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Abstract

The dynamics of a PHANTOM R© Premium 1.5A haptic device from SensAble Technologies,

Inc. is experimentally identified and analyzed for different installations of the device and

its accessories, such as the typical upright, upside-down, with gimbal and counter-balance

weight, and with force sensor 1. An earlier formulation of the robot dynamic model is aug-

mented with a friction model, linearly parameterized, and experimentally identified using

least squares. The identified dynamics are experimentally evaluated with an inverse dy-

namics controller and verified by comparing user hand force estimates with the measured

values. The contribution of different dynamic terms such as inertial, Coriolis and centrifugal,

gravitational, and Coulomb and viscous frictions are demonstrated and discussed. The iden-

tified model can be used for a variety of haptic applications, such as hand force estimation,

accurate active gravity compensation and counter-balance weight determination for various

installation conditions, and model-based control for haptic simulations and teleoperation.

1 Introduction

PHANTOM Premium 1.5A is a desktop haptic device by SensAble Technologies, Inc. that

provides force feedback in three degrees-of-freedom (DOF) (Massie & Salisbury, 1994). Al-

though PHANTOM has been widely used in haptic and telerobotic applications (Cavusoglu,

Sherman, & Tendick, 2002; Mobasser & Hashtrudi-Zaad, 2008; Tavakoli, Patel, & Moallem,

2004), its functionality is not satisfactory for some high performance applications, partly

because its electrical and software subsystems are unknown. Accurate dynamic models of

the device are desired for control, simulation, and contact force observation.

There are two main approaches for identifying the device dynamics; (1)piece-wise, and

(2)experimental identification methods. In the piece-wise method, the mechanical properties

of various components of a manipulator such as the mass and inertia of linkages, and stiffness

of transmission systems are individually measured (Cavusoglu & Feygin, 2001; Cavusoglu,

1PHANTOM R© is a registered trademark of SensAble Technologies, Inc.
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Feygin, & Tendick, 2002). A major challenge for applying this approach is the need for

disassembling the robot, which may not be easy or applicable in many cases. Alternatively,

Computer Aided Design (CAD) models have been used to provide an estimate of the mechan-

ical properties based on the geometry and material composition. A challenge in applying

such a technique is the introduction of inaccuracies stemming from geometric simplifica-

tions, ignoring loose or small components, assuming uniform densities, and inaccuracy in

robot hardware assembly. While piece-wise methods can identify mechanical properties of

each component, they do not consider complex dynamic effects such as joint friction.

In experimental approaches, an implicit or explicit model of the dynamics of a manip-

ulator in its entirety is derived based on a series of measurements. An example of implicit

experimental system identification is training a neural network to encapsulate the dynamics

of the robot and to avoid explicit estimation of individual parameters (Xing & Pham, 1995;

Smith, Mobasser, & Hashtrudi-Zaad, 2006). In explicit methods, which have been used for

industrial robots, the manipulator dynamics is formulated in terms of several dynamic para-

meters to be identified, based on a series of measurements throughout the robot workspace

(Atkeson, An, & Hollerbach, 1986; Bona & Curatella, 2005; Khosla & Kanade, 1985; Tafa-

zoli, Lawrence, & Salcudean, 1999; Yoshida, Ikeda, & Mayeda, 1991). It has been shown

that the dynamics of manipulators can be linearly parameterized and identified using least

squares estimation (Sciavicco & Siciliano, 2001; Astrom & Wittenmark, 1994). In (Mayeda,

Osuka, & Kangawa, 1984), a sequential identification method is presented. Similarly, in

(Nakamura & Ghodoussi, 1989; Mayeda, Yoshida, & Osuka, 1988), a subset of all robot

parameters, are identified such that they include no redundant parameter and thus, prevent

the combinatorial explosion of the total number of parameters to be identified as the number

of DOF grows. The accuracy of experimental methods depends on the comprehensiveness

of the dynamic model, the accuracy of the recorded measurements, and the richness of the

robot trajectory.

It has been noted in (Ma & Hollerbach, 1996) that accurate identification of gravitational
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parameters for some manipulators is sufficient for many tasks. A rotation command is

applied to each joint separately, a sinusoidal curve is fit to the resulting data, and the link

mass parameters are estimated statically and separately. The algorithm avoids the need for

numerical derivative calculations as required in (Atkeson et al., 1986; Bona & Curatella, 2005;

Khosla & Kanade, 1985; Tafazoli et al., 1999; Yoshida et al., 1991). While the approach is

accurate and robust, it is not suitable for PHANTOM haptic device, since, the gravity effect

is dominated by other dynamic components such as inertia, as it will be shown in Section 4.1.

An alternative approach for isolating link dynamics is presented in (Tam, Kubica, & Wang,

2005) in order to simplify the identification process for haptic devices. In the developed

technique, joint isolation is achieved by iteratively locking all the joints except one during

the identification process; thus, identifying parameters of each joint separately. Determining

of the sequence of joints to lock is established by observing the parameters that affect the

configuration of each locked joint.

Unlike piece-wise methods, the explicit experimental methods can only identify a subset

of parameters that are a combination of the individual properties of various components .

However, even though the mass and inertial parameters of each component are not individu-

ally identified, the estimated set of parameters are sufficient for many applications, including

torque and force estimation and model-based control. The important advantages of experi-

mental over piece-wise methods are in their ability to include friction dynamic effects, and

to account for any change in manipulator dynamics due to various configurations or added

accessories.

In this work, the dynamic parameter identification of a PHANTOM Premium 1.5A is

experimentally investigated for various configurations. The proposed method in this article

uses the dynamic structure derived in (Cavusoglu & Feygin, 2001; Cavusoglu, Feygin, &

Tendick, 2002). The method avoids some of the assumptions made in (Cavusoglu & Feygin,

2001; Cavusoglu, Feygin, & Tendick, 2002) such as uniformity of link densities and it can be

applied to some other models of PHANTOM series devices such as PHANTOM Premium 1.0
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and 3.0. The method can easily be applied every time the dynamics of the device is modified.

This happens frequently as researchers often use PHANTOM in different configurations (e.g.

upside-down) or with different sensors and tools, which changes mass, inertia, and the lengths

of different segments of the robot. In such cases, piece-wise methods are time consuming

and are often not sufficiently accurate, particularly if the added tools do not have simple

geometric shapes.

For evaluating the identified model, an inverse dynamics position controller using the

identified model is experimentally shown to be more stable and more responsive than the

controller that uses the CAD-based identified dynamic parameters. In addition, hand force

estimation including device dynamics proves to be more accurate than the one obtained

using only the device geometrical Jacobian, derived in (Cavusoglu & Feygin, 2001). A more

in depth analysis of the robot dynamics is also provided for each joint and configuration

by looking at the contribution of various torque components in the dynamic model, such

as inertial, Coriolis and centrifugal, gravitational, and Coulomb and viscous frictions. The

above dynamic dissection can also be utilized for accurate determination of the counter-

balancing weights by observing the isolated gravitational term for each joint.

This article is organized as follows: The dynamics equations of the PHANTOM robot,

including friction effects, are presented and linearly parameterized in Section 2. The para-

meters of the dynamic model for various configurations of PHANTOM are experimentally

identified and verified in Section 3. The identified dynamic model is used in Section 4 to

obtain insight into the system dynamic components, to estimate the counter-balance weights

required to compensate for the gravitational effect of the device attachments, to implement

an inverse dynamics controller and to provide an estimate of the user hand force. Finally,

Section 5 draws conclusions.
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2 Dynamic Model

The PHANTOM Premium 1.5A has three degrees of mobility (3 joints) and provides three

translational DOF at its end-point. Figure 1 shows the schematics of the device with three

motors and the corresponding joint angles, θ1, θ2, and θ3, and a Cartesian frame attached

to the end-point of the manipulator.

Figure 1 Here

The dynamics of a robotic manipulator can be formulated as shown in (1):

τ = M(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + N(Θ) (1)

where M, C, and N represent the inertial matrix, Coriolis and centrifugal matrix, and

gravitational vector, respectively, defined in terms of the inertial and kinematic properties

of the robot individual components (Sciavicco & Siciliano, 2001). Here, τ = [τ1 τ2 τ3]
T and

Θ = [θ1 θ2 θ3]
T are torques vector delivered by the motors and the vector of joint angles

derived from the encoders, respectively (Cavusoglu & Feygin, 2001; Cavusoglu, Feygin, &

Tendick, 2002).

Using the Euler-Lagrange method, Cavusoglu et al. derived the dynamics structure and

equations of motion for PHANTOM 1.5A as given in (2):
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(2)

The reader should note that since the electric dynamics of the motors and the voltage

amplifier box are assumed to be much faster than the mechanical dynamics of the motors

and the linkages, the torque command voltages sent out to the amplifier box are proportional

to the motor induced torques. Therefore, the actual motor induced torques reported in this
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article, i.e. τ , are found by scaling down the torque command voltages by about a factor of

α = 2.7. From now on, “torque” refers to the actual motor induced torque.

To identify the device dynamics, (2) is linearly parameterized as:

τ = Y(Θ, Θ̇, Θ̈)π (3)

where Y is the regressor matrix and π is the vector of 8 unknown parameters, defined as in

(4) and (5):
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(5)

where πd and πg represent dynamic and gravitational parameter vectors, respectively. The

inertial and kinematic parameters L1, L2, L3, L5, L6, Iaxx, Iayy, Iazz, Icxx, Icyy, Iczz, Ibaseyy,

Ibexx, Ibeyy, Ibezz, Idfxx, Idfyy, Idfzz, ma, mc, mbe, and mdf are the same as the ones defined in

(Cavusoglu, Feygin, & Tendick, 2002) and g is the gravity acceleration. The Y matrix, given

in (4), contains all the terms in (1) that are functions of the robot configuration vector Θ.

Here, si, ci, sij, cij, s2.i, and c2.i, i, j = 1, 2, 3, represent the shorthand notation for sin(θi),

cos(θi), sin(θi − θj), cos(θi − θj), sin(2θi), and cos(2θi), respectively.

The following Coulomb and viscous friction models
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are also employed to include the effect of friction, where sgn(.) denotes the signum function,

πfci
and πfvi

represent the Coulomb and viscous friction coefficients for joint “i”, respectively,

and Yf and πf are defined as:
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and

Y[3×14] = [Yd[3×6]
Yg[3×2]

Yf[3×6]
] (11)

The linear system of equations in (3) can be solved using the least squares estimation

method if several independent data points are available. To collect this data, the robot is

moved along a trajectory and its joint angles and motor torques are recorded for a period

of time to create τN and YN, which are an ensemble of the torque vectors and regression

matrices τ and Y stacked over for N samples. The least squares solution for π is
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where π̂ is the estimate of the π vector, which minimizes the torque error in the sense of

mean square, and
(

YT

N
YN

)−1

YT

N
is called the left pseudo-inverse of YN. The number of

measurements should be large enough to avoid ill-conditioning of matrix YN and to assure

the existence of the left pseudo-inverse matrix.

As stated earlier, experimental parameter identification cannot identify the property

of each dynamic component of the manipulator. Specifically, (5) illustrates that the first

8 elements of the π vector are each a combination of several mass, inertial, and length

properties for various links of the robot. It should be noted that while the properties of

robot joints and components are not individually identified, the set of identified parameters

is sufficient for model-based control and hand force estimation.

3 Experiments

In this section, the PHANTOM’s dynamic parameters are experimentally estimated and the

identified dynamics are discussed and analyzed. The experimental setup, various configura-

tions of the robot, and a filtering technique for avoiding double differentiation for estimating

joint acceleration are explained in Section 3.1. The identification of the dynamic parame-

ters for various configurations of the robot, with and without friction considerations, are

conducted. An initial verification of the derived dynamics based on torque estimation and

torque error analysis are presented in Section 3.2.

3.1 Experimental Setup

The experimental setup consists of a PHANTOM Premium 1.5A, an ATI Industrial Au-

tomation Nano-17TM force/torque sensor and a real-time open-architecture control system

developed in-house for full functionality of the robot. The developed open-architecture plat-

form that utilizes PHANTOM amplifier box uses a Quanser Q8TM data acquisition board

and WinConTM /RTXTM real-time control system, which links with MATLAB Real-Time
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WorkshopTM Toolbox 2. The sensory information provided by the setup are the three motor

angles read by encoders, and the six end-point generalized forces provided by the force sensor

in three Cartesian directions. The data collection and control processes run at the rate of

1kHz.

Joint velocities are calculated from joint angles by using a high-pass filter numerical dif-

ferentiator. Since these calculations are performed off-line, the filter need not be causal,

allowing more accurate estimation of joint velocities (Sciavicco & Siciliano, 2001). Numer-

ical calculation of joint accelerations significantly amplifies noise and is not recommended.

Instead, a filtering technique proposed in (Hsu, Bodson, Sastry, & Paden, 1987) is used to

eliminate the need for acceleration measurement. To this end, the system total dynamic

model (3), (10), and (11) is passed through a strictly stable low-pass filter with a transfer

function L(s) = ω
ω+s

, ω > 0 to obtain

τL = YL(Θ, Θ̇)π (14)

where YL(Θ, Θ̇) and τL are filtered Y and τ , respectively. Therefore, YL and τL can be

used to find π̂. Figure 2 illustrates the block diagram of the filtering operation.

Figure 2 Here

The regression matrix YL is only a function of the joint angle and velocity vectors Θ

and Θ̇. This is because the filtered acceleration can be written as a function of joint velocity

2Open-architecture solutions for both the older PCI-based models of PHANTOM 1.5A

and the newer parallel-port-based models are commercially available (QPEK, 2005). In

addition to the above open-architecture solution, the OpenHaptics Toolkit from SensAble

Technologies (Itkowitz, Handley, & Zhu, 2005), which can be used for both PCI-based and

parallel-port-based models of PHANTOM devices, provides low-level direct access to time-

stamped joint angular position and motor torques. The joints’ angular velocities can be

found from differentiation. The toolkit also allows for closing simple trajectory following PD

controllers for conducting experiments and collecting identification datasets.
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and filtered velocity; that is, θ̈iL = ω(θ̇i − θ̇iL), i = 1, 2, 3. The elements of YL are given in

(13), where the subscript “L” signifies that the argument has passed through the low-pass

filter L(s). In general, by designing the filter such that its cut-off frequency lies between the

system bandwidth and the noise frequency, it is possible to attenuate the degrading effects of

measurement noise on the identification performance if the spectrum of the excitation input

spans over the entire system bandwidth.

For our identification experiments, an angular position tracking PD controller was im-

plemented. The desired joint trajectories were chosen for high-levels of system excitation

required for the convergence of the identified parameters to the true values (Otani, Kakizaki,
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& Kogure, 1992; Astrom & Wittenmark, 1994). Towards this end, the desired joint trajec-

tories were constructed from several sinusoids with various frequencies and amplitudes for

each joint such that the robot traversed throughout its workspace without any attempt to

violate its boundaries. Since for a linear system with “n” unknown parameters, the input

can be a linear combination of at least n/2 sinusoids with different phases and frequencies,

a sum of 10 sinusoidal signals with frequencies ranging from 0.11 to 5 rad/s was chosen as

the position command for each link.

As deriving the exact workspace boundaries and joint dependencies was beyond the scope

of our work, simple joint angle constraints were imposed on the range of the desired joint

angles to make sure that the robot did not violate its workspace and its physical limitations.

The amplitudes and phase shifts of the sinusoidal components were chosen to comply with

the constraints. The cut-off frequency of the low-pass filter was set to ω = 10 rad/s which

is higher than the input signal bandwidth and much lower than the noise frequency range.

Since the sampling frequency was 1 kHz, the chosen sine frequencies were well below the

Nyquist rate 500Hz, such that the elements of the regression matrix YL contained most of

their energy below the Nyquist rate.

The robot dynamics are nonlinear and applying a simple PD position controller guaran-

tees neither accurate tracking nor asymptotic stability for free motion. In the experiments,

the gains of the PD controller were empirically set to values that would preserve system

stability throughout the commanded trajectory. Accurate position tracking was not an issue

as long as the robot path did not reach the boundaries of the workspace.

The reader should note that the proposed identification method is an off-line process,

which runs with a dataset that has already been collected experimentally. Therefore, either

the above-mentioned open-architecture solution or OpenHaptics Toolkit (Itkowitz et al.,

2005) can be used to implement a simple position PD controller to enable commanding the

robot joints through persistently exciting trajectories and to record the angular position,

angular velocity, and joint torques of the manipulator required for the off-line parameter

13



identification 3.

Figure 3 Here

The dynamic parameters of the PHANTOM device were identified for five common con-

figurations of the robot as described below:

Up-right (UR): The most common configuration of the robot, as illustrated in Figure

3(a).

Gimbal and counter-balance weight (GCW): The gimbal and the counter-balance

weight supplied by the manufacturer are mounted on the PHANTOM for three added passive

rotational DOFs, as shown in Figure 3(b).

Force sensor (FS): Measured hand force can be used for the design of transparent

haptic or telerobotic bilateral controllers (see Figure 3(c)).

Upside-down (USD): This configuration of PHANTOM has especially been used in

medical simulators for larger user workspace and enhanced ergonomics.

Upside-down plus gimbal and counter-balance weight (USD+GCW): Figure

3(d) shows the upside-down configuration of the robot with gimbal and counter-balance

weight mounted for added passive DOFs and higher force dynamic range. This configuration

has been reported in an ultrasound-based training simulator (Tahmasebi, Abolmaesumi,

Thompson, & Hashtrudi-Zaad, 2005).

Data acquisition was performed for a duration of over 40 seconds in all experiments.

Since the low-pass filter was implemented using a memory unit in the discrete time domain,

the first few seconds of the filtered data were discarded to allow for the output of the filter to

converge. The first half of the remaining collected data was utilized to identify the dynamic

parameters. For cross validation, the estimated parameters were then employed to predict

joint torques with the second half of the collected data. Since filtered values of torque and

joint velocities were used in the estimation process, the filtered torques were compared with

3The proposed identification algorithm, programmed in MATLAB, is available through

the corresponding author’s website.
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their corresponding predicted values.

3.2 Dynamic Parameter Identification and Torque Estimation

In the first experiment that was conducted in the UR configuration, friction parameters were

not included and only 8 dynamic parameters, πd and πg in (5) were identified. Figure 4

compares the filtered measured torque (τL) with the two estimated filtered torques (τ̂L =

YLπ̂), one using the identified parameters and the other one using the calculated parameters

in (Cavusoglu & Feygin, 2001; Cavusoglu, Feygin, & Tendick, 2002). The large errors

between the actual and the estimated filtered torques for joints 1 and 2 were expected

and they represent the unaccounted friction effect in the joints and the power transmission

system.

Figure 4 Here

Figure 5 Here

Figure 6 Here

Figure 7 Here

To better visualize the effect of friction, the filtered torque prediction errors, τL− τ̂L, are

plotted versus joint velocities in Figure 5. As it can be observed from Figure 5, substantial

friction exists in all joints, particularly in joint 1. Therefore, six additional friction parame-

ters were included in the dynamic model. In total, 14 π parameters in (11) were identified.

Figure 6 illustrates the estimated torques for the UR configuration with the identified para-

meters after including friction in the model. It can be observed that the estimation errors

are substantially less than those without friction consideration and the predicted torques

follow the actual values closely. The filtered torque prediction errors are plotted versus joint

velocities in Figure 7. The residual error can correspond to other effects such as those unac-

counted in the friction model, flexibilities in joints and linkages, measurement and round-off

errors, as well as ignored dynamics in sensors and the amplifier. The predicted torques

closely follow the actual values in other configurations of the device as well. Figure 8 for
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instance, compares the actual filtered torque and the estimated torque in the USD+GCW

configuration.

Figure 8 Here

The 14 element parameter vector π, including the friction coefficients, for all five config-

urations and the 8 parameters calculated from the piece-wise method in (Cavusoglu, Feygin,

& Tendick, 2002) are listed in Table 1. The standard deviations of the estimates are small,

in the range of 10−3 to 10−5. For the entire workspace of the robot and for all configurations,

the estimate of the inertia matrix was confirmed to be positive definite with the minimum

eigenvalue of 1.8 × 10−3. The percent relative root mean square (RMS%) of the filtered

torque estimation error (Tafazoli et al., 1999), that is

RMS% =

√

√

√

√

∑N
i=1(τ̂Li − τLi)2

∑N
i=1 τL

2
i

× 100 (15)

has been calculated for all configurations and listed in Table 2, where N is the total number

of samples. The following observations can be made from studying Tables 1 and 2, and

Figures 8 and 9:

1. The corresponding π̂d parameters from (Cavusoglu, Feygin, & Tendick, 2002) and the

UR column have the same signs and are relatively close. This validates the assumptions

made in the piece-wise method in (Cavusoglu, Feygin, & Tendick, 2002). The largest

difference is observed in π̂d1, perhaps because πd1 includes nearly all the system’s

mass and inertia parameters. Therefore, the errors in the piece-wise estimation of

these dynamic parameters accumulate, resulting in such a difference.

2. Comparing πd1 to πd6 in UR and GCW columns shows that adding gimbal and counter-

balance weight adds substantially to the device’s inertia.

3. Comparing πd1 to πg8 for UR and USD configurations shows that changing the PHAN-

TOM configuration to USD does not change the dynamic parameters except for the

sign of the gravitational parameters πg7 and πg8. This confirms the fact that in UR
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π̂ piece-wise UR GCW FS USD USD+

×1000 GCW

π̂d1 2.78 1.42 3.40 1.02 1.20 3.04

π̂d2 1.09 1.35 4.43 2.16 1.61 3.29

π̂d3 -0.40 -0.40 -1.17 -0.76 -0.51 -0.73

π̂d4 0.91 0.69 9.23 3.00 0.65 9.19

π̂d5 2.41 2.08 7.54 3.47 2.85 6.37

π̂d6 0.91 0.95 3.55 1.13 1.28 3.15

π̂g7 -16.30 -19.23 26.92 46.84 21.24 -16.59

π̂g8 -73.80 -109.96 46.52 -69.08 108.75 -112.45

π̂f9 - -2.08 -2.71 -0.91 -1.35 -0.10

π̂f10 - -1.28 0.10 -0.32 -0.14 0.54

π̂f11 - -0.18 1.13 0.43 0.91 0.73

π̂f12 - 25.89 26.22 27.06 26.08 24.35

π̂f13 - 9.19 8.35 9.34 8.24 7.28

π̂f14 - 9.08 9.04 10.00 8.09 8.71

Table 1: Estimated π parameters of different configurations: GCW: Gimbal and Counter-

balance Weight, FS: Force Sensor, USD: Upside-Down, USD+GCW: Upside-Down + Gimbal

and Counter-balance Weight.

and USD configurations the arm moves in opposite directions when the motors are not

activated.

4. By adding gimbal and counter-balance weight to the USD configuration, πg7 and πg8

change their signs, and thus, the added weight overcompensates for gravity.

5. The gravitational parameters πg7 and πg8, change from −19.23 and −109, 96 to 46.84

and −69.08 for the FS configuration. The change of sign in πg7 and the reduction in

πg8 imply that force sensor at the tip acts as a counter-balance weight for the UR con-

figuration. For bulkier force sensors, the gravitational effect needs to be compensated

by a counter-balance weight on the motors.
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RMS% UR GCW FS USD USD+GCW

τ1 12.4 19.0 17.0 13.7 19.2

τ2 10.7 28.2 10.4 9.0 11.3

τ3 3.2 14.6 13.0 4.5 17.0

Table 2: RMS% values of the actual and estimated torque errors for different configura-

tions; GCW: Gimbal and Counter-balance Weight, FS: Force Sensor, USD: Upside-Down,

USD+GCW: Upside-Down + Gimbal and Counter-balance Weight.

6. Comparing πf9 to πf14 for all configurations shows that joint one has the most signif-

icant Coulomb and viscous friction among all three, followed by joint three and then

two. Also, the effect of Coulomb friction is consistently higher than the effect of viscous

friction for such ranges of speed. The absolute values of πfci
/πfvi

, i = 1, 2, 3, according

to (6), provide an upper bound on joint velocities, up to which the Coulomb friction

remains larger than the viscous friction. For instance, for the UR configuration, the

angular velocity limits for joints 1, 2, and 3 are 710 deg/s, 412 deg/s, and 2, 841 deg/s,

respectively. In order to grasp a better view on the effect of each friction component,

Coulomb and viscous friction terms are illustrated separately in Figure 9 for the UR

configuration. As illustrated, Coulomb friction is the dominant friction term in all

three joints.

7. Considering the RMS% values in Table 2, it is clear that the GCW and USD+GCW

configurations have the most significant errors. This can be due to the movement of

the gimbal since it is difficult to rigidly fix the gimbal to the robot arm, while the arm

is moving. Any small movement of the gimbal can noticeably change the dynamics of

the robot.

Figure 9 Here
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4 Applications of the Identified Dynamics

In this section, the identified dynamics of the PHANTOM are used to obtain i) a general

understanding of the major contributors to each joint dynamics, ii) an estimate of the

counter-balance weight needed for each robot configuration and added tool attachment, iii)

a more precise and robust inverse dynamics control, and iv) an online estimate of contact

forces at the tip position of the robot.

4.1 Dynamic Dissection

Figure 10 Here

In order to further analyze system dynamics, the estimated π parameters are employed to

calculate the joint torques and the contributions of inertia, Coriolis and centrifugal, gravity

and friction torque terms for each configuration for random free motion operation with a

maximum velocity 3.5 rad/s = 200.6 deg/s. Figure 10 shows the contribution of each

dynamic term in each joint torque for the UR configuration, whereas Figure 11 demonstrates

the contribution of each term in the joint 3 torque for all configurations. The following

observations can be made:

1. Joint 1: For all configurations, the most significant contribution comes from friction

and then Coriolis and centrifugal terms.

2. Joint 2: The main contribution comes from the inertial term and then Coriolis and

centrifugal terms, especially when the gimbal and counter-balance weight are added

(not shown in the figures).

3. Joint 3: In general, the contribution of gravity to torque is the most significant in joint

3 compared to the other two joints. Adding extra mass such as a force sensor to the

UR configuration cuts down the effect of gravity by half, whereas adding a gimbal and

counter-balance weight almost practically nulls the effect of gravity at the expense of

a significant increase in inertial torque.
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Figure 11 Here

4.2 Counter-balance Weight Estimation

The identified dynamics can also be utilized to obtain a relatively accurate initial estimate

of the counter-balance weight required for any configuration and added accessory.

The gravitational parameters πg7 and πg8 in (5) are determined by the mass and length

properties of various links of the robot as described in detail in (Cavusoglu & Feygin, 2001;

Cavusoglu, Feygin, & Tendick, 2002). Adding a lumped mass mep at the end-point (EP), such

as a gimbal or a force sensor, and mounting predesigned counter-balance weights mcb2 and

mcb3 on motors 2 and 3 will result in the following changes to the gravitational parameters:

π′
g7 = πg7 − gmcb2Lcb + gmepL1 (16)

π′
g8 = πg8 − gmcb3Lcb + gmepLep (17)

where Lcb ≥ 0 is the distance between the center of gravity of the counter-balance weight

and the horizontal axis of the vertical capstan, and Lep is the distance between the center

of gravity of the EP attachment and the distal end of the last link, as shown in Figure 12.

It is assumed that the center of gravity of the attachment is along the last link. To inves-

tigate Equations (16)-(17), the gravitational parameters for the USD+GCW configuration

are calculated from their corresponding parameters from the UR configuration column of

Table 1, i.e. πg7 = −0.01923 and πg8 = −0.10996. For the gimbal with approximate weight

mep = 0.09 Kg, the manufacturer has provided a counter-balance weight mcb2 = 0.216 Kg.

Considering Lcb ≈ 0.075 m, Lep ≈ 0.195 m, L1 = 0.216 m and g = 9.81 m/s2, and using (16)-

(17), the gravitational parameters for the GCW configuration are calculated as π′
g7 = 0.0223

and π′
g8 = 0.0622, which are a close match to the estimated parameters 0.0269 and 0.0465

from the fourth column of Table 1.
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Figure 12 Here

From (17), it is clear that the provided counter-balance weight for motor 2 cannot have

any effect on πg8. To compensate for this shortcoming, a second counter-balance weight

(mcb3) needs to be mounted on motor 3. The mass of the counter-balance weights that

cancels the effect of gimbal on both gravitational parameters such that π′
g7 = π′

g8 = 0 can

be calculated from:

(mcb2)net =
πg7 + gmepL1

gLcb

(18)

(mcb3)net =
πg8 + gmepLep

gLcb

(19)

If the mass of the EP tool or accessory is substantial, the mass of the counter-balance

weights become proportional to the mass of the tool according to mcb2 ≈ (L1/Lcb)mep and

mcb2 ≈ (Lep/Lcb)mep. From (18)-(19), the recommended counter-balance weights for motors

2 and 3 are (mcb2)net = 0.248 Kg and (mcb3)net = 0.091 Kg, respectively. It has been

noticed that the calculated weights are sensitive to the center of gravity distances Lep and

Lcb; however, the calculated values provide an initial estimate, which can be fine tuned for

any setup and application.

4.3 Inverse Dynamics Control

The identified dynamics of the PHANTOM can be employed to implement inverse dynamics

control for haptic or telerobotic bilateral controllers that are designed based on such a control

strategy or require linear dynamics for master stability or performance analysis. As a slave,

a PHANTOM robot controlled with inverse dynamics can provide more accurate position

tracking. Finally, the inverse dynamics experiments in this section also provide a qualitative

verification of the proposed parameter estimation technique (Bona & Curatella, 2005).

Figure 13 illustrates a block diagram of a position controlled PHANTOM robot, in which
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the control system consists of an inverse dynamics inner control loop and a PD outer control

loop (Sciavicco & Siciliano, 2001). The inverse dynamics, which is computed online using

the estimated dynamic parameters, tries to ideally cancel the nonlinear dynamic effects and

to decouple the resulting linear dynamics. Here F represents the friction terms.

Figure 13 Here

If the nonlinearities are fully compensated, adjusting the gains of the PD controller can

place the poles of the system for each of the decoupled joints at any desired location as long

as the motors are not saturated. In practice, since nonlinear compensation is not perfect,

there could be issues with responsiveness and stability of the overall system. In order to

empirically analyze the accuracy of the estimated parameters from the piece-wise and the

proposed experimental methods, an inverse dynamics + PD controller was implemented in

various control parameter settings and for various configurations of the robot. Tracking error

of the overall system with low gains and its stability with high gains signify the responsiveness

and robustness of the controller and show how well the nonlinearities of the robot dynamics

are canceled, which in turn indicate how accurate the dynamic parameters are estimated.

Figure 14 Here

In the experiments the proportional gain was varied from 100 to 1200, and the deriv-

ative gain was adjusted to maintain a critically damped or slightly under or over damped

(0.7 ≤ ζ ≤ 1.2) closed-loop decoupled joint dynamics. Since full cancellation of friction could

lead to instability, the linearizing feedback loop was tried with 50% friction compensation.

The experiments showed that the identified parameters were able to effectively cancel non-

linearities and the performance of the controller was often satisfactory and close to the ideal

system, i.e. double integrator stabilized with a PD controller. The following observations

were made based on the experimental results:

Figure 15 Here

Figure 16 Here

1. In the UR configuration with light to medium proportional gains (100 ≤ KP ≤ 800),
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the identified parameters and those calculated based on the piece-wise method (Cavu-

soglu, Feygin, & Tendick, 2002) lead to close set-point tracking with position control,

especially for joints 1 and 2. The largest tracking error was observed in joint 3. This

indicates that the nonlinearities in this joint were not compensated as well as those in

the other two joints. Figure 14 illustrates the position tracking results for joint 3 when

KP and KD are set to 625 and 35, respectively. The desired input position command

is a square pulse with a period of four seconds, while the other two joints are com-

manded to remain at a constant position. As seen, the performance of the controller

with experimentally identified parameters demonstrated lower steady state error (20%

compared to 25% error) and lower overshoot.

2. The tracking error was smaller for larger proportional gains since tighter PD control

can diminish the nonlinear effects as long as the system does not become unstable.

However, increasing the gains to tighter values eventually made the controller unstable.

The controller with parameters from piece-wise method (Cavusoglu, Feygin, & Tendick,

2002) became unstable with smaller values of KP than the experimentally estimated

parameters. In other words, the estimated parameters provided stability for a larger

range of PD gains. Figure 15 illustrates the joint 3 angle, when KP and KD are set to

1200 and 80, respectively.

3. For other configurations, parameters calculated based on the piece-wise method (Cavu-

soglu, Feygin, & Tendick, 2002) lead to unsatisfactory position tracking with small to

medium PD gains, whereas the experimentally identified parameters provided more

acceptable tracking even with low proportional gains. Figure 16 illustrates the joint

3 angle for the USD+GCW configuration, when KP and KD are set to 100 and 14,

respectively.

Overall, the results from the experiments with an inverse dynamics controller illustrated

that the identified parameters provided more responsive and more stable position control in

comparison to the parameters from the piece-wise method.
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4.4 Contact Force Estimation

Haptic interfaces aim to produce a sense of contact between a human and virtual objects by

displaying bi-directional forces. To design transparent haptic or telerobotic controllers, high

bandwidth contact forces need to be measured or estimated. Using an accurate estimate of

PHANTOM’s dynamics and kinematic parameters, the external force at the EP, i.e. Fext,

can be estimated according to

F̂ext = (Jp)
−T (τ − Yπ̂) (20)

where Jp, the translational Jacobian in the EP frame (see Figure 1) relating joint angles to

the EP position, is found according to (Cavusoglu & Feygin, 2001; Cavusoglu, Feygin, &

Tendick, 2002)

JP =

















l1c2 + l2s3 0 0

0 l1c23 0

0 −l1s23 l2

















(21)

Note that in (20) the effect of external torque is neglected since PHANTOM is a point based

device with 3-DOF active force feedback; thus, it cannot apply any resistive torque about

any axis. The estimated forces are validated by comparing the estimated hand forces with

the output of an ATI Nano-17TM force sensor, mounted at the EP of the device, as shown

in Figure 3(c). For consistency with the filtered torque values, the measured forces provided

by the force sensor are passed through the low-pass filter of (2) as well.

Figure 17 Here

Figure 17 compares the actual force in the y-direction to the estimated forces obtained

from (20) without using the dynamic model (i.e. F̂ext(Jp)
−T

τ ). As can be seen in the

dynamic condition, especially when the direction of motion changes, force estimation with

dynamic model produces slightly better results. Some of the factors that contribute to the

observed error in the estimated force are the same as the ones discussed in Section 3.2.
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Another possible source of error is the fact that the force sensor frame needs to be registered

with the EP frame. In the experiments, the sensor was mounted such that the two frames

were visually aligned and the elementary transformation for converting the measurements

from the force sensor frame to the EP frame was experimentally derived using least squares.

5 Conclusions

The dynamics of a SensAble Technologies PHANTOM Premium 1.5A are experimentally

identified. The advantages of the applied experimental method over the previously developed

piece-wise techniques are accuracy, partly due to the inclusion of friction in the dynamics

model, ease of use for handling alterations to the device dynamics, and applicability to other

models of the PHANTOM. The haptic device dynamics for different configurations were also

identified, validated, and analyzed. The parameter estimates produced an inertia matrix that

was confirmed to be positive-definite within the device workspace. The identified model also

demonstrated noticeable Coulomb friction, especially in joint 1.

The identified dynamics were used to compute the contribution of various dynamic terms

in each joint for different configurations. It was noticed that two counter-balance weights

are required to cancel the gravitational effect of an end-point tool or accessories such as the

gimbal. In addition, the required weights on motors 2 and 3 to cancel the effect of gimbal

were calculated. Experiments with model-based position control showed that the identified

dynamics provided more robust and more responsive position control than earlier piece-wise

(CAD-based) estimations of the robot inertial parameters. Finally, the identified dynamics

were utilized to obtain a more accurate estimate of external hand (contact) force.
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Figure Captions

Figure 1: Schematics of PHANTOM with its three motors, corresponding joint angles and

the end-point Cartesian frame.

TWO-COLUMN

Figure 2: Passing the system dynamic equation through a low-pass filter.

ONE-COLUMN

Figure 3: PHANTOM Premium 1.5A in four different configurations: (a) Up-right, (b)

using gimbal and counter-balance weight (GCW), (c) with force sensor mounted at the end-

effector (FS), and (d) upside-down plus gimbal and counter-balance weight (USD+GCW).

TWO-COLUMN

Figure 4: Actual and estimated τL for the UR configuration; the solid black line shows

the real filtered torque, the dotted line shows the predicted filtered torque using estimated

π parameters (without friction in the dynamic model), and the dash-dot line shows the

predicted filtered torque using the identified parameters from the piece-wise method.

ONE-COLUMN

Figure 5: Torque estimation error versus joint angular velocity for the UR configuration

(without friction in the dynamic model).

ONE-COLUMN
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Figure 6: Actual and estimated τL for the UR configuration using identified π parameters

(with friction in the dynamic model).

ONE-COLUMN

Figure 7: Torque estimation error in filtered torque versus joint angular velocity for the

UR configuration (with friction in the dynamic model).

ONE-COLUMN

Figure 8: Actual and estimated τL for the USD+GCW configuration using identified π

parameters (with friction in the dynamic model).

ONE-COLUMN

Figure 9: Contribution of viscous and Coulomb friction terms in overall friction in all

three joints for UR configuration.

ONE-COLUMN

Figure 10: Contribution of inertia, Coriolis and centrifugal, gravity, and friction in joint

torque τ for UR configuration.

ONE-COLUMN

Figure 11: Contribution of inertia, Coriolis and centrifugal, gravity, and friction in the

47



joint 3 torque for UR, GCW, FS, USD, and USD+GCW configurations of the robot and its

attachments (from top to bottom).

ONE-COLUMN

Figure 12: Schematics of the robot with End-Point attachment and counter-balance

weights.

ONE-COLUMN

Figure 13: Block diagram of an inverse dynamics controller. The inverse dynamics inner

loop and the PD outer loop are enclosed in solid and dashed boxes, respectively.

ONE-COLUMN

Figure 14: Inverse dynamics tracking output for joint 3 in UR configuration, with piece-

wise method parameters from the piece-wise and the experimentally estimated parameters

with 50% friction compensation, when KP = 625 and KD = 35.

ONE-COLUMN

Figure 15: Inverse dynamics tracking output for joint 3 in UR configuration, with piece-

wise method parameters from the piece-wise and the experimentally estimated parameters

with 50% friction compensation, when KP = 1200 and KD = 80.
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Figure 16: Inverse dynamics tracking output for joint 3 in USD+GCW configuration,

with the piece-wise method parameters from the piece-wise and the experimentally estimated

parameters with 50% friction compensation, when KP = 100 and KD = 14.

ONE-COLUMN

Figure 17: Measured and estimated forces in the y-direction of the EP frame with and

without inclusion of the system estimated dynamic model(top), and the corresponding force

estimation errors (bottom).
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