomous component means that code reuse is increased and code duplication is
decreased. Users of the Ecore FMP project who want to deal solely with the logi
surrounding features and feature groups are able to do so. The ItemProviders are
fulfilling their appropriate roles and code throughout the project is clegiemore

concise.

The recursion problem from the first iteration of not being able to handle indirect
recursion is dealt with as a pleasant side effect of having the featuieatureé group
logic modeled as an Ecore model. The ability for each feature to detewttamer

allows for easy parent traversal, thus reducing the complexity of ideteetursion.

Much progress is made from the first iteration to the current version in 6érms
feature configuration. Instances now display correctly, with a few minopgans.
Configuration through addition and removal of instances is at a much better state the
was after the first iteration. There is still a large issue remahomgver in the

instantiation of non-primitive objects and attributes.

19

5. Recommendations

The first recommendation is to have the author of the report or someone familiar
with the work investigate the alternative solutions put forth in the feature code
generalization section. While the flags do work quite nicely and the authevdseht
this time that the trade off between using them or a design pattern not wamaonei

time may reveal the opposite to be true.

The next recommendation is that the instance viewing component of feature
configuration be completed. There are a number of minor but somewhat difficglt case
remaining and it is important that all of them are covered for the plugin to beity qual

product.

The last recommendation is to determine which solution to the new instance of
non-primitive object or attribute problem is the best and to implement that solution. This
will arise frequently while someone is using the feature configuratibora/iewer so
this task is critical and should definitely be attended if the Ecore FMP pi®jfeciove

on.

20

6. References

[1] K. Czarnecki and U. W. Eiseneck&enerative Programming: Methods, Tools, and
Applications,Addison-Wesley, 2000.

[2] Michat Antkiewicz and Krzysztof Czarnecki, “FeaturePlugin: FeaMogleling Plug-
In for Eclipse” iINnOOPSLA’04 Eclipse Technology eXchange (ETX) Workstpt.

[3] The Eclipse Foundation, “Eclipse Modelling Framework (EMF), 2007,
http://www.eclipse.org/modeling/emf/?project=emf (last accessedhvis, 2007)

[4] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-baatdd¢
models and their specialization” $oftware Process Improvement and

Practice 10(1), pp. 7-29, January/March 2005.

21

