
Using Fuzzy Code Search to Link Code Fragments
in Discussions to Source Code

Nicolas Bettenburg, Stephen W. Thomas, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University
Kingston, Ontario, Canada

Email: {nicbet, sthomas, ahmed}@cs.queensu.ca

Abstract—When discussing software, practitioners often ref-
erence parts of the project’s source code. Such references
have different motivations, such as mentoring and guiding less
experienced developers, pointing out code that needs changes,
or proposing possible strategies for the implementation of future
changes. The fact that particular parts of a source code are being
discussed makes these parts of the software special. Knowing
which code is being talked about the most can not only help
practitioners to guide important software engineering and main-
tenance activities, but also act as a high-level documentation of
development activities for managers. In this paper, we use clone-
detection as specific instance of a code search based approach
for establishing links between code fragments that are discussed
by developers and the actual source code of a project. Through
a case study on the Eclipse project we explore the traceability
links established through this approach, both quantitatively and
qualitatively, and compare fuzzy code search based traceability
linking to classical approaches, in particular change log analysis
and information retrieval. We demonstrate a sample application
of code search based traceability links by visualizing those parts
of the project that are most discussed in issue reports with
a Treemap visualization. The results of our case study show
that the traceability links established through fuzzy code search-
based traceability linking are conceptually different than classical
approaches based on change log analysis or information retrieval.

I. INTRODUCTION

In “The Cathedral and the Bazaar” [26], Eric Raymond notes
that one of the main advantages of open-source development is
the reduced rate of software defects grounded in Linus’ Law,
i.e., “a direct result of the increased communication among
developers about the source code”. Understanding the impact
of such developer communication on software quality has been
the focus of recent research [4], [8] and is based on the explicit
and implicit knowledge of developers that is recorded during
the development of a software system.

Implicit developer knowledge is embedded in a variety of
repositories, such as mailing list archives, modification re-
quests, issue reports, the source code itself and accompanying
documentation. Often, this implicit knowledge is of informal
nature and consists of a mixture of natural language texts
and structural elements that refer to the project’s source code.
Links between the source code and the surrounding documen-
tation have been recognized in the past as an important factor
for effective software development, and as a result, software
engineering research spends much effort in uncovering such
traceability links [24].

Past approaches to uncovering traceability links between doc-
umentation and source code are commonly based on in-
formation retrieval [2], [15], [18], [20], natural language
processing [1], [19] and lightweight textual analyses [5], [11],
[12]. Each approach, however, is tailored towards a specific
set of goals and use cases. For example, when linking code
changes to issue reports by analyzing transaction logs [28],
we observe only the associations between a bug report and
the final locations of the bug fix, but miss the bug fixing
history: all the locations that a developer had to investigate
and understand before he could find an appropriate way to fix
the error.

In this paper, we aim to find traceability links between
issue reports and source code. For this purpose, we propose
a new approach that uses token-based clone detection as an
implementation of fuzzy code search for discovering links
between code fragments mentioned in project discussions and
the location of these fragments in the source code body of a
software system. In a case study on the ECLIPSE project, we
first extract source code fragments from bug report discussions
and then use the CCFinder clone detection tool, a readily
available implementation of fuzzy code search, to identify all
occurrences of the extracted code fragments in the software
system’s source code. We explore the value of the resulting
traceability links through a quantitative evaluation and com-
pare the resulting traceability links to those established by
two classical approaches: change log analysis, which is the
state-of-the-art for linking issue reports to source code, and
information retrieval.

Our work makes the following contributions to the research
area: first, we establish a new class of traceability links that
link code fragments contained in project discussions to the
actual occurrences of these fragments in the source code body
of a software system. Second, we report on a qualitative and
quantitative analysis of our approach. Third, we demonstrate
an example application of this new class of traceability links
through identification and visualization of those parts of the
software system that are discussed the most. In the future, we
envision traceability links established by our approach to be
used to assist practitioners when browsing issue reports. A
sample application would be an enhanced BugZilla system
as illustrated in Figure 1, which assists the bug fixing process
by identifying code fragments contained in the corresponding

Description

Bug 196401
Summary: Images with transparency alpha added to the Toolbar widget do not render at all on

Windows 2000

Product: [Eclipse] Platform Reporter: jonathan <jonny.tiu>

Component: SWT Assignee: Steve Northover <steve_northover>

Status: NEW QA Contact:

Severity: normal

Priority: P3

Version: 3.2.2

Target Milestone: ---

Hardware: PC

OS: Windows 2000

Whiteboard:

Attachments: Description Flags
Application to demonstrate the problem none

jonathan 2007-07-12 21:05:59 EDT

I did much investigation into this and discovered that the SWT Button widget
seems to explicitly handle images with transperency alpha on Windows 2000.
The
Toolbar widget doesn't though. In Button._setImage ():

if (OS.COMCTL32_MAJOR >= 6) // true for win xp
{

}
else
{ // win2k
....
case SWT.TRANSPARENCY_ALPHA:
image2 = new Image (display, rect.width, rect.height);
GC gc = new GC (image2);
gc.setBackground (getBackground ());
gc.fillRectangle (rect);
gc.drawImage (image, 0, 0);
gc.dispose ();
hImage = image2.handle;
imageBits = OS.BS_BITMAP;
fImageType = OS.IMAGE_BITMAP;
break;
...
}

I have attached a test application and an image file (please use this image
file) so it will be easy for you to see the issue.

There are two blocks of code you can uncomment. The first one is the image
placed on the Button Widget. You can see that it renders fine on Windows 2000
and XP.

If you uncomment and run the second block of code, the image is placed (via
an
ActionContributionItem) on to a Toolbar widget. It will render on Windows XP
but not show up at all on Windows 2000.

It seems that the Toolbar or ToolItem widgets need to have code similar to
what
the Button widget does already for transparent images on win2K?

In my application code, I hacked it so that I redraw the image (as above)

org.eclipse.swt/Eclipse SWT/win32/org/eclipse/swt/widgets/Button.java

equinox-incubator/org.eclipse.swt/Eclipse SWT/win32/org/eclipse/swt/widgets/Button.java

Fig. 1: Example of an enhanced bug report system that points
developers to similar code.

issue report discussion and points developers to the locations
in the project’s source code that contain similar or identical
code.

The rest of this paper is organized as follows: in Section 2,
we present related work to our study, followed by a discussion
of the limitation of existing approaches in the context of
linking code fragments contained project discussions to source
code. Together with this discussion, we present our fuzzy
code search-based approach to traceability linking in Section
3. In Section 4 we present the design and results of a case
study on the ECLIPSE software system, followed by a sample
application of the obtained traceability links to uncover the
parts of the software that are discussed the most (Section 5).
We conclude our work in Section 6 with a discussion of our
results and future research avenues.

II. BACKGROUND AND RELATED WORK

Previous work in the area of traceability link recovery between
source code and documentation can be categorized into three
groups: information retrieval-based approaches, approaches
that analyze the change logs of transactions to the version
control system, and lightweight textual approaches that scan
documents for code entities. In the following we summarize
the research in each of these categories.

A. Information Retrieval Approaches

Frakes and Nejmeh pioneered the use of information retrieval
approaches to support software reuse. Their CATALOG system
implemented an interactive search engine for source code
documents based on search terms supplied by the user [14].

Maarek et al. extended this idea in their work on au-
tomatically constructing software libraries with the help of
information retrieval methods [19]. Attributing the moderate

Technique Intended Purpose
Information Retrieval
[2], [3], [20]

Establishing traceability links for software
requirements.

Change Log Analysis
[10], [12], [28]

Associating changes to the source code with
issue reports.

Lightweight Analysis
[5], [6]

Linking mailing list discussions to source
code entities mentioned in the discussion.

Code Search (This
work)

Linking code fragments extracted from
project discussions to their location in the
project’s source code.

TABLE I: Overview of existing linking approaches.

success of software reuse as a lack of a central library
for locating and understanding code and documentation, the
authors propose to use information retrieval methods to group
sets of unorganized documents into software libraries, thus
connecting source code with surrounding documentation.

Antoniol et al. recognized that the domain-specific knowl-
edge of developers is implicitly encoded in such surrounding
documentation in the form of mnemonics for identifiers that
capture high-level program concepts [1].

In an extension to their former work, Antoniol et al.
studied the use of vector-space information retrieval models
for recovering traceability links between source code and free-
text documentation [2]. In their case studies on two software
systems, Antoniol et al. found that both approaches yield very
high recall, with both approaches finding up to 100% of the
existing links.

Marcus et al. extend Antoniol’s idea by investigating the use
of a novel vector-space information retrieval model for trace-
ability link recovery [20]. In their work they demonstrate the
suitability of Latent Semantic Indexing (LSI) to the domain of
source code and documentation, while being computationally
less expensive than the previous approaches by Antoniol et al.

Cubranic et al. link source code to documents, tasks, persons
and messages in their HIPIKAT project memory system [11].
For a given artifact, they establish links to similar artifacts by
calculating document similarities based on an LSI vector space
model similar to Marcus et al. [20]. Through two case studies
they show that the approach successfully provides pointers to
files needed for the specific modification tasks.

In a study on automatic generation of traceability links
between arbitrary software artifacts, De Lucia et al. extend
a software artifact management system called ADAMS with a
traceability recovery approach based on LSI [18]. Their case
study revealed that information retrieval-based traceability
link recovery suffers from a high number of false positives
requiring much manual effort from users to discard incorrect
links.

Information retrieval techniques, especially vector-space
models have been demonstrated to be successful for automat-
ically identifying semantic connections between source code
and surrounding documentation. Jiang et al. were the first to
note that previous techniques could not effectively and auto-
matically deal with software evolution [15]. As a solution to
the problem of changing documents over time, they proposed
an incremental LSI technique and implemented the approach

Description

Comment 1

First Last Prev Next No search results available

Bug 79798 - [compiler] Wrong compiler error when interface overrides
two methods with same signature but different exceptions

Status: VERIFIED FIXED

Product: JDT
Component: Core

Version: 3.1
Platform: PC Windows XP

Importance: P3 normal (vote)
Target Milestone: 3.4 M7

Assigned To: Kent Johnson
QA Contact:

URL:

Whiteboard:

Keywords:

Depends on:

Blocks:

 Show dependency tree

Reported: 2004-11-30 13:27 EST by Markus Keller

Modified: 2008-11-25 14:55 EST (History)

CC List: 7 users

David.Biesack
david_audel
dinksetter
e2e4e7e5f2f4
konigsberg
sandeep.katheria

See Also:

Attachments

Add an attachment (proposed patch, testcase, etc.)

Note

You need to log in before you can comment on or make changes to this bug.

Markus Keller 2004-11-30 13:27:58 EST

I20041130-0800

Wrong compiler error when interface overrides two methods with same signature
but different thrown exceptions: The call to ij.m() is OK, but eclipse flags it
with "Unhandled exception type IOException".

public class Over {
 void x() throws ZipException {
 IandJ ij= new K();
 ij.m(); //wrong compile error
 }
 void y() throws ZipException {
 K k= new K();
 k.m();
 }
}

interface I { void m() throws IOException; }
interface J { void m() throws ZipException; }
interface IandJ extends I, J {} // swap I and J to make compile error disappear
class K implements IandJ { public void m() throws ZipException { } }

Kent Johnson 2004-12-01 14:14:02 EST

This is not a MethodVerifier problem.

This error is thrown from FlowContext.checkExceptionHandlers()

A

B

C

E

D

F

Description

Comment 1

First Last Prev Next No search results available

Bug 79798 - [compiler] Wrong compiler error when interface overrides
two methods with same signature but different exceptions

Status: VERIFIED FIXED

Product: JDT
Component: Core

Version: 3.1
Platform: PC Windows XP

Importance: P3 normal (vote)
Target Milestone: 3.4 M7

Assigned To: Kent Johnson
QA Contact:

URL:

Whiteboard:

Keywords:

Depends on:

Blocks:

 Show dependency tree

Reported: 2004-11-30 13:27 EST by Markus Keller

Modified: 2008-11-25 14:55 EST (History)

CC List: 7 users

David.Biesack
david_audel
dinksetter
e2e4e7e5f2f4
konigsberg
sandeep.katheria

See Also:

Attachments

Add an attachment (proposed patch, testcase, etc.)

Note

You need to log in before you can comment on or make changes to this bug.

Markus Keller 2004-11-30 13:27:58 EST

I20041130-0800

Wrong compiler error when interface overrides two methods with same signature
but different thrown exceptions: The call to ij.m() is OK, but eclipse flags it
with "Unhandled exception type IOException".

public class Over {
 void x() throws ZipException {
 IandJ ij= new K();
 ij.m(); //wrong compile error
 }
 void y() throws ZipException {
 K k= new K();
 k.m();
 }
}

interface I { void m() throws IOException; }
interface J { void m() throws ZipException; }
interface IandJ extends I, J {} // swap I and J to make compile error disappear
class K implements IandJ { public void m() throws ZipException { } }

Kent Johnson 2004-12-01 14:14:02 EST

This is not a MethodVerifier problem.

This error is thrown from FlowContext.checkExceptionHandlers()

X

(1) (2)

Y

Fig. 2: Lightweight textual analysis finds traceability links from code entity names to files implementing those entities (1).
Fuzzy code search links the entire code fragment to the actual occurrences of the fragment in the projects’ source code (2).

in an automated traceability link evolution management tool.
Asuncion et al. presented another incremental IR approach,

which uses latent Dirichlet allocation (LDA) for capturing
traceability links [3]. They show in a case study that LDA
performs as well or better than LSI with respect to precision
and recall of the captured traceability links, while being
computationally less expensive than LSI.

B. Change Log Analysis

In addition to information retrieval approaches, there exist a
variety of specialized approaches for establishing traceability
links. These approaches rely on implicit knowledge about soft-
ware development repositories to establish traceability links
between source code and documentation.

Two of the most prominent approaches, which links source
code to bug reports, were introduced by Fischer et al. [12],
[13] and Cubranic et al. [11], who discovered that developers
tend to include bug report identifiers in the change logs of
version control system transactions. This information can be
used to link the files affected by a transaction to the bug report
mentioned in the change log message.

Sliwerski et al. [28] refined this approach and introduced
a set of heuristics that measure the syntactic and semantic
relevance of links to cut down the number of false positive
links reported by this method.

Associating source code and issue reports through the
analysis of change log messages has been widely adopted in
the defect prediction community, forming datasets that are at
the core of many research efforts in the area [17], [22], [27].

However, Bird et al. note that these datasets suffer from
inconsistent linking and represent only a smaller sample of
links from the population of all possible links between issue
reports and the source code [10].

C. Lightweight Textual Analysis

As information on bug report identifiers is limited to commit
log messages, change log analysis cannot be used to link other
forms of documentation to source code artifacts. Bacchelli
et al. hence proposed a set of lightweight techniques [5] to
establish traceability links between mailing list discussions
and source code, based on the recognition of entity names,
such as classes definitions or method names, inside the textual
contents of messages and linking them to their corresponding
implementation files.

D. Limitations of existing approaches

Table I summarizes existing approaches discussed so far. Each
of these approaches has been designed to meet a specific goal
and they have been shown to perform well for their intended
use cases. In this paper, we want to consider the context
of establishing traceability links between issue reports and
source code files. In particular, we focus on establishing links
between code fragments contained in bug report discussions
to their occurrences in the project’s source code. Within this
intended use-case we identified the following limitations for
the applicability of existing approaches:

Information retrieval (IR) methods, such as Latent Semantic
Indexing (LSI), latent Dirichlet allocation (LDA), or Vector-
Space Models (VSM) are designed to identify commonly
occurring concepts and patterns across combined collections
of source code documents and surrounding documentation.
However, IR techniques rely on a user-defined number
of dimensions that limits the amount of concepts derived
and thus the specificity of uncovered traceability links.
Additionally, IR techniques usually rely on a repetition
of text features in order for them to emerge as concepts,
whereas code fragments are often small (compared to
the size of whole files of source code), and often lack the
required repetition of features that is required in this approach.

Change log analysis based traceability linking requires that
an issue has been filed through the bug report system, and
that the issue has to have led to an actual change of the source
code. Additionally, when fixing bugs, developers commonly
discuss different implementations and often discuss many
parts of the source code with the final fix possibly taking
place in a completely different part of the source code. Links
established through change log analysis record the final
location of a much more involved and complex process and
ignore the history of the bug fixing process.

Lightweight textual analysis approaches, for example as
presented by Bacchelli et al. [5], focus on linking names
of source code entities mentioned in developer discussions,
such as identifiers and types, to the implementation files of
these entities. These links are conceptually different from
our approach, as we do not want to link entity names to

Free-Text
Documents

Documentation
Archive

Source Code
 Archive

Extracted Source
Code Fragments

Clone
Detection

Tool

Group A

Group B

...

Clone Groups

Step 1: Extracting Source
Code Fragments from
Free-Text Documents.

Step 2: Performing Clone Detection
between extracted code fragments
and source code files from a code repository.

Step 3: Analyze clone groups to link
code fragments and source code files,
as well as similar code fragments.

Analyzer

Database

infoZilla
Tool

Source Code Files

Fig. 3: Overview of a clone-detection based approach to locate code fragments in a project’s code base.

the implementation of these entities, but whole fragments of
source code examples to the locations in a projects source code
where these fragments occur. To illustrate the conceptual dif-
ference of the links created by this approach, consider the bug
report shown in Figure 2. In this example, lightweight textual
analysis would recognize the types Over, ZipException,
IOException, and interface types I, J, and IANDJ. For
each recognized type, a traceability link is established to those
source code files A to F that define and implement these types
(e.g., some/path/ZipException.java).

In fuzzy code search-based traceability linking, the com-
plete code fragment contained in the discussion would
be recognized as a smaller subset of code that is
contained in some source code files X and Y (e.g.,
some/path/TestCase1.java).

III. CODE SEARCH BASED TRACEABILITY LINKING

In order to locate source code fragments contained in project
discussions within the source code body of a software system,
we propose to use clone-detection as a readily available fuzzy
code search implementation. An general overview of our
proposed approach is illustrated in Figure 3.

Step 1: First, we use the infoZilla tool [9] to extract
source code from documents obtained from a documentation
archive (Step 1). The infoZilla tool uses a combination
of regular expressions and island parsing [21] to identify and
extract source code regions from free-form text documents
with high reliability. At first, the complete textual input is
treated as “water”. Using regular expressions it identifies
common program elements, such as assignments, method
calls or loops. These elements form “islands” in the water.
The tool then examines the text surrounding each island to
determine whether this text is code and grows the island
accordingly. For a more detailed discussion of the tool we
refer to our previous work [7]. Each extracted code region
is stored in a separate file, uniquely identifying the original

discussion document from which the code was extracted. We
refer to the complete collection of extracted code regions as
“Group A”.

Step 2: In order to discover where each source code fragment
of Group A appears in the source code of the project (we
refer to the collection of source code files of a project as
“Group B”), we use a token-based clone detection tool to
carry out a fuzzy textual search. We call this code search.
We stress that the fuzzy search aspect is critical: during
the manual inspections of source code and code fragments
carried out during design and refinement phase of our work,
we found that in practice, occurrences of code fragments in
the actual source code body of the project are often slightly
modified versions (e.g., by normal evolution of the source
code, or to adapt code examples to particular APIs) of the
original fragment contained within discussions.

Step 3: Clone detection tools usually report their findings in
terms of clone pairs and clone groups. A clone pair associates a
source code region in a file f1 with a corresponding duplicated
code region in another file f2. All clone pairs with identical
duplicated code regions are grouped together and form a
clone group. We analyze all clone groups for clone pairs that
associate files with extracted code fragments (Group A) to
source code files (Group B). A traceability link as established
by our proposed approach is hence a tuple containing a unique
clone group identifier, a file path that corresponds to a code
fragment, a file path that corresponds to a source code file, and
a description of the exact location of where the code fragment
occurs within the source code file. We store all traceability
links in a database for further analysis.

IV. CASE STUDY

In this section, we present a case study on the ECLIPSE
software system. We apply our proposed approach to discover
traceability links between discussions attached to issue reports

contained in the projects BugZilla bug tracking system, and
the complete source code of the software contained in the
project’s CVS software archive.

We first perform a quantitative evaluation that illustrates
the performance of our proposed approach with respect to
the amount and validity of traceability links established. We
then proceed with a qualitative analysis that first compares
traceability links established through fuzzy code search to
traceability links established through change log analysis, the
state of the art method to link issue reports to source code files
contained in a version control system. We finish our analysis
with a discussion of the use of information retrieval based
traceability linking and its shortcomings in the presented use
case.

A. Data Collection

Based on past interest in establishing links between devel-
oper discussions and code [6], as well as the significance
of links between issue reports and source code for defect
prediction [10], we chose to use the descriptions and dis-
cussions attached to issue reports of ECLIPSE as our main
source of project discussions. We followed the approach by
Zimmermann et al. [32], and extracted a total of 211,843
issues from the BugZilla issue tracking system of the
ECLIPSE project, that were filed from ECLIPSE version
2.0 until ECLIPSE version 3.2. Additionally, we obtained a
snapshot of the complete software archive of the ECLIPSE
3.2 release. This snapshot contains both, the project’s source
code, and a complete record on the history of all changes to
the source code that were carried out by developers.
In order to perform clone detection, we use one of the most
popular token-based clone detection tools, CCFinder [16].
This choice is mainly motivated by the high recall of token-
based clone-detection, paired with its good scalability. Fur-
thermore, token-based clone detection approaches have the
advantage over other approaches that they can work with un-
compilable code, such as commonly found in code fragments
of discussions.

We adapted the CCFinder tool, which was originally writ-
ten for the Windows platform, to a 64 bit version of Ubuntu
Linux Server 9.10. These modifications allowed us to
perform our experiments in main memory, greatly increasing
performance and allowing us to work on the complete copy
of the project’s source code. Using the CCFinder tool,
we executed an inter-group clone-detection between the code
extracted from issue reports (Group A in Figure 3) and the
project’s source code from the version control system (Group
B in Figure 3). Code clones are reported by CCFinder as a
set of clone groups.

Each clone group is associated with a unique identification
number and contains a sequence of clone pairs that describe
the exact locations of a code clone between two files f1 and f2.
As we ran the clone detection tool with the option to carry
out an inter-group analysis, each clone pair reports on the
occurrence of a cloned instance of code from a file belonging
to group A in a file from group B.

Unfortunately, CCFinder reports one pair for each possi-
ble permutation of pairs that can be obtained from the set of
clones in a clone group. In order to prune this representation,
we transform the results reported by CCFinder in the anal-
ysis step and identify unique triples of clone group identifier,
absolute filename, and the exact cloned code. These triples are
then stored in a database for further analysis.

Using the infoZilla tool, we extracted code fragments
from the discussions of all 211,843 ECLIPSE issue reports. A
total of 33,301 issue reports contained source code fragments,
and of these, a total of 17,748 reports contain code fragments
with a length of more than 30 source code tokens, which is
the minimum amount of tokens needed for clone detection
by CCFinder. From those 17,748 issue reports, we removed
another 10,042 instances that CCFinder failed to transform
into a token stream. The transformation requires a certain
amount of context, such as basic blocks, for inferring token
types, and code fragments in these instances did not include
enough context for CCFinder’s transformation. This leaves
us with a total of 5,511 issue reports that form the base of our
analysis.

B. Quantitative Analysis

Overall, our approach was able to establish a total of 47,783
traceability links, which connect 3,865 out of 5,511 (70.13%)
of the issue reports to a total of 13,581 out of 51,600 (26.32%)
ECLIPSE source code files. We found that on average, each
issue report (which might contain multiple different code
fragments) was linked to 5.67 source code files.

Our approach failed to correctly process 1,646 of the 5,511
(29,87%) issue reports. In order to better understand, why
these issue reports could not be linked to the project’s source
code, we performed a manual investigation. Overall, we
identified the following two main causes:

1) Unrelated code. Many discussions contain code
fragments that are not part of the project’s source code
body. For example, bug #99986 describes a problem
with ECLIPSE’s handling of inheritance in a specific
build. However, the code example used to demonstrate
the problem was not (yet) part of the ECLIPSE 3.2
source code.

2) Code evolution. Source code, especially code discussed
in issue reports, often undergoes significant changes
during the evolution of a system. For our experiment,
we used a single snapshot of the software system’s
source code (version 3.2) within which we search for
occurrences of the extracted code fragments. However,
code fragments extracted from discussions might have
undergone significant changes, especially in the case of
discussions that refer to much earlier versions of the
source code, up to a point that even fuzzy code search
failed to relate the extracted code fragments to any part
of the project’s source code. One possible solution to
this problem would be to take an evolutionary approach

and also consider past snapshots of the software system
source code, which are closer to the date of the dis-
cussion from which code fragments were extracted. We
leave the investigation of this solution to future work.

C. Qualitative Analysis

To perform a qualitative analysis of our fuzzy code search-
based approach, we first compare the traceability links estab-
lished by our approach to traceability links established by the
most prominently used approach in defect prediction: change
log analysis. For this purpose, we implemented a change log
parser, closely following the algorithm proposed by Sliwerski
et al. [28], as well as taking the enhanced heuristics described
by Bird et al. [10] into account. We applied this parser to
the complete change history of the ECLIPSE version control
repository and recorded all associations between issue reports
and source code files.

Overall, the change log-based linking approach was able to
link 16,722 issue reports to 23,079 source code files, with an
average of 4.57 linked files per bug report. Of these 16,722
reports, a subset of 2,980 issue reports contain code fragments
(L ∩ C highlighted in Figure 4a) and a subset of 507 reports
were also linked by our approach (O ∩ C highlighted in
Figure 4b). Taking the union of links established by both
approaches, would result in a 20.01% increase in linked issue
reports.

The very small intersection of the sets of issue reports linked
by both approaches is notable: fuzzy code search-based linking
creates many links between issue reports and source code that
are not found by a change-log based approach and vice versa.

To explore the differences between both linking approaches,
we randomly picked a sample of 10 reports each from the set
of issue reports linked by both approaches (O ∩ L), the set
of issue reports linked by our approach but not by change log
analysis (O−L), and the set of issue reports linked by change
log analysis but not our approach (L − O). For each case in
the random sample, we explore the established traceability
links in the background of the corresponding issue reports
and the discussion attached to them. We present our findings
below.

1) Traceability links found by both approaches
The discussion of bug #31670, contains a sample class to
illustrate a problem with the debugger. The source code used in
the illustrative example creates a test case in the project’s test
suite. In addition to the original bug described, we learn that
the corresponding transaction fixed another bug that was found
during the fixing process. Traceability links of our approach
point to the test case created for the original issue, whereas
the traceability links of the commit log additionally point to
the fix locations of both bugs.

In the discussion of bug #34593, a developer suggests a
possible fix for the reported problem. Traceability links by
both approaches point to the actual location of the fix that
was carried out later on.

Bug Reports (211,843)

Change Log Analysis
Based Approach

(16,722)

Bug Reports containing
Code (33,301)

507
Clone Detection
Based Approach

(2,980)

Bug Reports (211,843)

Change Log Analysis
Based Approach

(16,722)

Bug Reports containing
Code (33,301)

2,980

Clone Detection
Based Approach

(2,980)

a)

b)

C
O L

U

C
O L

U

Fig. 4: Venn diagrams of the set of issue reports linked through
our clone detection based and a change log analysis based
approach.

In the discussion of bug #51821, a developer proposes a
sample patch to address the described issue. Based on the
source code contained in the proposed fix, our approach links
to the same location in the project’s source code, that was later
modified to fix the issue – the proposed patch was actually
applied.

In the discussion of bug #61605, a developer proposes a new
try-finally paradigm to enhance the robustness of a plugin. The
proposed method is welcomed by peers and applied to plugins
throughout the project. Traceability links of both approaches
capture all modified files.

As reported in the discussion of bug report #87288, the re-
ported issue and corresponding bug fix had a “large impact on
downstream components”. We can observe this impact through
the traceability links established through our approach: 69 files
contain code that is similar to the discussed code fragment. Of
these, we observe 67 files that were changed in the bug fixing
transaction.

During the course of fixing bug report #92017, developers
added support for very large images in main memory. In
addition to a link to the fix location established through change
log analysis, our approach establishes an additional link to the
implementation of drag and drop support for images that uses
the same approach as proposed in the bug fix.
In each case of bugs discussed in reports #93208, #93577,
#105356 and #195763 the actual bug fix is applied in the

source code locations linked through the discussed code ex-
amples. In all cases both approaches established the same
traceability links.

In the case of bug #164939, a developers reports on a code
fragment that he believes responsible for the issue. Based on
the code fragment, our approach links to the location of the
actual fix and an additional source code files that contains
the same (erroneous) code, and which be believe should have
been change accordingly.

2) Traceability links found by code search, but not found by
change log analysis
In the discussion of bug #21273, a developer provides an
extract of the code he believes to be responsible for the filed
issue. Traceability links established by our approach through
this code fragment point to the actual location of a later fix.
Change log analysis cannot establish links, as the transaction
log does not contain references to any bug identifier.

In the discussion of report #45945, a developer reports a
code example to illustrate the experienced problem. The bug
report is later closed without a fix due to an operating platform
incompatibility and no files are modified. Our approach how-
ever, establishes a link to a source code file containing code
that is similar to the illustrative example, missing the correct
link.

For report #62224, heuristics of the change log analysis
based approach fail to identify the bug identifier. Our approach
is able to establish a link to one of the two fix locations through
the code fragment contained in the attached discussion.

In a similar way, change log analysis is not able to find the
bug identifier in the change log of bug #65729. Our approach
establishes links to all fix locations based on the code fragment
mentioned in the bug report’s discussion.

In the discussion of report #71047, a developer posts an
example code to demonstrate that he cannot reproduce the re-
ported problem. The bug report is closed as WORKSFORME
and no transactions take place. Traceability links established
by our approach point to source code in the project that is
similar to the developer’s code example.

Through the code fragments discussed in reports #93467
#103266 and #106736, our approach establishes links to
the exact fix locations. In all cases, change log analysis is
unable to find these links, as no change logs ever contain the
corresponding this bug identifiers.

Report #105447 is marked as a duplicate of report #137621
since a fix to #137621 reportedly fixes #105447 as a side
effect. Even though both approaches find the same traceability
links pointing to the fix location, they are associated with
different issue reports.

Report #174125 is never fixed due to an operating system
specific problem. As a result, no transactions take place that
could be linked through change log analysis. However, the
traceability links established by our approach point to source
code that is similar to the presented code example.
We found that code extracted from issue reports #171912
and #171909 was linked to the same source code files and

consequently grouped together in the results presented by the
clone detection tool. Upon inspection of both issue reports
we found that they are closely related and describe an issue
that originates from the same parts of the project’s source code.

3) Traceability links found by change log analysis, but not
found by our approach
In the cases of reports #31573, #73908, #92579, #191862
and #202382, the code fragments contained in the discussions
of these issue reports are used as illustrative examples. For
example, the code in #92579 is intended to be visualized in
the project outline view. In all cases, the code fragments are
unrelated to the corresponding fixes and are not contained
in the source code. Change log analysis is however able to
establish traceability links to the final fix locations.

In the cases of reports #80455 and #182006, the code
fragments contained in the discussions are below the minimum
token length threshold and thus ignored by our approach.
However, change log analysis is able to establish links to the
fix locations of both bugs.

The code fragment extracted from the discussion of re-
port #45468 consists exclusively of javadoc-style comments.
CCFinder however, ignores code comments during clone
detection and hence our approach cannot establish traceability
links.

During the discussion of report #153932, a developer pro-
poses code for a potential fix to the reported issue, but peer
developers decide to modify a completely different part of the
source code to address the problem. Our approach is unable
to link the code of the proposed fix to any source code file.

D. Using Information Retrieval for Traceability Linking

In addition to comparing code search based traceability link-
ing to change-log analysis, the state-of-the-art method for
linking issue reports to source code, we want to compare
our proposed approach to traceability links obtained through
information retrieval models. In particular, we use the Vector-
Space Model (VSM) latent Dirichlet allocation, following
similar approaches presented in the literature [2], [3], as both
approaches have been demonstrated valuable for establishing
traceability links between source code and surrounding docu-
mentation.

A key finding in our previous work, and also very recently
in related work, is that VSM is actually better than LDA
for finding traceability links between source code and other
related free-text documents [25]. VSM is more accurate (better
precision), but LDA has better recall.

To perform traceability linking using LDA and VSM, we
prepare our data following the standard approaches in the field:
every extracted code fragment (Group A) and every source
code file (Group B) is preprocessed by splitting identifiers,
removing common English stopwords and stemming. We then
use the combination of all documents in Group A and Group
B to train an index. In the case of VSM, we weight each
term by computing its term-frequency and inverse-document
frequency (tf-idf).

The two IR models return a set of potential links between
a given code fragment and source code documents, ordered
by their similarity score (i.e., cosine distance for VSM and
conditional probability [30] for LDA) in the model. In our
case, each code fragment is potentially linked to hundreds or
thousands of source code files, depending on if the two share
common words or topics.

To determine the quality of the established links, we select
a random sample for manual inspection. Sampling theory tells
us that we need to inspect 64 samples to have a 10% margin
of error and a 95% confidence interval. During our manual
inspection, we inspected the top three links (by similarity
score) for each code fragment. We found that, surprisingly,
for each our 64 sampled code fragments, none of the top three
links were accurate: the given code fragment was not found
in the linked source code file. To illustrate why, consider the
following code fragment extracted from ECLIPSE issue report
#155726:

EObject eObject = (EObject)resource
.getContents().get(0);

The index models of both LDA and VSM would represent
this code fragment by its four preprocessed terms eobject,
object, resourc, and content. These terms are so
general that the IR models will return thousands of possible
matches, since thousands of source code files contain at least
one of these terms.

This poor performance is a consequence of several as-
sumptions that IR models make. First, IR models are based
on the “bag of words” model, meaning that the order of
terms in each document is ignored. When searching for exact
code fragments, this is an obvious disadvantage. Second,
the preprocessing steps (especially splitting and stemming)
used by IR models result in very general terms that are
contained in many documents, as we saw in the example
above. Third, the common similarity measures (e.g., cosine
distance and conditional probability) are too general for our
specific application, as they reward any shared words or topics,
which is not restrictive enough to eliminate false positive
matches.

As a result, we conclude that IR based traceability linking
is not suitable to reliably link code fragments contained in
issue report discussions to occurrences of these fragments in
the project’s source code.

V. WHICH PARTS OF THE SOFTWARE SYSTEM ARE
DISCUSSED THE MOST?

Previous research has noted the importance of traceability
links for developers for software maintenance and source
code comprehension [1], as they aid practitioners in creating
mental models of the source code and providing hints to the
location of specific code. We pick up this idea to demonstrate a
sample application of the traceability links established by our
proposed approach, as a natural extension to the association
of code contained in project discussions to their occurrences
in the project’s source code.

Traceability links established through our approach are
bi-directional: given a code fragment we can determine its
location in the source code, but at the same same, given a
location in the source code, we know in which discussion this
source code was talked about. Through this association we can
count the number of discussions that refer to a source code
location.

Figure 5 presents a visualization of the most discussed com-
ponents of the ECLIPSE software system. This visualization
is inspired by Wattenbergs “Visualizing the Stock Market” [29]
and summarizes data from the beginning of the project until
version 3.2. To increase visibility, we grouped source code
locations at directory level. Every box represents a source
code directory of the ECLIPSE software system. Boxes are
coloured according to how much source code in each directory
has been discussed in issue reports. Completely black boxes
denote directories that contain source code that is discussed
in less than 10 issue reports, and the whiter a box, the more
issue reports discuss the source code in this directory.

We can use this visualization to locate “discussion
hotspots”: they appear as bright coloured boxes (the brighter,
the more discussed). Among the most discussed components of
the software system are the graphical user interface, compiler,
data binding and internal components such as the debugger.
Surprisingly, our visualization of “discussion hotspots” sug-
gests that a substantial amount of discussion takes place
on source code contained in the examples directory of
the SWT framework. In order to empirically validate this
“hotspot”, we inspected a random sample of traceability links
that point to files in this subsystem. Notably, we observed that
developers in ECLIPSE appear to extensively borrow from
code fragments contained in issue reports for use in regression
testing. These examples are saved in the form of code snippets,
minimal stand-alone programs that demonstrate functionality
such as API usage on the one hand, and act as a basis for
different test cases on the other hand. Through the projects
website1, developers actively encourage users to contribute
snippets through the BugZilla issue tracking system. Based
on these observations, we conjecture that developers thus
acknowledge the importance of code fragments contained in
project discussions, and actively migrate code fragments into
code snippets to be used for regression testing purposes.

VI. CONCLUSIONS

Similar to previous approaches, fuzzy code search-based trace-
ability linking has a specific intended use case, and limitations
within other use cases. The main focus of our approach lies on
linking issue reports to source code, with the aim of locating
code that is talked about in project discussions within the body
of source code of the software system. As the source code
body of large software systems can easily contain thousands
of files, establishing such traceability links is no trivial task.

Our proposed solution leverages an existing token-based
clone detection tool, CCFinder, which was designed to

1http://www.eclipse.org/swt/snippets/, last accessed April 2011

Fig. 5: Visualization of the most-referenced source code in Eclipse issue reports. Brightness indicates the amount of references
and ranges from dark (rarely referenced) to bright (referenced often).

efficiently locate all the occurrences of similar code fragments
in a software system, as a readily available implementation of
fuzzy code search.

Through a case study on the ECLIPSE software project, we
discovered that fuzzy code search-based traceability linking
shares only a small percentage of traceability links with the
state-of-the-art approach to link issue reports to source code
files: commit-log analysis. We find that a combination of the
sets created by both approach results in a 20.01% increased in
total traceability links between issue reports and source code.
We thus see a potential application of fuzzy code search-based
traceability linking for recovering missing links, in the same
vein of work presented by Wu et al. [31].

We demonstrated an example application of our approach:
identifying and visualizing the parts of the software system
that are discussed the most in issue reports. During the analysis
of this visualization, we discovered that developers extensively
borrow code fragments from project discussions for use in

regression testing. Additionally, we identified a variety of
interesting side effects of our traceability linking approach.
For instance, we observed many clone groups that contain code
fragments from multiple different discussions, i.e., traceability
links established by our approach do not only link projects
discussions to the source code, but also discussions of different
issue reports among each other. As we have seen in section
IV-C, our approach discovers links from multiple issue reports
to the same source code files. Within this context, we see a
potential application of our traceability linking approach for
the identification of related, or duplicate issue reports – a
research avenue that we plan to explore in future work.

The objective of our proposed fuzzy code search-based
approach is to find high quality traceability links between
issue reports and source code. Overall, we have found that
among the three possibilities for establishing such links, only
information retrieval models fail this objective, due to their
assumptions and generality. As a result of our analyses, we

conclude that practitioners should use both change log analysis
and fuzzy code search, but not information retrieval models.
However, both the quantitative and qualitative analysis of our
approach suggest that there is much room for improvement:
about one third of issue reports needed to be discarded as
a result of the limitations of the used clone detection tool.
Hence, one major direction of our future work is to study
the applicability of other fuzzy code search approach, for
example approximate string matching techniques [23], to find
occurrences of extracted code fragments in the project’s code
base.

REFERENCES

[1] G. Antoniol, G. Canfora, A. de Lucia, G. Casazza, and E. Merlo,
“Tracing object-oriented code into functional requirements,” in IWPC
’00: Proceedings of the 8th International Workshop on Program Com-
prehension. Washington, DC, USA: IEEE Computer Society, 2000,
p. 79.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Softw. Eng., vol. 28, no. 10, pp. 970–983, 2002.

[3] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software trace-
ability with topic modeling,” in ICSE’10: Proceedings of the 32nd
International Conference on Software Engineering. IEEE Computer
Society, 2010, p. to appear.

[4] A. Bacchelli, M. d’Ambros, and M. Lanza, “Are popular classes more
defect prone?” in Proceedings of FASE 2010: 13th Conference on
Fundamental Approaches to Software Engineering. Springer LNCS,
2010, pp. 59–73.

[5] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in WCRE
’09: Proceedings of the 2009 16th Working Conference on Reverse
Engineering. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 205–214.

[6] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in ICSE’10: Proceedings of the 32nd International
Conference on Software Engineering. IEEE Computer Society, 2010,
p. to appear.

[7] N. Bettenburg, “Duplicate bug reports considered harmful?” Master’s
thesis, Saarland University, Facutly of Natural Sciences and Technology,
Saarbruecken, Germany, July 2008.

[8] N. Bettenburg and A. E. Hassan, “Studying the impact of social
structures on software quality,” in ICPC’10: Proceedings of the 18th
IEEE International Conference on Program Comprehension. IEEE
Computer Society, 2010, p. to appear.

[9] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting
structural information from bug reports,” in MSR ’08: Proceedings of the
2008 international working conference on Mining software repositories.
New York, NY, USA: ACM, 2008, pp. 27–30.

[10] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in ESEC/FSE
’09: Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. New York, NY, USA: ACM,
2009, pp. 121–130.

[11] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A
project memory for software development,” IEEE Trans. Softw. Eng.,
vol. 31, no. 6, pp. 446–465, 2005.

[12] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug
report data for feature tracking,” in WCRE ’03: Proceedings of the 10th
Working Conference on Reverse Engineering. Washington, DC, USA:
IEEE Computer Society, 2003, p. 90.

[13] ——, “Populating a release history database from version control and
bug tracking systems,” in ICSM ’03: Proceedings of the International
Conference on Software Maintenance. Washington, DC, USA: IEEE
Computer Society, 2003, p. 23.

[14] W. B. Frakes and B. A. Nejmeh, “Software reuse through information
retrieval,” SIGIR Forum, vol. 21, no. 1-2, pp. 30–36, 1987.

[15] H.-Y. Jiang, T. N. Nguyen, I.-X. Chen, H. Jaygarl, and C. K. Chang,
“Incremental latent semantic indexing for automatic traceability link
evolution management,” in ASE ’08: Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing. Washington, DC, USA: IEEE Computer Society, 2008, pp. 59–68.

[16] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, 2002.

[17] S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories of bug fixes,”
in SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering. New
York, NY, USA: ACM, 2006, pp. 35–45.

[18] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4,
p. 13, 2007.

[19] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An information retrieval
approach for automatically constructing software libraries,” IEEE Trans.
Softw. Eng., vol. 17, no. 8, pp. 800–813, 1991.

[20] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in ICSE ’03: Pro-
ceedings of the 25th International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 125–135.

[21] L. Moonen, “Generating robust parsers using island grammars,” in
WCRE ’01: Proceedings of the Eighth Working Conference on Reverse
Engineering (WCRE’01). Washington, DC, USA: IEEE Computer
Society, 2001, p. 13.

[22] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect predic-
tion,” in ICSE ’08: Proceedings of the 30th international conference on
Software engineering. New York, NY, USA: ACM, 2008, pp. 181–190.

[23] G. Navarro and R. Baeza-yates, “Very fast and simple approximate string
matching,” in Information Processing Letters, 1999, pp. 65–70.

[24] R. Oliveto, G. Antoniol, A. Marcus, and J. H. Hayes, “Software artefact
traceability: the never-ending challenge,” in ICSM 2007: Proceeedings
of the 23rd IEEE International Conference on Software Maintenance.
IEEE, 2007, pp. 485–488.

[25] S. Rao and A. Kak, “Retrieval from software libraries for bug local-
ization: a comparative study of generic and composite text models,”
in Proceeding of the 8th working conference on Mining software
repositories, ser. MSR ’11. ACM, 2011, pp. 43–52.

[26] E. S. Raymond, The Cathedral and the Bazaar, T. O’Reilly, Ed.
Sebastopol, CA, USA: O’Reilly & Associates, Inc., 1999.

[27] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting component fail-
ures at design time,” in ISESE ’06: Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering. New York,
NY, USA: ACM, 2006, pp. 18–27.

[28] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, 2005.

[29] M. Wattenberg, “Visualizing the stock market,” in CHI ’99: CHI ’99
extended abstracts on Human factors in computing systems. New York,
NY, USA: ACM, 1999, pp. 188–189.

[30] X. Wei and W. B. Croft, “LDA-based document models for ad-hoc re-
trieval,” in Proceedings of the 29th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2006, pp. 178–
185.

[31] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering
links between bugs and changes,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, ser. ESEC/FSE ’11. ACM, 2011, pp. 15–25.

[32] T. Zimmermann, N. Nagappan, and A. Zeller, Predicting Bugs from
History. Springer, February 2008, ch. Predicting Bugs from History,
pp. 69–88.

