
Generating Abstractors for Abstract Data Types1

Lin Huang David Alex Lamb

July 27, 1992
External Technical Report

ISSN-0836-0227-
92-331

Department of Computing and Information Science
Queen's University

Kingston, Ontario K7L 3N6

Version 1.1
Document prepared July 27, 1992

Copyright c
1992 Lin Huang and David Alex Lamb

Abstract

Values of an abstract data type (ADT) may be built by some of its functions called construc-
tors. A construction term of an ADT value is an expression which contains only constructors
and whose evaluation yields the value. For a given ADT, the abstractor is a function that
converts its values to the corresponding construction terms. Abstractors may be used in
communicating ADT values in distributed programs.

This paper addresses the problem of generating abstractors of types from their algebraic
speci�cations. We classify speci�cations into two classes: symmetric and asymmetric. We
show that for a given type

� if its speci�cation is symmetric, the abstractor can be automatically generated, and

� if the speci�cation is asymmetric, it is feasible to generate the abstractors when the
speci�cation meets certain conditions,

We also present abstractor skeletons for types whose abstractors can be automatically gen-
erated.

1This work was supported in part by the Natural Sciences and Engineering Research Council of

Canada (NSERC), and in part by the Information Technology Research Center of Ontario (ITRC),

part of the Ontario Centres of Excellence program.

Contents

1 Introduction 1

2 The Problem 1

2.1 Algebraic Speci�cations : 1

2.2 Abstractors : 3
2.3 The Problem Statement : 4
2.4 Term-based Data Exchanges : 5

3 Abstractors for Types with Symmetric Speci�cations 7

3.1 Symmetric Speci�cations : 7

3.2 An Abstractor Skeleton : 9
3.3 An Example : 11

4 Abstractors for Types with Asymmetric Speci�cations 12

4.1 A Notation : 12

4.2 Abstractors for Types with a Non-keyed Selector : : : : : : : : : : : : : : : : 13
4.2.1 Non-keyed Selectors : 14
4.2.2 Deletors : 16
4.2.3 Abstractor Skeletons : 18

4.3 Abstractors for Types with a Keyed Selector : : : : : : : : : : : : : : : : : : 20

4.3.1 Keyed Selectors : 20
4.3.2 An Abstractor Skeleton : 21
4.3.3 Example: Sequence : 22
4.3.4 Example: Tree : 23

5 Conclusions and Future Work 25

A Proofs of Several Theorems and Propositions 27

A.1 A Theorem for Abbreviating Expressions of Repeated Function Applications 27
A.2 A Su�cient Condition for Value-sensitivity : : : : : : : : : : : : : : : : : : : 28
A.3 A Su�cient Condition for Seniority-sensitivity : : : : : : : : : : : : : : : : : : 30

A.4 A Su�cient Condition for Self-keyed Deletors : : : : : : : : : : : : : : : : : : 31
A.5 An Abstractor Skeleton for Types with a Value-sensitive Selector and a Non-

keyed Deletor : 32
A.6 An Abstractor Skeleton for Types with a Seniority-sensitive Selector and a

Non-keyed Deletor : 33
A.7 Su�cient Conditions for Keyed Selectors : 34
A.8 An Abstractor Skeleton for Types with a Keyed Selector : : : : : : : : : : : : 36

List of Figures

1 Speci�cation of Stack : 2
2 A Concrete Stack : 4

3 A Communication Process : 6
4 Speci�cation of Binary Tree : 8
5 Speci�cation of Queue : 10
6 Speci�cation of Priority Queue : 15

7 Speci�cation of Sequence : 22
8 Speci�cation of Tree : 24

List of Tables

1 Results of Handling the LSL Types : 26

1 Introduction

An abstract data type (ADT) is characterized by a collection of sorts (types) and a collection
of functions. Values of the type are not directly speci�ed; instead, they can be built by calls
on a subset of the type's functions, called constructors. A construction term of a value is
an expression which contains only constructors and whose evaluation yields the value.

An abstractor for an ADT takes a value as an input and produces a construction term of
the value as an output. One application of abstractors is in systems which use construction
terms as exchange representations to communicate ADT values in distributed programs (See
Subsection 2.4). In such systems, ADT values are exchanged in their construction terms;
any value to be communicated must be converted into its corresponding construction term
before being transmitted.

This paper addresses the problem of generating abstractors from algebraic speci�cations
of abstract data types. We do not intend to advance the theory of algebraic speci�cations,
rather we use algebraic speci�cations as a tool for our work. As discussed in Subsection
2.3, the problem is hard. We know of no previous attempts at it. As the �rst step, this
paper focuses on studying syntactic constraints on the form of speci�cations which guarantee
automatical generation of abstractors. We classify speci�cations into two classes: symmetric
and asymmetric. For types with symmetric speci�cations, we show that the abstractors can
be automatically generated; for types with asymmetric speci�cations, we show that if the
speci�cations meet certain conditions, it is feasible to generate the abstractors. We also
present abstractor skeletons for types whose abstractors can be automatically generated.
The skeletons are composed only of calls on the functions provided by the types in question.
Throughout the paper, we give several examples to show the applications of our results.

The outline of this paper is as follows. Section 2 discusses the problem we are to solve.
Sections 3 and 4, the main work of this paper, study the abstractors for types with symmetric
and asymmetric speci�cations respectively. Section 5 summarizes our results.

2 The Problem

In this section, we present the basic idea of algebraic speci�cations, give a de�nition of
abstractors, describe the problem we are to attack, and discuss an application of abstractors.

2.1 Algebraic Speci�cations

There is a large literature on algebraic speci�cation methods [GH78, GTW78, EM85,Wir90].
Here we brie
y describe the basic idea.

Figure 1 gives an algebraic speci�cation for the well-know type Stack. As shown in the
�gure, an algebraic speci�cation consists of:

TOI describing the type being speci�ed|the Type Of Interest.

Base types describing the types on which the TOI is based. Base types include parameter
types and non-parameter types. A parameter type can take on any particular type.

Since the Boolean type is assumed the underlying type of algebraic speci�cation meth-
ods, it does not need to be listed in this clause.

Functions describing the functions of the type, including the function symbols, the domains
and ranges.

Constructors describing a subset of the type's functions which is used to generate all of
its values. The range of a constructor must be the TOI.

1

Type Stack

TOI

Stack

Base types

Parameters: Ele

Non-parameters: Nat

Functions

new: ! Stack

isnew: Stack ! Boolean

push: Stack � Ele ! Stack

pop: Stack ! Stack

top: Stack ! Ele

size: Stack ! Nat

Constructors

new, push

Equations

top(push(s, e)) = e

pop(push(s, e)) = s

isnew(new) = true

isnew(push(s, e)) = false

size(new) = 0

size(push(s, e)) = size(s)+1

Figure 1: Speci�cation of Stack

2

Equations describing the relations among the functions of the type.

In this paper, we choose the initial model[GTW78, EM85] as the meaning of a speci�-
cation. Informally, this means that two values of TOI are equated only when otherwise the
equations may be not satis�ed. In the other words, the domain of TOI contains as many
di�erent values as possible. Compared with other models, the initial model has two distinct
advantages:

� Existence|initial algebras always exist. One may always construct an initial algebra
by constructing a quotient algebra[GTW78].

� Uniqueness|all the initial algebras of a speci�cation are isomorphic.

A particular advantage of using the initial model in this work is discussed in Subsection 2.2.
We now de�ne several terms.
A constructor is called a constant if its domain is empty, and a composite constructor

if its domain contains at least two types. For the type Stack, new is a constant, and push

is a composite constructor.
A type is called a composite type if at least one of its constructors is composite. For

example, Stack is a composite type, while Boolean and Integer are not.
Values that are used to construct a value of a composite type are called components

of the value.
A function is called a selector if its range is a type contained in the domain of some

composite constructor. Selectors extract components from values. In type Stack, pop and
top are selectors.

2.2 Abstractors

A construction term of a value is an expression that consists only of constructors and
whose evaluation yields the value.

The abstractor of type T, denoted by abs T , takes as input a value and produces as
output the corresponding construction term. Abs T is a function

abs T : T �! Term

In the sequel, we use the typewriter font for terms. We shall assume abstractors for the
base types of T are already available.

Consider type Stack. Suppose it is implemented by a linked structure. The concrete
stack shown in Figure 2 represents a stack that has e3 at its top and e1 at its bottom.
Given this stack, abs Stack will return the construction term:

push(push(push(new, e1), e2), e3)

It is trivial to give the speci�cation of an abstractor. This can be done as follows. For
every constructor of T

cons : T1 � : : :� Tn �! T

an equation

abs T (cons(x1; : : : ; xn)) = cons(abs T1(x1), : : :,abs Tn(xn))

is added to the speci�cation. For example, the abstractor of the type Stack can be speci�ed
as

abs Stack : Stack �! Term

abs Stack(new) = new

abs Stack(push(s; e)) = push(abs Stack(s),abs Ele(e))

3

�@
@

�

6

top of the stack

e3e2e1

Figure 2: A Concrete Stack

However, as we will see in Subsection 2.3, generating the implementation of an abstractor
is not so easy.

Our approach is based on the initial model. The initial algebra, among all the algebras
that satisfy a given speci�cation, is the �nest-grained in that two values are considered to be
di�erent unless they can be proved to be equivalent. Other algebra are coarser-grained since
they equate more values than strictly necessary. This means two values equivalent under
the initial model are also equivalent under other models. Therefore, abstractors generated
in the initial model can be also used in other models.

2.3 The Problem Statement

The problem we are to investigate is how to generate implementations of abstractors.
Basically, abstractors can be generated from types' speci�cations or from types' im-

plementations. In the method of generation from speci�cations, a generator analyzes the
speci�cation of type T and derives the abstractor for T, which is composed only of calls on

the functions of T. On the other hand, in the method of generation from implementations,
a particular implementation of T is provided via an abstract model. The generator analyzes
the relationship between T and the types used to implement T, and derives the abstractor
for this particular implementation.

The major advantage of generation from speci�cations is that the resulted abstractor
is independent of any particular implementation and, therefore, can be used by any im-
plementation of a type. Only one abstractor is needed for a given type. In contrast, the
abstractor generated from an implementation is applicable only to that implementation.
Each implementation of a type requires its own abstractor. The performance of abstractors
generated from implementations, however, might be better because the generator can take
into account the particularities of the implementations. Also, as we will see, speci�cations
may not always provide the \right" functions for generating an abstractor.

This paper focuses on generating abstractors from speci�cations. Like many other prob-
lems dealing with semantics of formal speci�cations, it is in general unsolvable. It is essen-
tially equivalent to the problem of �nding the inverse function of a given function (construc-
tor), which is in general unsolvable. From a practical view of point, on the other hand, given
a value of a type, one does not necessarily have in hand the necessary selector functions to
pick out the components from which the value is composed. Fortunately, as shown in the

4

rest of this paper, there exist syntactic constraints of speci�cations for some types which
guarantee the generation of abstractors.

2.4 Term-based Data Exchanges

This subsection discusses a possible application of abstractors to communication of ADT
values in distributed programs.

A distributed program is composed of a set of modules that reside on nodes of a
distributed system and that cooperate to complete a common task. A distributed program
is heterogeneous if its modules run on di�erent kinds of machines, are written in di�er-
ent languages, and/or use di�erent implementations for the same abstract data type. A
communication is a process of transmitting data values from one module (the sender) to
another (the receiver). In a communication, data values are transmitted in an exchange
representation [Lam87], which is the only vehicle the sender and receiver are able to
understand.

To support communication of ADT values in heterogeneous distributed programs, a
system must deal with conversions between di�erent (concrete) data representations. One
approach would be to choose an exchange representation that is acceptable to all the modules
of a program and to associate each module with an in-converter and an out-converter.
In this approach, a communication involves four steps, illustrated by the solid arrows in
Figure 3:

1. The sender initiates a communication.

2. The out-converter at the sender transforms the value to be communicated from the
local (concrete) representation used by the sender to the exchange representation.

3. The underlying network system transmits the value in the exchange representation
from the sender to the receiver.

4. The in-converter at the receiver transforms the value from the exchange representation
to the local (concrete) representation used by the receiver.

The advantages of this approach are

� Representation details are hidden. The details of the local representation used by a
module are hidden from other modules. In any communication, the sender is only
concerned with how to convert the communicated values from the local representation
to the exchange representation and the receiver is concerned with how to convert the
values from the exchange representation to the local representation. Neither needs to
know the other's local representation.

� Representation changes are localized. Changes in the local representation of a module
do not a�ect other modules' in- or out-converters; only the module's own in- and
out-converters need to be changed.

� The number of converters is �xed. Each module uses a �xed number (two) of convert-
ers; adding new modules will not cause any new converters to be added to the existing
modules.

Two fundamental design issues for this approach are as follows:

� How to choose an appropriate exchange representation?

� How to generate the necessary converters?

5

"!
"!

"!
�

���

-. . -. . .

�
.
.
.
.

R.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

--

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

6

@
@
@R

?
Module

ER: Exchange Representation

LR: Local Representation

Sender

LR

In-
converter

Out-
converter

Receiver

ER

Module

converter
Out-

converter
In-

LR

Figure 3: A Communication Process

6

One choice of the exchange representation is construction terms. In such systems, a value
of an ADT is converted to a construction term before transmission, and the construction
term is parsed and evaluated to the local representation used by the receiver upon receipt.

For example, suppose a sender wishes to transmit the stack shown in Figure 2 to a
receiver. The out-converter (actually an abstractor) at the sender converts the stack to the
construction term

push(push(push(new,e1),e2),e3)

which is then transmitted to the receiver. The term is automatically parsed by the in-
converter (behaving like a syntax-directed translator) at the receiver; and the local repre-
sentation at the receiver is obtained by calling the appropriate constructors in an appropriate
order. Therefore, the in-converter in Figure 3 becomes a simple parser and the out-converter
is a set of abstractors.

The advantages of using construction terms as the exchange representation include

� The exchange representation is abstract, since it is a mathematical notation|independent
of any particular machine, language, or user. This would increase data portability
among di�erent kinds of machines, languages, and ADT implementations.

� The in-converter can be automatically generated since it is just a parser.

Generation of the out-converter (i.e., abstractors) is the topic of this paper.

3 Abstractors for Types with Symmetric Speci�ca-

tions

In this section, we study abstractors for types with symmetric speci�cations. First, we
formulate the de�nition of symmetric speci�cations; then, present a procedure to determine
if a speci�cation is symmetric; and, �nally, give a skeleton of abstractors for types with
symmetric speci�cations.

3.1 Symmetric Speci�cations

De�nition 1 Let T be a type with m constructors cons1; : : : ; consm:

cons1 : T1;1 � : : :� T1;n1 �! T

...

consm :Tm;1 � : : :� Tm;nm
�! T

For a given constructor consi (1 � i � m), if the speci�cation of T contains a function g:

g : T �! Ti;j (1 � j � ni)

with an equation of the form of

g(consi(x1; : : : ; xj; : : : ; xni)) = xj

g is called the j-th normal selector of consi. Consi is invertible if all of its ni normal
selectors are de�ned in the speci�cation of the type.

In the sequel, the j-th normal selector of consi is denoted by seli;j .

7

Type Binary tree

TOI

Bin tree

Base types

Parameters: Ele

Functions

new: ! Bin tree

maketree: Bin tree � Ele � Bin tree ! Bin tree

left : Bin tree ! Bin tree

right: Bin tree ! Bin tree

data: Bin tree ! Ele

isnew: Bin tree ! Boolean

Constructors

new, maketree

Equations

left(maketree(l, e, r)) = l

right(maketree(l, e, r)) = r

data(maketree(l, e, r)) = e

isnew(new) = true

isnew(maketree(l, e, r)) = false

Figure 4: Speci�cation of Binary Tree

8

De�nition 2 Assume T has m constructors as in De�nition 1. If the speci�cation of T
contains a function disc:

disc : T �! D

where D = fd1; : : : ; dmg is any m-element set, and if it contains m equations:

disc(cons1(x1;1; : : : ; x1;n1)) = d1

...

disc(consi(xi;1; : : : ; xi;ni)) = di

...

disc(consm(xm;1; : : : ; xm;nm
)) = dm

then disc is called a discriminator of T and D is called a discrimination set.

By this de�nition, one may easily verify that isnew of type Stack is a discriminator.

De�nition 3 The speci�cation of a type is symmetric if

1. the type has a discriminator, and

2. all the constructors but constants are invertible.

We now present an algorithm to check if the speci�cation of type T is symmetric.

For each non-constant constructor cons
For j from 1 to the number of the arguments of cons

If cons does not have the j-th normal selector (De�nition 1)
Return "The speci�cation is asymmetric"

End for

End for

If T has a discriminator (De�nition 2)
Return "The speci�cation is symmetric"

Else Return "The speci�cation is asymmetric"

Many speci�cations are symmetric (See Table 1 on Page 26). The speci�cation of type
Stack is an obvious example. Using the above algorithm, we know the speci�cation of type
Binarytree(shown in Figure 4) is also symmetric, where the discriminator is isnew, and the
three normal selectors of maketree are left , data, and right respectively. On the other hand,
some speci�cations are asymmetric. The speci�cation of type Queue (shown in Figure 5) is
such an example; its constructor enqueue does not have the normal selectors by De�nition 1.

3.2 An Abstractor Skeleton

For any value of a type with symmetric speci�cation, we can determine which constructor has
constructed the value by applying the discriminator to the value, and select the components
of the value by applying the normal selectors of the corresponding constructor to the value.
This is exactly the way in which an abstractor works.

9

Type Queue

TOI

Queue

Base types

Parameter: Ele

Functions

new: ! Queue

enqueue: Queue � Ele ! Queue

front: Queue ! Ele

dequeue: Queue ! Queue

isnew: Queue ! Boolean

Constructors

new, enqueue

Equations

front(enqueue(new, e)) = e

front(enqueue(enqueue(q, e), e1)) = front(enqueue(q, e))

dequeue(enqueue(new, e)) = new

dequeue(enqueue(enqueue(q, e), e1)) = enqueue(dequeue(enqueue(q, e)), e1)

isnew(new) = true

isnew(enqueue(q, e)) = false

Figure 5: Speci�cation of Queue

10

Proposition 1 Suppose the speci�cation of T is symmetric. Let the constructors of T

cons1 : T1;1 � : : :� T1;n1 �! T

...

consm :Tm;1 � : : :� Tm;nm
�! T

Let disc be a discriminator and fd1; : : : ; dmg a discrimination set. The abstractor skeleton

for T is

abs T(v:T) =

if disc(v)=d1
cons1(abs T1;1(sel1;1(v)), : : :, abs T1;n1(sel1;n1(v)))

else if disc(v)=d2
cons2(abs T2;1(sel2;1(v)), : : :, abs T2;n2(sel2;n2(v)))

...

else

consm(abs Tm;1(selm;1(v)), : : :, abs Tm;nm
(selm;nm

(v)))

If any constructor consi(1 � i � m) is a constant (i.e., its domain is empty), the
corresponding statement above would simply be

if disc(v)=di
consi

3.3 An Example

We now show the use of the skeleton by an example. Consider the type Binary tree in Fig-
ure 4. The correspondence between the functions of Binary tree and those of Proposition 1
is

cons1 : new

cons2 : maketree

sel2;1 : left

sel2;2 : data

sel2;3 : right

disc : isnew

Accordingly, the abstractor for Binary tree is as follows (Please note, since isnew returns
a boolean value, we simply write if isnew(v) for if isnew(v)=true).

abs Bin tree(v:Bin tree) =
if isnew(v)

new

else

maketree(abs Bin tree(left(v)),abs Ele(data(v)),abs Bin tree(right(v)))

11

4 Abstractors for Types with Asymmetric Speci�ca-

tions

In practice, many speci�cations are asymmetric. The speci�cation of type Queue in Figure 5
is such an example: the constructor enqueue does not have its normal selectors. Genera-
tion of abstractors for types with asymmetric speci�cations is di�cult. In this section, we
consider types that have only two constructors1 : one is a constant constructor

new :�! T

and the other is a composite constructor

cons : T �E �! T

where E is a base type. The construction term for any value of those types would be either

new (1)

or

cons(cons(: : : cons(new, e1),: : : ,en�1), en) for n � 1 (2)

In the rest of this section, we introduce a notation for abbreviating construction terms.
We then classify types into those with keyed selectors and those with non-keyed selectors,
and study their abstractors respectively.

4.1 A Notation

Let f be a unary function

f : T �! T

In standard mathematic notation, applying f to x n times

f(f(: : : (x) : : :))

would be abbreviated as

fn(x)

This can be recursively de�ned by

f0(x) = x

fn+1(x) = f(fn(x)) if n > 0

We now extend this notation to binary functions. In the following, he1; : : : ; eni denotes a
sequence of n elements with e1 being the �rst element and en the last.

De�nition 4 Let

f : T � E �! T

For x : T ; e; e1; : : : ; en : E, f�(x; he1; : : : ; eni) is de�ned by

f�(x; hi) = x

f�(x; he1; : : : ; eni) = f(f�(x; he1; : : : ; en�1i); en) if n > 0

1We have not yet looked at types with more than two constructors.

12

In this notation, the expression

f(f(: : : f(x; e1); : : : ; en�1); en)

can be abbreviated as

f�(x; he1; : : : ; eni)

Similarly, the construction terms in (1) and (2) can be rewritten in one expression

cons�(new; he1; : : : ; eni); n � 0

Theorem 1 Let

f : T �E �! T

For n � 0 and m � 0, we have

f�(f�(x; he1; : : : ; emi); he
0

1; : : : ; e
0

n
i) = f�(x; he1; : : : ; em; e

0

1; : : : ; e
0

n
i)

Proof. By induction on n; see Appendix A.1. 2

We may further extend this notation as follows.

De�nition 5 Let

f : T �E1 � : : :�Em �! T (m � 2)

The n (n � 0) repeated application of f is de�ned by

f�(x; hi) = x

f�(x; h(e1;1; : : : ; e1;m); : : : ; (en;1; : : : ; en;m)i) =

f(f�(x; h(e1;1; : : : ; e1;m); : : : ; (en�1;1; : : : ; en�1;m)i);

(en;1; : : : ; en;m)) if n > 0

By grouping the arguments of a function together in a sequence, our notation has the
following advantages:

� reducing the length of an expression,

� highlighting the arguments of functions in an expression, and

� highlighting the order in which the arguments are applied to functions.

4.2 Abstractors for Types with a Non-keyed Selector

Let v be a value and its construction term be

cons�(new; he1; : : : ; eni)

In order to convert v to the construction term, we must be able to pick up every e1 to en
from v. This is an iteration process on v [Lam90]. In this subsection, we consider using
non-keyed selectors to achieve the iteration.

13

4.2.1 Non-keyed Selectors

A non-keyed selector is of the form

sel : T �! E

It is called a non-keyed selector because it does not use any keys2 to select components. In
the following, we consider two classes of non-keyed selectors: value-sensitive and seniority-
sensitive selectors.

De�nition 6 A selector sel is value-sensitive if, for every sequence he1; : : : ; eni there
exists some i in [1 :: n] such that, for every permutation he01; : : : ; e

0

n
i of he1; : : : ; eni,

sel(cons�(new; he01; : : : ; e
0

n
i)) = sel(cons�(new; he1; : : : ; eni)) = ei

De�nition 7 A selector sel is seniority-sensitive if, for every sequence he1; : : : ; eni there
exists some i in [1 :: n] such that, for every permutation he01; : : : ; e

0

n
i of he1; : : : ; eni,

sel(cons�(new; he01; : : : ; e
0

n
i)) = e0

i

Given v = cons�(new; he1; : : : ; eni), a value-sensitive selector selects a component from
v based on the component's value, while a seniority-sensitive selects a component based on
its position in the sequence he1; : : : ; eni, i.e., the seniority (with respect to the chronological
order in which the component was added into the sequence) of the component.

We now present a su�cient condition to test if a selector is value-sensitive.

Theorem 2 Let sel be a selector. If its equations are in the form of:

sel(cons(new; e)) = e

sel(cons(cons(x; e1); e2)) =

�
e2 if p(e2; sel(cons(x; e1))),
sel(cons(x; e1)) otherwise.

where p is a comparison function on E:

p : E � E �! Boolean

and if p is a total order3 on the base type E, then sel is value-sensitive.

Proof. See Appendix A.2. 2
Consider the speci�cation of the type Priority queue in Figure 6. head is a selector, and

its equations are in the same form as those of sel's in Theorem 2, and < is a total order on
Integer. Therefore head is a value-sensitive selector.

The following theorem shows a su�cient condition for seniority-sensitive selectors.

Theorem 3 Let sel be a selector; and c be an integer and c � 1. Sel is seniority-sensitive

if its equations are of the following form

sel(cons(new; e1)) = e1

sel(cons�(new; he1; e2i)) = ei2 for some i2: 1 � i2 � 2

2See Section 4.3 for the de�nition of keys.
3Although the problem of determining whether a predicate is a total order is in general unde-

cidable, the knowledge of some particular predicates being total orders on some commonly used

types, such as < is a total order on Integer, can be built into a generator and used to check the

total order condition in this theorem.

14

Type Priority queue

TOI

PQueue

Base type

Non-parameter: Integer

Functions

new: ! PQueue

add: PQueue � Integer ! PQueue

head: PQueue ! Integer

tail: PQueue ! PQueue

isnew: PQueue ! Boolean

Constructors

new, add

Equation

head(add(new, i)) = i

head(add(add(q, i), i1)) =

�
i1 if i1 < head(add(q; i1)),
head(add(q, i)) otherwise.

tail(add(new, i)) = new

tail(add(add(q, i), i1)) =

�
add(q, i) if i1 < head(add(q; i1)),
add(tail(add(q, i)), i1) otherwise.

isnew(new) = true

isnew(add(q, i)) = false

add(add(q, i), i1) = add(add(q, i1), i)

Figure 6: Speci�cation of Priority Queue

15

...

sel(cons�(new; he1; : : : ; ec�1i)) = eic�1 for some ic�1 :1 � ic�1 � c� 1

and either

sel(cons�(x; he1; : : : ; eci)) =

�
ec if x = new,

sel(cons�(x; he1; : : : ; ec�1i)) otherwise.
(3)

or

sel(cons�(x; he1; : : : ; eci)) = e1

Proof. See Appendix A.3. 2
For example, in the type Queue (Figure 5), the equations of front are of the form of (3),

where c = 1. Hence, front is a seniority-sensitive selector; and it always selects the �rst
element in a queue.

4.2.2 Deletors

A deletor removes a component from a composite value. In the following, we discuss two
kinds of deletors: non-keyed deletors and self-keyed deletors.

Non-keyed Deletors

De�nition 8 Let

del : T �! T

del is called a non-keyed deletor if for every sequence he1; : : : ; eni,

del(cons�(new; he1; : : : ; eni)) = cons�(new; he1; : : : ; ei�1; ei+1; : : : ; eni) for some 1 � i � n

That is, a non-keyed deletor removes a component from a given value.

For the sake of our research, we are interested in pairs of selectors and deletors rather
than just deletors. The following de�nes complementary pairs of selectors and deletors.

De�nition 9 Let sel be a non-keyed selector

sel : T �! E

and del be a non-keyed deletor

del : T �! T

sel and del are a complementary pair (complementary to each other), if for any v : T , the
component selected by sel(v) is the one deleted by del(v). That is, sel(v) and del(v) work
on the same component.

We now present two methods to �nd complementary pairs.

Theorem 4 For a non-keyed selector sel

sel : T �! E

and a non-keyed deletor del

del : T �! T

16

if all the equations of sel and del are in the following form, they are a complementary pair.

sel(cons(new; e)) = e

sel(cons(cons(x; e1); e2)) =

�
e2 if p(e2; sel(cons(x; e1))),
sel(cons(x; e1)) otherwise.

del(cons(new; e)) = new

del(cons(cons(x; e1); e2)) =

�
cons(x; e1) if p(e2; sel(cons(x; e1))),
cons(del(cons(x; e1)); e2) otherwise.

where p is a total order comparison function on E.

Proof. Since sel and del have the same form of equations and the conditions in the equations
are the same, they work on the same component of a value. 2

For example, head and tail of the priority queue in Figure 6 is a complementary pair.

Theorem 5 Let c be an integer and c � 1. Let sel be a non-keyed selector and del a

non-keyed deletor. If their equations are in the following form, they are a complementary

pair.

sel(cons(new; e1)) = e1 (4)

...

sel(cons�(new; he1; : : : ; ec�1i)) = eic�1 ; 1 � ic�1 � c� 1 (5)

del(cons(new; e1)) = new (6)

...

del(cons�(new; he1; : : : ; ec�1i)) =

cons�(new; he1; : : : ; eic�1�1; eic�1+1; : : : ; ec�1i) (7)

and either

sel(cons�(x; he1; : : : ; eci)) =

�
ec if x = new,

sel(cons�(x; he1; : : : ; ec�1i)) otherwise.
(8)

del(cons�(x; he1; : : : ; eci)) =�
cons�(x; he1; : : : ; ec�1i) if x = new,

cons(del(cons�(x; he1; : : : ; ec�1i)); ec) otherwise.
(9)

or

sel(cons�(x; he1; : : : ; eci)) = e1

del(cons�(x; he1; : : : ; eci)) = cons�(x; he2; : : : ; eci)

Proof. Since sel and del have the same form of equations, they work on the same component
of a value. 2

Self-keyed Deletors

De�nition 10 Let

del : T � E �! T

del is called a delete-one self-keyed deletor if, given e : E and v : T , del(v; e) removes
one occurrence of e from v; it is called a delete-all self-keyed deletor if del(v; e) removes
all occurrences of e from v.

17

The following gives a form of equations which guarantees self-keyed deletors.

Theorem 6 Let

del : T � E �! T

We have

I. Del is a delete-one self-keyed deletor if its equations are in the form of

del(new; e) = new

del(cons(x; e1); e) =

�
x if e = e1,

cons(del(x; e); e1) otherwise.

II. Del is a delete-all self-keyed deletor if its equations are in the form of

del(new; e) = new

del(cons(x; e1); e) =

�
del(x; e) if e = e1,

cons(del(x; e); e1) otherwise.

Proof. See Appendix A.4. 2

A self-keyed deletor may be paired with any value-sensitive selector in a sense that they
work on the same component of a value.

4.2.3 Abstractor Skeletons

In this subsection, we present abstractor skeletons for several kinds of types. In each ab-
stractor, a pair of selector and deletor are used to iterate all the components of a value, say
v. The basic idea is to repeat the following process until v becomes new:

select a component from v;
delete that component from v;

In the following, we assume isnew is a discriminator of T and satis�es equations

isnew(new) = true

and

isnew(cons(t; e)) = false

Proposition 2 Let

sel : T �! E

del : T �! T

If

I. Sel is a value-sensitive selector, del is a non-keyed deletor, and they are a

complementary pair.

II. T has an equation

cons(cons(x; e1); e2) = cons(cons(x; e2); e1)

18

then the abstractor skeleton for T is

abs T(v:T) =

if isnew(v)

new

else

cons(abs T(del(v)),abs E(sel(v)))

Proof. See Appendix A.5. 2
Proposition 2 can be used to handle type Priority queue.
Suppose a selector sel and a deletor del have equations in the form of (4) to (7) in Theo-

rem 5, i.e., c > 1. Given a value v with less than c components, sel(v)/del(v) chooses/deletes
a component from v in a non-uniformed way. Here, we give a skeleton for types whose se-
lector and deletor are only in the form of Equations (8) and (9).

Proposition 3 Let

sel : T �! E

del : T �! T

If the equations of sel and del are in the form of Equations (8) and (9) with c = 1, that is,
sel is a seniority-sensitive selector, del is a non-keyed deletor, and they are a complementary

pair, then the abstractor for T is

abs T(v:T) = emit T(v, new)

where

emit T(v:T, s:Term) =

if isnew(v)

s

else

emit T(del(v), cons(s,abs E(sel(v))))

Proof. See Appendix A.6. 2

Proposition 3 can be used to handle type Queue.

Proposition 4 Let

sel : T �! E

del : T � E �! T

If

I. sel is a value-sensitive selector,

II. T has an equation

cons(cons(x; e1); e2) = cons(cons(x; e2); e1)

III. either of the following conditions is valid

III{A. del is a delete-one self-keyed deletor, or

III{B. del is a delete-all self-keyed deletor and T has an equation

cons(cons(x; e); e) = cons(x; e)

19

then the abstractor skeleton for T is

abs T(v:T) =

if isnew(v)

new

else

cons(abs T(del(v, sel(v))),abs E(sel(v)))

Proof. Similar to the proof of Proposition 2. 2
Proposition 4 can be used to handle ordinary types Set and Bag.

4.3 Abstractors for Types with a Keyed Selector

In this section, we study types with keyed selectors. We give a de�nition of keyed selectors,
investigate a special kind of keyed selector, present the abstractor skeleton for types with
this kind of selector, and show two application examples.

4.3.1 Keyed Selectors

A keyed selector has the following functionality

sel : T �K1 � : : :�Km �! E

Given a value v and a component c, an m-tuple (k1; : : : ; km) is a key of c if one may select
c by sel(v; k1; : : : ; km). That is,

sel(v; k1; : : : ; km) = c

In this paper, we only consider selectors with single keys4:

sel : T �K �! E

We now show how a certain kind of equations decides the keys of components in a value.
In the following, fg denotes the composite of f and g, where f and g are functions. f�1

denotes the inverse of f in the ordinary mathematics sense; that is, for f

f : D �! R

its inverse f�1 exists if and only if f is bijective.
The conditions in the following theorem are in general undecidable. They are used

here only for proving this somewhat general theorem. With some built-in knowledge (See
Subsections 4.3.3and 4.3.4), a generator may check those conditions on some commonly used
types.

Theorem 7 Let sel be a selector whose de�nition equations are in the form of

sel(cons(x; e); k) =

�
e if k = h(cons(x; e)),
sel(x; f(k)) otherwise.

where

h : T �! K and f : K �! K:

If

4We have not yet looked at selectors with multiple keys.

20

I. there exists a function g : K �! K such that for every x0 : T and e0 : E, the
following equation is valid:

h(cons(x0; e0)) = g(h(x0))

II. f�1 and g�1 exist,

III. f�1 and g�1 are commutative, i.e., f�1g�1 = g�1f�1, and

IV. for every n; i � 1 and i < n,

(f�1g�1)n�i(h(cons�(new; he1; : : : ; eni))) 6= h(cons�(new; he1; : : : ; eni))

then for a value v whose construction term is cons�(new; he1; : : : ; eni),

I. en can be selected by a key h(v). That is,

sel(v; h(v)) = en

II. ei(1 � i < n) can be selected by a key (f�1g�1)n�i(h(v)). That is,

sel(v; (f�1g�1)n�i(h(v))) = ei

Proof. See Appendix A.7. 2
At the �rst glance, the conditions in this theorem are very strict. In practice, however,

it is likely that h is a constant function (See Subsection 4.3.3 or f an identity function (See
Subsection 4.3.4). When h is a constant function, g will be an identity function and so will
be g�1; hence, f�1g�1 becomes a single function f�1. When f is an identity function, f�1

will be an identity function too; thus, f�1g�1 becomes a single function g�1. In either case,
f�1g�1 becomes a single function, making it easier to verify the conditions of Theorem 7.

In addition, we believe that the conditions in Theorem 7 might be natural for keyed
selectors, since these conditions ensure that a selector associates a unique key for each
component in a value.

4.3.2 An Abstractor Skeleton

This subsection presents an abstractor skeleton for types which satisfy the conditions of
Theorem 7. Suppose T is such a type. Given any value v of T whose construction term is
cons�(new; he1; : : : ; eni), according to the theorem, one can pick up en to e1 by using the
keys:

h(v); f�1(g�1(h(v))); : : : ; (f�1g�1)n�1(h(v))

The following abstractor is based on this idea to select all the components in a value.

Proposition 5 Assume T satis�es the conditions in Theorem 7. If T has a function

size : T �! Nat

with equations

size(new) = 0

size(cons(x; e)) = size(x) + 1

then the abstractor skeleton is as follows.

21

Type Sequence

TOI

Sequence

Base types

Parameters: Ele

Non-parameters: Nat

Functions

new: ! Sequence

insert: Sequence � Ele ! Sequence

retrieve: Sequence � Nat ! Ele

length: Sequence ! Nat

Constructors

new, insert

Equations

retrieve(insert(s, e), n) =

�
e if n = 0,

retrieve(s, n-1) otherwise.

length(new) = 0

length(insert(s, e)) = length(s)+1

Figure 7: Speci�cation of Sequence

abs T(v:T) =

if isnew(v)

new

else

iter T(v, size(v), h(v))

where

iter T(v:T, m:Nat, k:K) =

if m=1

cons(new, abs E(sel(v, k)))

else

cons(iter T(v, m-1, f�1g�1(k)), abs E(sel(v, k)))

Proof. See Appendix A.8. 2

Note that size computes the number of components of a value and is used in the ab-
stractor to control the number of the iteration.

4.3.3 Example: Sequence

First we look at the type Sequence in Figure 7. In the speci�cation

h : Sequence �! Nat

h(s) = 0

22

f : Nat �! Nat

f(n) = n� 1

Since h(s) = 0, it is a constant function. We have

g : Nat �! Nat

and

g(n) = n

Therefore,

f�1(n) = n+ 1

g�1(n) = n

(f�1g�1)(n) = n+ 1

The abstractor for Sequence would be

abs Sequence(v:Sequence) =

if isnew(v)

new

else

iter Sequence(v, length(v), 0)

where
iter Sequence(v:Sequence, m:Nat, k:Nat) =

if m=1

insert(new,abs Ele(retrieve(v, k)))

else

insert(iter Sequence(v, m-1, k+1), abs Ele(retrieve(v, k)))

One may note that given a sequence of he1; : : : ; eni, the speci�cation of Sequence asso-
ciates en; : : : ; e1 with keys:

0; 1; : : : ; n� 1

respectively.

4.3.4 Example: Tree

Now turn to a harder example,Tree in Figure 8, which is adapted from the reference [GH91].
In the speci�cation

h : Tree �! Nat

h(t) = numChildren(t)� 1

f : Nat �! Nat

f(n) = n

Since

h(addChild(t1; t2))

= numChildren(addChild(t1; t2))� 1

= numChildren(t1) + 1� 1

= numChildren(t1)� 1 + 1

= (h(t1)) + 1

23

Type Tree

TOI

Tree

Base types

Parameters: Ele

Non-parameters: Nat

Functions

node: Ele ! Tree

addChild: Tree � Tree ! Tree

child: Tree � Nat ! Tree

content: Tree ! Ele

numChildren: Tree ! Nat

isnode: Tree ! Boolean

Constructors

node, addChild

Equations

child(addChild(t1, t2), n) =

�
t2 if n=numChildren(addChild(t1, t2)) -1,

child(t1, n) otherwise.

content(node(e)) = e

content(addChild(t1, t2)) = content(t1)

numChildren(node(e)) = 0

numChildren(addChild(t1, t2)) = numChildren(t1)+1

isnode(node(e)) = true

isnode(addChild(t1,t2)) = false

Figure 8: Speci�cation of Tree

Adapted from \An LSL Handbook"[GH91]

24

we have

g : Nat �! Nat

and

g(n) = n+ 1

Therefore,

f�1(n) = n

g�1(n) = n� 1

(f�1g�1)(n) = n� 1

The abstractor for Tree would be

abs Tree(v:Tree) =

if isnode(v)

node(abs Ele(content(v)))

else

iter Tree(v, numChildren(v), numChildren(v)-1)

where
iter Tree(v:Tree, m:Nat, k:Nat) =

if m=1

addChild(abs Tree(child(v,k)))

else

addChild(iter Tree(v, m-1, k-1), abs Tree(child(v, k)))

5 Conclusions and Future Work

We have proposed a method to systematically generate abstractors from some algebraic
speci�cations. The method has been applied to the types contained in the LSL (Larch

Shared Language) Handbook [GH91], some of which have been shown in this paper. Table 1
lists the results5.

We now summarize our contributions:

� We have classi�ed types into the symmetric and asymmetric classes. We have shown
abstractors for symmetric types can be automatically generated. We have identi�ed
some conditions which allow one to automatically generate abstractors for asymmetric
types.

� We have designed abstractor skeletons for types whose abstractors can be generated.
The abstractors contain only the functions provided by the types and are composed
in a purely functional way. As a result, the abstractors have the same style as other
functions.

� We have extended the repeated function application notation to n-ary functions. The
new notation has proven useful in expressing construction terms.

5Only composite types appear in the table.

25

LSL Type Proposition/Page Kind Selector Deletor

Array not handled

Bag prop. 4/pp. 19 asymmetric value-sensitive self-keyed

Deque prop. 1/pp. 11 symmetric

Graph not handled

List prop. 1/pp. 11 symmetric

Map not handled

PriorityQueue prop. 2/pp. 18 asymmetric value-sensitive non-keyed

Relation not handled

Sequence prop. 5/pp. 21 asymmetric keyed

Set prop. 4/pp. 19 asymmetric value-sensitive self-keyed

Queue prop. 3/pp. 19 asymmetric seniority-sensitive non-keyed

Simpletree prop. 5/pp. 21 asymmetric keyed

Stack prop. 1/pp. 11 symmetric

String prop. 5/pp. 21 asymmetric keyed

Table 1: Results of Handling the LSL Types

26

This paper assumes a purely functional system. In a direct translation to an imperative
system, data structures would be rebuilt after (often destructively) abstracting them. Al-
though the performance would not be good, it is shown that only an abstractor and a parser
would be enough to convert di�erent representations of ADT values. When performance is a
priority, one may consider using nondestructive iterators [Lam90] in an imperative language.

In this paper, we are only concerned with generation from speci�cations. As discussed in
Section 3, abstractors could be generated from implementations as well. It would be easier
to do so and the performance of the resulted abstractors might be better. How to generate
abstractors from implementations has yet to be investigated.

Clearly, much work is needed on looking for conditions that guarantee automatic gen-
eration of abstractors for more asymmetric types. We are investigating ways to generate
abstractors for the LSL types which we currently cannot handle.

Acknowledgments We are very grateful to Tianling Lu and Andrew Malton for many
critical and valuable comments on earlier drafts of this paper.

References

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1: Equations and

Initial Semantics. Springer-Verlag, 1985.

[GH78] J.V. Guttag and J.J. Horning. The algebraic speci�cations of abstract data types.
Acta Informatica, 10(1):27{52, 1978.

[GH91] J.V. Guttag and J.J. Horning. An LSL handbook. Digital Equipment Corpora-
tion, 1991.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach
to the speci�cation, correctness, and implementation of abstract data types. In
Current Trends in Programming Methodology, Vol.4 Data Structuring, pages 80{
149. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1978.

[Lam87] D.A. Lamb. IDL: Sharing intermediate representations. ACM Transactions on

Programming Languages and Systems, 9(3):267{318, July 1987.

[Lam90] D.A. Lamb. Speci�cation of iterators. IEEE Transactions on Software Engineer-

ing, 16(12):1352{1359, December 1990.

[Wir90] M. Wirsing. Algebraic speci�cation. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B, pages 675{788. Elsevier Science Publishers
B.V./The MIT Press, 1990.

A Proofs of Several Theorems and Propositions

Here we supply the proofs that were skipped in the main body of this paper.

A.1 A Theorem for Abbreviating Expressions of Repeated Func-

tion Applications

The following theorem shows how two sequences of arguments in an expression are concate-
nated into a single sequence.

27

Theorem 1 Let

f : T � E �! T

For let m � 0 and n � 0, we have

f�(f�(x; he1; : : : ; emi); he
0

1; : : : ; e
0

n
i) = f�(x; he1; : : : ; em; e

0

1; : : : ; e
0

n
i) (10)

Proof. We prove (10) by induction on n.

Base step: n = 0

f�(f�(x; he1; : : : ; emi); he
0

1; : : : ; e
0

n
i)

f by n = 0 g

= f�(f�(x; he1; : : : ; emi); hi)

f by De�nition 4 g

= f�(x; he1; : : : ; emi)

f by simple calculations g

= f�(x; he1; : : : ; emi)

Induction Step: Assume (10) holds for n; (n > 0).

f�(f�(x; he1; : : : ; emi); he
0

1; : : : ; e
0

n+1i)

f by De�nition 4 g

= f(f�(f�(x; he1; : : : ; emi); he
0

1; : : : ; e
0

n+1i); en+1)

f by induction hypothesisg

= f(f�(x; he1; : : : ; em; e
0

1; : : : ; e
0

n
i); en+1)

f by De�nition 4 g

= f�(x; he1; : : : ; em; e
0

1; : : : ; e
0

n
; en+1i)

2

A.2 A Su�cient Condition for Value-sensitivity

The following theorem presents a su�cient condition to test if a selector is value-sensitive.

Theorem 2 Let sel be a selector. If its equations are in the form of:

sel(cons(new; e)) = e (11)

sel(cons(cons(x; e1); e2)) =

�
e2 if p(e2; sel(cons(x; e1))),
sel(cons(x; e1)) otherwise.

(12)

where p is a comparison function on E:

p : E � E �! Boolean

and if p is a total order on E, sel is value-sensitive.

Proof. First we prove that for any n(n � 1)

sel(cons�(new; he1; : : : ; eni)) = min(e1; : : : ; en) (13)

28

where min(e1; : : : ; en) denotes the minimum element, under the total order p, of the set
fe1; : : : ; eng.

We prove (13) by induction on n.

Base step: n = 1

sel(cons(new; he1i))

f by De�nition 4 g

= sel(cons(new; e1))

f by (11)g

= e1

Since e1 is the only element in e1, it should also be the smallest one.

Induction step: Assume (13) holds for n. Let

e = sel(cons�(new; he1; : : : ; eni))

By the induction hypothesis, e is the minimum element in fe1; : : : ; eng. We have

sel(cons�(new; he1; : : : ; en+1i))

f by De�nition 4 g

= sel(cons(cons�(new; he1; : : : ; eni); en+1))

f By Equation (12) g

=

�
en+1 if p(en+1; e),
e otherwise.

� When p(en+1; e), we have sel(cons
�(new; he1; : : : ; en+1i)) = en+1.

Since

p(en+1; e) = true and

p(e; ei) = true for any i: 1 � i � n

by the transitivity of p,

p(en+1; ei) = true for all i: 1 � i � n

Therefore, en+1 is the minimum element in fe1; : : : ; en+1g.

� When :(p(en+1; e)), we have sel(cons
�(new; he1; : : : ; en+1i)) = e.

Since p is a total order, :(p(en+1; e)) implies p(e; en+1) or e = en+1. This means e is
also the minimum element in fe1; : : : ; en+1g.

Therefore, (13) is correct.

Similarly, sel(cons�(new; he01; : : : ; e
0

n
i)) will return the minimum element in fe01; : : : ; e

0

n
g,

where he01; : : : ; e
0

n
i is a permutation of fe1; : : : ; eng. Since fe1; : : : ; eng and fe01; : : : ; e

0

n
g are

the exactly same set and p is a total order, the minima will be the same. Therefore,

sel(cons�(new; he1; : : : ; eni)) = sel(cons�(new; he01; : : : ; e
0

n
i))

By De�nition 6, sel is value-sensitive. 2

29

A.3 A Su�cient Condition for Seniority-sensitivity

The following theorem shows a su�cient condition for seniority-sensitive selectors.

Theorem 3 Let sel be a selector; and c be a constant integer and c � 1. sel is seniority-

sensitive, if its equations are in the following form

sel(cons(new; e1)) = e1 (14)

sel(cons�(new; he1; e2i)) = ei2 for some i2: 1 � i2 � 2 (15)

...

sel(cons�(new; he1; : : : ; ec�1i)) = eic�1 for some ic�1 :1 � ic�1 � c� 1 (16)

and either

sel(cons�(x; he1; : : : ; eci)) =

�
ec if x = new,

sel(cons�(x; he1; : : : ; ec�1i)) otherwise.
(17)

or

sel(cons�(x; he1; : : : ; eci)) = e1 (18)

Proof. Let

v = cons�(new; he1; : : : ; eni); n > 0

For n < c, the equations (14) to (16) guarantee that sel(v) always returns a component in
a �xed position in he1; : : : ; eni.

For n � c, we have two cases:

(i) Equation (17) guarantees that sel(v) chooses the c-th component in he1; : : : ; eni.
That is,

sel(cons�(new; he1; : : : ; eni)) = ec if n � c (19)

We prove (19) by induction on n.

Base step: n = c

sel(cons�(new; he1; : : : ; eni))

f by n=c g

= sel(cons�(new; he1; : : : ; eci))

f by (17) g

= ec

Induction step: Assume (19) holds for n(n > c).

sel(cons(new; he1; : : : ; en+1i))

f by Theorem 1 g

= sel(cons�(consn+1�c(new; he1; : : : ; en�c+1i); hen�c+2; : : : ; en+1i))

f by (17) and n > c g

= sel(cons�(consn+1�c(new; he1; : : : ; en�c+1i); hen�c+2; : : : ; eni))

f by Theorem 1 g

30

= sel(cons(n+1�c)+(c�1)(new; he1; : : : ; en�c+1; en�c+2; : : : ; eni))

f by simple calculations g

= sel(cons�(new; he1; : : : ; en�c+1; en�c+2; : : : ; eni))

fby induction hypothesis g

= ec

(ii) Equation (18) guarantees that sel(v) chooses the (n � c + 1)-th component in
he1; : : : ; eni. That is,

sel(cons�(new; he1; : : : ; eni)) = en�c+1 for n � c (20)

We prove (20) directly.

sel(cons�(new; he1; : : : ; eni))

f by Theorem 1 and n � c g

= sel(cons�(consn�c(new; he1; : : : ; en�ci); hen�c+1; : : : ; eni))

f by (18) g

= en�c+1

Therefore, sel(v) returns the component in a �xed position. 2

A.4 A Su�cient Condition for Self-keyed Deletors

The following theorem shows a su�cient condition for self-keyed selectors.

Theorem 6 Let

del : T � E �! T

We have

I. Del is a delete-one self-keyed deletor if its equations are in the form of

del(new; e) = new

del(cons(x; e1); e) =

�
x if e = e1,

cons(del(x; e); e1) otherwise.

II. Del is a delete-all self-keyed deletor if its equations are in the form of

del(new; e) = new

del(cons(x; e1); e) =

�
del(x; e) if e = e1,

cons(del(x; e); e1) otherwise.

Proof. Here we only give the proof of I; the proof of II is similar. Let

v = cons�(new; he1; : : : ; eni); n > 0

We prove by induction on n that for e : E, if there exists 1 � i � n such that

ei = e and ej 6= e for all i < j � n

then

del(v; e) = cons�(new; he1; : : : ; ei�1; ei+1; : : : ; eni) (21)

31

Base step: n = 1. It is trivial to show (21) for n = 1. We omit the proof here.
Induction Step: Assume (21) holds for n.

Suppose there exists 1 � i � n+ 1 such that

ei = e and ej 6= e for all i < j � n+ 1

If i = n+ 1,

del(cons�(new; he1; : : : ; en+1i); e)

f by the if clause of del g

= cons�(new; he1; : : : ; eni)

If i < n+ 1,

del(cons�(new; he1; : : : ; en+1i); e)

f by the otherwise clause of del g

= cons(del(cons�(new; he1; : : : ; eni); e); en+1)

f by induction hypothesis g

= cons(cons�(new; he1; : : : ; ei�1; ei+1; : : : ; eni); en+1)

f by simple calculations g

= cons�(new; he1; : : : ; ei�1; ei+1; : : : ; en+1i)

2

A.5 An Abstractor Skeleton for Types with a Value-sensitive Se-

lector and a Non-keyed Deletor

The following proposition gives an abstractor skeleton for types that have a value-sensitive
selector and a non-keyed deletor.

Proposition 2 Let

sel : T �! E

del : T �! T

If

I. sel is a value-sensitive selector, del is a non-keyed deletor, and they are a

complementary pair.

II. T has an equation

cons(cons(x; e1); e2) = cons(cons(x; e2); e1)

then the abstractor skeleton for T is

abs T(v:T) =

if isnew(v)

new

else

cons(abs T(del(v)),abs E(sel(v)))

32

Proof. Let

v = cons�(new; he1; : : : ; eni); n � 0

We need to prove

abs T (v) = cons(: : :cons(new,e1): : : en) (22)

For notation simplicity, in the following, we shall write \e" for abs E(e).
We prove (22) by induction on n.
Base step: n = 0. It is trivial to show (22) for n = 0. We omit the proof here.
Induction Step: Assume (22) holds for n. Let

v0 = cons�(new; he1; : : : ; en+1i)

Suppose

del(v0) = cons�(new; he01; : : : ; e
0

n
i) (23)

sel(v0) = e0
n+1 (24)

Since sel and del are a complementary pair, he01; : : : ; e
0

n
; e0

n+1i must be a permutation of
he1; : : : ; en; en+1i. Hence,

abs T (v0)

f by the else clause of abs T g

= cons(abs T (del(v0)),abs E(sel(v0)))

f by (24) g

= cons(abs T (del(v0)),abs E(e0
n+1))

f by the notation simplicity assumption g

= cons(abs T (del(v0)),e0
n+1)

f by (23) g

= cons(abs T (cons�(new; he01; : : : ; e
0

n
i)),e0

n+1)

f by induction hypothesis g

= cons(cons(: : :cons(new,e01) : : : e0
n
),e0

n+1)

f by Condition II g

= cons(cons(: : :cons(new,e1) : : : en),en+1)

2

A.6 An Abstractor Skeleton for Types with a Seniority-sensitive

Selector and a Non-keyed Deletor

The following proposition gives an abstractor skeleton for types that have a seniority-
sensitive selector and a non-keyed deletor.

Proposition 3 Let

sel : T �! E

del : T �! T

If the equations of sel and del are in the form of Equations (8) and (9) with c = 1, that is,
sel is a seniority-sensitive selector, del is a non-keyed deletor, and they are a complementary

pair, then the abstractor for T is

33

abs T(v:T) = emit T(v, new)

where

emit T(v:T, s:Term) =

if isnew(v)

s

else

emit T(del(v), cons(s,abs E(sel(v))))

Proof. Let

v = cons�(new; he1; : : : ; eni); n � 0

We �rst prove by induction on n

emit T (v; s) = cons(: : :cons(s,e1): : : en) (25)

Base step: n = 0. It is trivial to show (25) for n = 0. We omit the proof here.

Induction Step: Assume (25) holds for n. Let

v0 = cons�(new; he1; : : : ; en+1i)

We have

emit T (v0; s)

f by the else clause of emit T g

= emit T (del(v0); cons(s,abs E(sel(v0))))

f by Equation (8): sel(v0) = e1g

= emit T (del(v0); cons(s, e1))

f by Equation (9): del(v0) = cons�(new; he2; : : : ; en+1i)g

= emit T (cons�(new; he2; : : : ; en+1i); cons(s,e1))

f by induction hypothesis g

= cons(: : :cons(cons(s,e1),e2): : : en+1)

Hence,

abs T (v)

f by the de�nition of abs T g

= emit T (v; new)

f by (25) g

= cons(: : :cons(new,e1): : : en)

2

A.7 Su�cient Conditions for Keyed Selectors

The following theorem shows how a certain kind of equations determines the keys of com-
ponents in a value.

Theorem 7 Let sel be a selector whose de�nition equations are in the form of

sel(cons(x; e); k) =

�
e if k = h(cons(x; e)),
sel(x; f(k)) otherwise.

(26)

34

where

h : T �! K and f : K �! K:

If

I. there exists a function g : K �! K such that for every x0 : T and e0 : E, the
following equation is valid:

h(cons(x0; e0)) = g(h(x0))

II. f�1 and g�1 exist,

III. f�1 and g�1 are commutative, i.e., f�1g�1 = g�1f�1, and

IV. for every n; i � 1 and i < n,

(f�1g�1)n�i(h(cons�(new; he1; : : : ; eni))) 6= h(cons�(new; he1; : : : ; eni))

then for a value v whose construction term is cons�(new; he1; : : : ; eni),

I. en can be selected by a key h(v). That is,

sel(v; h(v)) = en

II. ei(1 � i < n) can be selected by a key (f�1g�1)n�i(h(v)). That is,

sel(v; (f�1g�1)n�i(h(v))) = ei

Proof. The result (a) directly follows from the de�nition of sel. We only need to prove the
result (b): for any n and 1 � i < n the following is valid

sel(cons�(new; he1; : : : ; eni); (f
�1g�1)n�i(h(cons�(new; he1; : : : ; eni)))) = ei (27)

We prove (27) by induction on n. Since i < n, if n = 1, i must be 0. Therefore, we start
from n = 2.

Base step: n = 2

Since 1 � i < n, i can only be 1.

sel(cons�(new; he1; e2i); (f
�1g�1)2�1(h(cons�(new; he1; e2i))))

f by condition IV and (26) g

= sel(cons(new; e1); f((f
�1g�1)(h(cons�(new; he1; e2i)))))

f by condition I g

= sel(cons(new; e1); f((f
�1g�1)g(h(cons(new; e1)))))

f by simple calculations g

= sel(cons(new; e1); h(cons(new; e1)))

f by (26) g

= e1

35

Induction step: Assume (27) holds for n(n > 2).

sel(cons�(new; he1; : : : ; en+1i); (f
�1g�1)(n+1)�i(h(cons�(new; he1; : : : ; en+1i))))

f by Theorem 1 g

= sel(cons(cons�(new; he1; : : : ; eni); en+1); (f
�1g�1)n�i+1(h(cons(new; he1; : : : ; en+1i))))

f by condition IV and (26) g

= sel(cons�(new; he1; : : : ; eni); f((f
�1g�1)n�i+1(h(cons(new; he1; : : : ; en+1i)))))

f by condition I g

= sel(cons�(new; he1; : : : ; eni); f((f
�1g�1)n�i+1(g(h(cons�(new; he1; : : : ; eni))))))

f condition III g

= sel(cons�(new; he1; : : : ; eni); (f
�1g�1)n�i(h(cons�(new; he1; : : : ; eni))))

f by induction hypothesis g

= ei

2

A.8 An Abstractor Skeleton for Types with a Keyed Selector

The following proposition gives an abstractor skeleton for types that have a keyed selector.

Proposition 5 Assume T satis�es the conditions in Theorem 7. If T has a function

size : T �! Nat

with equations

size(new) = 0

size(cons(x; e)) = size(x) + 1

then the abstractor skeleton is as follows.

abs T(v:T) =

if isnew(v)

new

else

iter T(v, size(v), h(v))

where

iter T(v:T, m:Nat, k:K) =

if m=1

cons(new,abs E(sel(v, k)))

else

cons(iter T(v, m-1, f�1g�1(k)), abs E(sel(v, k)))

Proof. Let

v = cons�(new; he1; : : : ; eni); n � 0

We �rst prove that for n > 0, if for a given k : K

sel(v; k) = ej and j � n

then for 1 � m � n

iter T (v;m; k) = cons(: : :cons(new, ej�m+1): : : ej) (28)

36

We prove (28) by induction on m.
Base step: m = 1. (28) immediately follows from the true branch of the if clause in

iter T .
Induction Step: Assume (28) holds for m.
Note that by Theorem 7,

sel(v; f�1g�1(k)) = ej�1 (29)

Now we have

iter T (v;m + 1; k)

f by the else clause of iter T g

= cons(iter T (v;m; f�1g�1(k)),abs E(sel(v; k)))

f by sel(v; k) = ej g

= cons(iter T (v;m; f�1g�1(k)),abs E(ej))

f by notation simplicity assumption g

= cons(iter T (v;m; f�1g�1(k)),ej)

f by induction hypothesis and (29) g

= cons(cons(: : :cons(new, e(j�1)�m+1): : : ej�1),ej)

f by simple calculations g

= cons(cons(: : :cons(new, ej�(m+1)+1): : : ej�1),ej)

Hence, for v = new,

abs T (v)

f by the if clause of abs T g

= new

and for v 6= new,

abs T (v)

f by the else clause of abs T g

= iter T (v; size(v); h(v))

f by size(v) = n g

= iter T (v; n; h(v))

f by (28) with m = n and j = n: Note: j = n is due to sel(v; h(v)) = en. g

= cons(: : :cons(new, e1): : :,en)

2

37

