
Software Engineering:

An Emerging Profession?

David Alex Lamb

September 1988

External Technical Report

ISSN-0836-0227-

88-233

Department of Computing and Information Science

Queen's University

Kingston, Ontario, Canada K7L 3N6

Version 1.2

Document prepared January 5, 1996

Copyright c
1988 David Alex Lamb

Keywords: software engineering, professions, ethics

Abstract

If we want to evolve software engineering into a \real" profession, we must

not only codify a body of principles and practices, but must also develop an

appropriate ethical and social framework. We must develop a clearer picture

of the distinctions we want between a programmer, a software engineer, and

a computer scientist. To suggest appropriate directions, this essay develops

analogies between software engineering and the classic professions (doctor,

lawyer, priest) as well as engineering.

CONTENTS i

Contents

1 Introduction 1

2 What is a Profession? 1

2.1 The Classic Professions . 2

2.2 Characteristics of Professionals 3

2.3 Barriers . 4

3 Central Ideas 4

3.1 Fundamentals . 5

3.2 Current Practice . 6

4 Where Next? 7

88-233 Version 1.2

1 INTRODUCTION 1

1 Introduction

This essay discusses what it should mean for us to have a recognized profession

of software engineering. It discusses what it means for a line of work to be

a profession, and outlines my view of the body of knowledge a professional

engineer should master.

These days many software practitioners have begun to refer to themselves

as software engineers. However, there remains much confusion and disagree-

ment about what it should mean to be a software engineer, how software

engineering is similar to or di�erent from programming, and whether software

engineers should be licensed or certi�ed or left to practice their profession

without o�cial interference.

In the last year I have heard several people whose opinions I respect say

that software engineering is still too immature a �eld for us to consider it a

profession. For example, at a conference in June 1988 at Rochester Institute of

Technology on undergraduate software engineering education, several speakers

said we aren't ready to begin designing undergraduate curricula, which are

prerequisites for licensing professionals if we follow the example of engineering.1

However, I believe we know more about the fundamental content of soft-

ware engineering than we realize. I remember discussions in the early 1970's

about whether computer science was really a science. If we look back, that

discipline was already mature enough, but many people remembered the old

days when it seemed like a subset of electrical engineering (or mathematics,

depending on who you talked to). I believe we are in a similar position with

software engineering today.

My viewpoint grew out of my work on teaching undergraduate software

engineering and writing a software engineering textbook [Lamb88]; Morri-

son and Hughes [Morr82] prompted me to start thinking about ethics and

analogies with other professions. I presented some of the ideas at talks at the

Institute for Retraining in Computer Science at Clarkson University, and at

IBM Toronto; the audiences for those talks gave me several helpful suggestions.

Margaret Lamb made several helpful suggestions on earlier drafts.

2 What is a Profession?

Unsurprisingly, we typically think of engineering as the profession on which

we should base our thinking about a software engineering profession. We can

improve our perspective by looking at other professions for models.

1Perhaps we should discuss the example of medicine instead, which requires at least two

years of college before entry to medical school.

88-233 Version 1.2

2 WHAT IS A PROFESSION? 2

2.1 The Classic Professions

Classically (say, two hundred years ago), the professions were doctor, lawyer,

and priest. Each of these professions had four key characteristics:

� Extensive schooling to master a body of specialized knowledge. This is

obvious of doctors and lawyers, but perhaps not so obvious these days

for priests. However, in many denominations, the priesthood requires

several years of seminary; in the past, that was far more education than

the general population obtained.

� A period of apprenticeship, where the budding practitioner learns to

apply the specialized knowledge under the guidance of experts.

� A restricted title or license, without which one may not legally practice

the profession.

� A self-governing professional organization, with the power to impose

sanctions against unethical or incompetent members. Possible sanctions

include revoking the license to practice the profession.

Within the last hundred years or so, engineering arose as a new profession;

it followed a similar model. Most of the discussion of software engineering as

a profession revolves around the body of knowledge. I believe we are close

to being able to de�ne what a professional software engineer ought to know;

Section 3 discusses my summary of what is important. We need to begin to

think about the other areas if we are to become a real profession.

The areas of restricted title and self-governance will give us the most trou-

ble in establishing a profession; as evidence of their controversy, consider the

years of debates about certi�cation of programmers. To shed some light on

the heated debate, it is useful to look at why professions have these two char-

acteristics.

For the three classic professions, it was once true that the public relied

on practitioners to be competent and ethical, but found it di�cult to eval-

uate competence and, sometimes, ethics. Because of the body of specialized

knowledge required to master the profession, an ordinary citizen could not

tell whether decisions a practitioner made were reasonable; sometimes even

judging ethical questions require specialized knowledge. Thus the public let

the profession govern itself, and control who could practice the profession, in

return for an implied guarantee that the professional organization would police

itself. Thus each profession not only certi�ed competence, it also enforced a

code of ethics designed to protect the public.

Not all work associated with a profession needs such a guarantee. Few of

the people who build bridges are civil engineers; many medical practitioners

are nurses or paramedics. Such people typically work under the supervision

88-233 Version 1.2

2 WHAT IS A PROFESSION? 3

of a professional, although they are typically allowed to make many decisions

on their own without consulting the professional. Similarly, not all software

specialists need to be software engineers.

2.2 Characteristics of Professionals

From the analogies of Section 2.1, we can distinguish two key characteristics

of the professional: competence, and individual responsibility.

A professional must master an extensive body of specialized knowledge,

and keep up with it as it changes. The body of knowledge must consist of

� fundamental principles, so the professional has a �rm foundation from

which to tackle new problems and teach herself new material.

� current practice, so that the professional has something concrete with

which to be sure she understands the principles, and so that she can begin

to practice, at least on typical or standard problems, without having to

deduce what to do from �rst principles all the time.

As the professional goes about her job, she not only solves the problems that

are part of her work, but also tries to learn to improve her understanding of

her profession.

As well as knowing how to apply principles to solve problems, the profes-

sional needs to know when not to act. Lawyers need to know when to refuse

cases: when they are frivolous, or when the client doesn't really need a lawyer

to solve his problem. Doctors need to know when not to perform surgery or

prescribe medicines. Similarly, a software professional needs to know when

not to program. Bentley [Bent88] has examples on the small end of the

scale, such as the client who needed to generate random permutations of the

numbers from 1 to 3. There are only six; the cheapest way to choose randomly

among six alternatives is to roll a cubical die.

More seriously, a professional should not take on work he is not competent

to perform. A solicitor who specializes in wills is not necessarily a good trial

lawyer; a programmer who is a wizard at business data processing may not

be very good at real-time systems. This issue is especially di�cult if someone

asks you to build a new kind of system no one has tried before, which hap-

pens frequently with computer-based systems. Ethically, you should propose a

feasibility study or small proof-of-concept project to explore the areas of high

risk; realistically, the client or your superiors may be too impatient.

An often-neglected topic in discussions of software engineering is individual

responsibility. Many of the things a software engineer would do are things that

many competent programmers could also do. We can imagine an intelligent,

well-educated layman doing many of the things a civil engineer does, but the

law requires that the plans of a major construction work have the signature of a

88-233 Version 1.2

3 CENTRAL IDEAS 4

registered professional engineer. This important characteristic ties in with my

earlier theme of protection of the public; society wants to have some assurance

that its bridges won't fall down. However, you can still get your house built

without consulting an engineer; some problems are well enough understood

that technicians or even amateurs can handle them without a professional.

Thus, we might expect future laws to require that registered software engineers

certify some aspects of software systems that are important to the public, but

large portions of the software business might still go to programmers rather

than software engineers.

2.3 Barriers

In modern society, it may be di�cult to use the classic professions as models.

� Over the years, because of human nature, professional societies and their

codes of ethics gradually change to protect the profession rather than the

public. In our cynical times, this brings the whole question of ethics and

self-governance into disrepute.

� In the current North American legal climate, the public does not seem to

be willing to allow the classic professions the same independence they had

in the past. For example, patients want far more input into the decisions

doctors make, and challenge apparent bad decisions in the courts with

such frequency that a doctor's malpractice insurance can now cost two

to three times the average citizen's salary.

� Years of title in
ation have reduced the prestige of the word \profession".

Indeed, Revenue Canada seems to classify any business that provides a

service, as opposed to selling a product, as a profession.

However, the particular characteristic of professionals that may give the

most day-to-day trouble is individual responsibility. Many employers of en-

gineers want self-retraining technicians skilled in some disciplines technicians

don't usually study, not professionals who might question management de-

cisions on technical or ethical grounds. Reports of the Challenger disaster

mentioned someone saying \take o� your engineering hat and put on your

management hat" { which the ethical engineer should never do.2

3 Central Ideas

In an engineering discipline, the specialized knowledge consists of both funda-

mental principles, expected to last a lifetime, and current practice, representing

2It might be possible to wear both hats simultaneously, which sounds rather uncomfort-

able and awkward.

88-233 Version 1.2

3 CENTRAL IDEAS 5

today's implementation of those principles.

A useful distinction to draw is that a programmer might be analogous to a

technician, a software engineer to an electrical engineer, and a computer sci-

entist to a physicist. The principles distinguish an engineer from a technician;

technicians usually require retraining every few years in the new practices,

while engineers are supposed to be able to keep up with their �eld on their

own.

3.1 Fundamentals

It takes a lot of time and insight to re
ect on what is fundamental, so the

following discussion is necessarily incomplete. However, �lling out the list

of fundamentals, at roughly this level of discussion, is a good approach to

characterizing the �eld.

Clearly3, the standard engineering activities (analysis, design, speci�cation,

implementation, validation) must be part of software engineering; di�erent life

cycle models combine them in di�erent ways. The old waterfall model was too

simplistic, but proponents of new improved life cycle models go to far in con-

demning it. I prefer Parnas' view that we ought to record our design decisions

as though we were following a waterfall model, even though we deviate from

it in many ways [Parn86].

Another key idea of software engineering is the malleability of the medium

we work with. Software can be very highly
exible; this leads to strong de-

mands for change. Moreover, software is unique in the way it blurs the distinc-

tion between components (building blocks) and processes (ways of combining

components); we can capture a process in software, then treat it as a compo-

nent. This gives us a way to move work out of the domain of engineers and

into that of technicians, if we can capture some of our complex processes as

reusable components.

Malleability leads almost directly to the need for managing complexity.

We need to plan for change in almost everything we do; with most software

systems we change the requirements, the system structure, the implementation

details, the personnel, and almost anything else you can think of. Our main

tool is the old divide-and conquer technique, separation of concerns, in several

guises. Abstraction and information hiding, two sides of the same coin, are

fundamental. Managing complexity requires us to document what we know,

so we don't forget it, and so other people can learn it; thus software engineers

must practice some form of design documentation discipline.

Each engineering discipline uses appropriate intellectual tools, often math-

ematical, and usually taken from the corresponding scienti�c discipline. Com-

3At �rst glance, it's clear. Looking more deeply, we can get mired in the discussion of

alternative life cycle models. After slogging for a while, it becomes clear again.

88-233 Version 1.2

3 CENTRAL IDEAS 6

puter science provides many useful intellectual tools, such as algorithm design

and analysis, database theory, and speci�cation methods. However, an engi-

neer usually takes a di�erent view of the tools than a scientist: the engineer

wants to solve problems rather than codify knowledge. An illustration of a

di�erence in attitude is that to many computer scientists, the main purpose

of speci�cations is to prove programs correct, while for an engineer, the main

purpose may be to de�ne requirements precisely to communicate with other

engineers.

3.2 Current Practice

The best of current practice isn't all that bad. We still hear plenty of horror

stories, but it isn't unheard of to �nd shops that deliver medium-sized software

projects on time and within budget with reasonable regularity. Unfortunately

we su�er from very high variation in practice. Technology transfer is su�-

ciently slow that some important projects are using methods �fteen years or

more out of date.4

A more subtle problem with current practice is a lack of the type of shared

ground rules that might lead to consensus about what is important in the

profession.

� We are especially bad at separating fundamental principles from current

practice. The most common example is how we used to teach particu-

lar programming languages instead of programming principles; I believe

we're getting better.

� I don't think the technician-engineer-scientist analogy is widely known

or accepted.

� Few people seem to understand the necessary distinction between re-

search journals, for communication among scientists, and professional

journals, for keeping practitioners up-to-date. To illustrate the di�er-

ence: I view IEEE and ACM Transactions are research journals, IEEE

Software and IEEE Computer as professional journals, and Communica-

tions of the ACM as a mix, tending towards a professional journal. We

have plenty of research journals, but few professional journals; there is

pressure on some research journals to serve as professional journals, too

(or instead).

� Within some individual disciplines, we see the emergence of \schools,"

each of which has its own approach, antagonistic to those of other schools.

4For legal reasons, and to minimize controversy, I won't give examples. You probably

know of several.

88-233 Version 1.2

4 WHERE NEXT? 7

Many so-called \religious" discussions about choice of language or op-

erating system could more accurately be called \scholastic" discussions;

my academic acquaintances are often more vituperative than my reli-

gious ones.5

4 Where Next?

I believe the �rst step in developing a software engineering profession is to

disseminate the viewpoint that not all programmers need to be software en-

gineers, and that software engineering is distinct from computer science. I

hope others will accept the programmer as technician, software engineer as

electrical engineer, computer scientist as physicist analogy; it gives us a good

outlook for drawing the necessary distinctions, and evolving each of the three

�elds to �ll their proper roles.

Before there can be a legal framework for a profession, there must be a

social and educational framework. We must begin to distinguish the kinds of

work that require a programmer from those that require an engineer, avoiding

the pressure to demand more credentials than any particular job really needs.

We must begin to discuss the split between computer science education and

software engineering education.6 We must begin to provide the framework to

help existing software specialists �nd their niche, bearing in mind that not

everyone needs to �t in only one category.

Professional education is especially important. The Master of Software

Engineering programs that some schools are developing are important; ideally,

they should permit programmers to enroll part-time over several years. We

need to pay a lot more attention to technology transfer; projects in this area

tend to be \not well enough developed" for practitioners and \not interesting

or new enough" for researchers. Finally, we need to pay more attention to

professional journals, without sacri�cing the research journals.

Other engineering disciplines have their handbooks, which codify existing

components and practices. Mary Shaw has pointed out that as our discipline

matures, we'll need to develop our own handbooks. I think developing such

handbooks would both illustrate and advance the maturity of the �eld.

Politically, the sensible approach for developing a profession is to work with

the existing engineering accreditation bodies, such as the APEO in Ontario.

Such bodies are necessarily conservative, since they are supposed to protect

the public and the profession rather than provide enhanced status and job

5I have heard rumors saying that such-and-such a journal is controlled by one school and

regularly refuses contributions from other schools. I don't know whether to believe these

rumors, but their mere existence is evidence of the division into schools.
6The enrollment in computer science programs will probably drop quite a bit after the

split.

88-233 Version 1.2

REFERENCES 8

opportunities for people who want to call themselves engineers. We should

work with such societies to develop accreditable undergraduate programs, and

an appropriate way to license people who don't (or didn't) go through such

programs.

Once this infrastructure is in place, we can begin to press for changes in the

laws to require software engineers to sign o� certain kinds of projects where

the protection of the public requires it.

References

[Bent88] Jon Bentley, \Teaching the Tricks of the Trade," in Second SEI Con-

ference on Software Engineering Education, Springer-Verlag (28-29

April 1988).

[Lamb88] David Alex Lamb, Software Engineering: Planning for Change.

Prentice-Hall, Englewood Cli�s, NJ (1988).

[Morr82] Carson Morrison and Philip Hughes, Professional Engineering Prac-

tice: Ethical Aspects. McGraw-Hill Ryerson Ltd., Toronto (1982).

[Parn86] David L. Parnas and Paul C. Clements, \A Rational Design Pro-

cess: How and Why to Fake It," IEEE Transactions on Software

Engineering Vol. 12(2):251-257 (February 1986).

88-233 Version 1.2

