
The Best-E�ort Virtual-Time CSMA/CD Protocols

with Run-Time Clairvoyancy Support

Sam K. Oh

Glenn H. MacEwen

February 22, 1993
External Technical Report

ISSN-0836-0227-
93-347

Department of Computing and Information Science
Queen's University

Kingston, Ontario K7L 3N6

Document prepared February 23, 1993
Copyright c1992, Sam Oh and Glenn MacEwen

Abstract

Two clairvoyant virtual-time CSMA/CD protocols for dealing with time-constrained mes-
sages are described. A clairvoyant protocol has a priori knowledge about messages expected
to be produced in the future, so that it can take into account such future messages when
it makes a decision for transmission. In the absence of clairvoyancy, some urgent future
messages may not be successfully transmitted when they are actually produced.

For a protocol to be clairvoyant, run-time support is necessary. In the proposed method,
the run-time kernel at each node provides future messages' characteristics, including the
latest sending times. Since the latest sending time of a message speci�es the point in time
by which transmission of the message must begin, each proposed clairvoyant protocol regards
(hence uses) it as the worst-case time at which the message can be produced. In fact, it
is usual in real-time systems that messages are produced earlier than their latest sending
times because the tasks producing them have shorter execution times than their worst-case
estimates. Consequently, the clairvoyancy of a protocol can be enhanced by monitoring the
execution times of task segments at run-time. Run-time support for clairvoyancy, provided
by the run-time kernel and monitoring programs, is also described.

Simulation results show that the proposed clairvoyant protocols yield better performance
over two other virtual-time protocols with no clairvoyancy for a reasonable range of system
loads. The percentage of message timing failures is used as the primary performance mea-
sure.

Keywords: Real-Time. Communication Protocols. Clairvoyancy.
Timing Failure. Task Segment Monitoring.

Contents

1 Introduction 1

2 Related Work 3

2.1 Real-Time Protocols : 3
2.2 Monitoring Methods : 4
2.3 Run-Time Support for Clairvoyancy : 4

3 System Model 5

3.1 Node Architecture : 5
3.2 Message Characteristics : 5
3.3 Message Transmission Model : 7

4 Best-E�ort Protocols 7

4.1 Problems Addressed : 7
4.2 Protocol Descriptions : 8

5 Run-Time Clairvoyancy Support 10

5.1 Semantic Information : 10
5.2 Run-Time Support : 11
5.3 Assisting Task Scheduling : 12

6 Performance Analysis 13

6.1 Simulation Model : 13
6.2 Performance Measures : 14
6.3 Comparative Analysis : 14

7 Conclusion 16

i

1 Introduction

Real-time computer systems are required to produce correct results not only in their values
but also in the times at which the results are produced. To satisfy such timeliness require-
ments, the execution times of program units called real-time tasks are constrained. Each
task timing constraint can be either a delay, a deadline, or both. A delay constraint on a task
speci�es a point in time before which the task must not start, while a deadline constraint
speci�es a point in time at or before which the task must complete. Tasks can be categorized
as either periodic tasks or aperiodic tasks. While a periodic task is activated repetitively at
�xed intervals of time, an aperiodic task is activated in response to asynchronous events.
Task execution times are, in general, stochastic. One often considers estimated worst-case
execution times in analysing a set of tasks for schedulability.

For increased performance and reliability, distributed architectures havingmultiple nodes
interconnected by a communications network are increasingly being used for real-time sys-
tems. Because tasks running on di�erent nodes interact via network message-passing, the
timely delivery of messages is essential for meeting task timing constraints. Consequently,
in addition to task timing constraints, message delivery times must also be constrained.

Message delivery times can be constrained in a way similar to task execution times, by
either a delay, a deadline, or both. A delay constraint on a message speci�es a point in
time before which the delivery must not commence, and a deadline speci�es a point in time
at or before which the delivery must �nish. Messages in general are of variable length, so
di�erent durations are required for transmission. These transmission times, the total time
from start of sending to completion of receiving, must be taken into account for successful
delivery of messages. The latest sending time of a message is the point in time at or before
which transmission must begin (i.e. deadline - transmission time). The earliest sending
time of a message is the point in time before which transmission must not begin (i.e. delay
- network traversal time).

A class of networks frequently used for real-time applications is the multiple access net-
work in which nodes, and hence tasks, share a single communication channel. In this class
of network, only a single message can be in transit over the channel at any one time. If
two or more messages are simultaneously transmitted on the channel, none will be correctly
delivered to their destination due to a collision. Therefore, such systems must have syn-
chronization protocols for controlling the transmission of messages [PZ78]. Based on how
collision is handled, protocols for multiple access networks can be categorized into controlled-
access and contention-based [KSY84]. The controlled-access protocols are characterized by
collision-free access to the channel; they allow each node to access the channel without colli-
sion. Time division multiple access (TDMA) and token passing protocols are examples. On
the other hand, contention-based protocols allow nodes to transmit messages simultaneously
over the channel; hence collisions can occur. Various carrier-sense-multiple-access protocols
(CSMA) with or without collision detection (CD) belong to this category. The performance
of the multiple access protocols in these classes may vary according to their application area.
Many of them, however, are not intended for real-time systems. We call protocols devised to
deal with time-constrained messages real-time communication protocols (or simply real-time
protocols). In this paper, we focus on real-time protocols for transmitting messages with
deadline constraints.

It is known from task scheduling theory that the earliest deadline �rst (EDF) and the
least laxity �rst (LLF) scheduling algorithms are optimal 1 in a uniprocessor system in which
the con�guration is static, i.e. all the task characteristics are known a priori. In practice,

1An optimal scheduler is one which may fail to meet a deadline only if no other scheduler is guaranteed

to succeed [DM89].

1

there are many dynamic applications in which su�cient knowledge regarding the task char-
acteristics cannot be obtained a priori. Even in such dynamic environments, the EDF and
LLF policies have been shown to yield better performance than others [JLT85]. There is
an analogy between multiple access real-time protocols and task scheduling algorithms for
uniprocessors because, in both cases, a single resource is being allocated. Based on this
analogy, several real-time protocols adopt a policy that approximates the EDF or the LLF
policy [KSY83, PTW88, ZR87, ZSR90]. We call a message that must be transmitted �rst
the most urgent message. A message with the least laxity becomes the most urgent one
in a protocol using the LLF policy, while a message with the earliest deadline does so in a
protocol using the EDF policy.

Clairvoyancy is the ability to possess a priori knowledge about the characteristics of
future events. In real-time systems, a message expected to be produced in the future can be
more urgent than those already available for transmission. Such an urgent future message
may not be delivered by its deadline if less urgent but available messages are transmitted
�rst. In addition, a message transmitted too early may result in a collision with a more
urgent message from another node. If a communication protocol has clairvoyancy with
respect to future messages (so that it can consider them when it makes a decision for
transmission) such undesirable and even harmful situations may be avoided or minimized.
Recently, several real-time CSMA protocols have been introduced in the literature [KSY83,
PTW88, ZR87, ZSR90]. However, none of these protocols have clairvoyancy.

In this paper, we introduce two clairvoyant real-time CSMA/CD protocols that make
use of the concept of the virtual clock [MK85, ZR87]; one adopts the LLF policy and the
other the EDF policy. In the sense that these two protocols attempt to approximate a basic
policy as closely as possible and to transmit as many messages as possible successfully, we
call them best-e�ort protocols and denote the former by BVTL and the latter by BVTD.
These two protocols attempt to reserve the communication channel for a most urgent future
message if it cannot be successfully transmitted when a less urgent but currently available
message is transmitted �rst.

The best-e�ort protocols require run-time support for clairvoyancy. In our method,
the run-time system at each node provides the characteristics of a future message (i.e.
design-time information such as deadline and length) when the message is recognized to be
produced in the future. The best-e�ort protocols, with this basic clairvoyancy support, take
the latest sending time of a future message as the worst-case time at which the message can
be produced. In fact, it is usual in real-time systems that a message is produced earlier than
its latest sending time because the actual execution time of its producer task may be less
than the estimated worst-case execution time. With run-time monitoring of task segments'
execution times, the best-e�ort protocols can have enhanced clairvoyancy, i.e. with more
accurate run-time information about when future messages are to be produced, so that
they can have better opportunities for transmitting more urgent future messages. Run-time
clairvoyancy support by the run-time system and monitoring programs is also described in
this paper.

The remainer of this paper is organized as follows. Section 2 briey surveys related work.
Section 3 de�nes the system model, which consists of a set of nodes interconnected by a
single communication channel; each node is a multiprocessor system with shared memory.
We assume a dynamic system environment in which a task arrives asynchronously at a node;
by task arrivalwe mean the occurrence of a request to execute the task. For the case in which
task execution is requested by some sequence of requests, the task arrival is the occurrence
of the last request in the sequence. Section 4 introduces the best-e�ort protocols. Section 5
describes run-time support for clairvoyancy. Section 6 presents our simulation results, and
Section 7 gives conclusions.

2

2 Related Work

2.1 Real-Time Protocols

Several real-time protocols are based on EDF or LLF [KSY83, PTW88, ZR87, ZSR90].
Kurose et al [KSY83] describe a protocol in which each message is required to be sent within
a �xed time interval, K time units from its production time. Since messages produced earlier
will always be more urgent than those produced later, a message that arrives �rst will be
transmitted �rst. Panwar et al [PTW88] assume that a message is constrained by a time
interval that is a random variable with general distribution. Also, message lengths are taken
to be a sequence of independent and identically distributed random variables. With these
assumptions, the lengths of messages vary with the order in which they are transmitted.
However, in real-time systems messages produced later may be more urgent than those
produced earlier, and message lengths, being often �xed at design-time, are invariant with
the order in which they are transmitted. For these reasons, we exclude these two protocols
from our discussion.

In conventional window-based CSMA/CD protocols, a window de�nes an interval on
the axis of some message parameter (e.g. production time, deadline, latest sending time).
When a collision occurs, the window is split into halves, and each node treats messages in
the left half �rst and in the right half next. When a new message is produced in the left
half while the right half is being treated, the message is not considered for transmission.
Zhao et al [ZSR90] introduce a new window protocol WL in which a window is formed
on the latest sending time axis, and messages are queued at each node according to their
latest sending times. The deadline of a message in this protocol, rather than being relative
to its production time, is speci�ed as a point in time by which it must be delivered. Also,
messages have �xed lengths which are invariant with the order in which they are transmitted,
and are allowed to have arbitrary laxities. One major di�erence between this protocol and
conventional window-based protocols is that a newly produced message can be considered
for transmission by letting the window lower-bound be the current time.

Molle and Kleinrock introduce a virtual-time CSMA/CD protocol (VTCSMA) [MK85]
in which a virtual clock at each node runs along the arrival time axis. In this protocol,
each node maintains two clocks: a real clock and a virtual clock. The real clock runs at
unit speed, while the virtual clock runs at a higher rate. Zhao and Ramamritham [ZR87]
generalize this protocol by allowing four di�erent message parameters, transmission time,
arrival time, latest sending time, and deadline, to be associated with the axis along which
a virtual clock runs. We name these protocols VTT, VTA, VTL, and VTD respectively,
using the obvious acronyms. Among these four protocols, the VTL and VTD protocols have
been shown to be suitable and hence recommended for real-time systems [ZR87]. These two
protocols assume the same message characteristics as those in WL. Messages are queued
according to the increasing order of their latest sending times in VTL and of their deadlines
in VTD. The VTL protocol can be outlined as follows (The VTD protocol is shown in
parentheses.):

� When a message is produced, a virtual time parameter VS is initialized to its latest
sending time (deadline in VTD).

� When the channel has been continuously idle a node �nds the most urgent message,
for which V S � vt, and transmits it. A virtual time vt denotes a value read from a
virtual clock.

� When the channel is sensed busy, the virtual clock does not run.

3

� The channel will become idle either after a successful transmission or a collision. All
tardy messages are discarded from the queue. The virtual clock is reset to the value of
the real clock rt. If a most urgent message whose V S = vt is found, it is transmitted
(Note that vt = rt.).

� When there is a collision the sender node retransmits the message with probability P,
or it modi�es VS for the message; a new VS value is drawn from the interval (rt; ls)
((rt; dl) in VTD) where ls denotes the latest sending time of the message (and dl
denotes the deadline). Finally, the message is put back into the message queue.

2.2 Monitoring Methods

Monitoring techniques, long used for system testing, debugging and performance monitoring
[Cas91, HW90, LSMC90, TFCB90, TKM88], have been applied to critical and/or real-time
systems to detect system errors or property violations [Gor91, CJD91, JG90, MM88, WS88,
Lu82]. Similar techniques have also been applied in real-time systems to aid scheduling
of real-time tasks [GG90, HS90]; the basic idea is to enable scheduling algorithms to use
underutilized system resources more e�ciently and hence to improve performance. We
survey two such techniques in the following paragraphs; both assume independent non-
interacting tasks, i.e. no message communication.

Haban and Shin [HS90] propose a monitoring approach in which each application task
with random execution times is divided into a set of disjoint program segments according
to the syntactic structure of the task. Assuming knowledge of the maximum number of
loops within each of these segments, the worst-case pure execution time for each segment
is estimated. In their approach, a specially designed processor, called TMP, measures the
true execution time and resource sharing delay of tasks at run-time. These measurements
enable the run-time scheduler, a part of TMP, to schedule tasks adaptively.

Gopinath and Gupta [GG90] propose a `compiler-assisted' approach in which the com-
piler examines the code of each application task and partitions it into typed segments. The
type of each segment is determined by the combination of two criteria: predictability and
monotonicity. A segment is predictable if it has a �xed execution time; otherwise, where
the execution time is determined by input data, it is unpredictable. A segment is mono-
tonic if its output quality is monotonically improved as it is executed longer; otherwise it
is non-monotonic. During compilation, program segments are re-ordered so that segments
are executed unpredictable before predictable, and non-monotonic before monotonic. At
the end of each unpredictable segment, measurement code is inserted to measure the actual
execution time of the segment; a time deviation is calculated by subtracting this measured
time from the estimated worst-case execution time of the segment. If the accumulated seg-
ment time deviations of a task indicate a timing error, the run-time scheduler takes recovery
action by changing the loop bounds of monotonic segments. Tasks that cannot be recovered
are aborted.

2.3 Run-Time Support for Clairvoyancy

In a real-time distributed system with a dynamic environment, being clairvoyant may be
very di�cult for a task scheduler, but may be practical for a communication protocol. In the
following sections, we �rst introduce two virtual-time CSMA/CD protocols that make use of
run-time-provided clairvoyancy to improve performance. Second, run-time system support
to provide the clairvoyancy is described. An application of a task monitoring technique for
enhancing protocol clairvoyancy is also described.

4

3 System Model

Consider a distributed system of N nodes connected by a single communication channel.
Each node is a multiprocessor system with shared memory. Resources in the shared memory
include message queues and other shared information structures. Each processor in a node
has its own local memory for task code and private resources, and communicates with
the other processors in the same node via the shared memory. We assume a dynamic
system environment; that is, aperiodic tasks arrive asynchronously at nodes. We also assume
synchronized node clocks.

3.1 Node Architecture

Figure 1 shows the system architecture. Each node comprises an application subsystem
(APS), an adaptive control subsystem (ACS), and a communications subsystem (COS). The
APS consists of a set of application processors on which tasks (mostly application tasks)
execute. The ACS and the COS are described in the following paragraphs.

The ACS comprises a node scheduler, a dispatcher, a message queuer, a message dis-
tributor, and fault-tolerant and adaptive methods. The node scheduler attempts to schedule
(allocate to a processor) a newly arrived task so that it can be completed by its deadline
while retaining previously scheduled tasks. The dispatcher invokes a next task for execution
among those scheduled by the node scheduler. The message queuer queues produced mes-
sages for transmission. The message distributor delivers messages received via the COS to
corresponding consumer tasks. There also exist methods for system fault tolerance, adap-
tiveness and performance improvement; these methods include monitoring algorithms and
task migration algorithms. Each application processor is assigned a copy of the dispatcher, a
copy of the message queuer, and some monitoring programs. A specially designed processor
is dedicated to the remaining ACS functions. Since the application tasks are una�ected by
system overheads such as external interrupts and task scheduling, their execution behavior
is more predictable. Similar approaches are found in [HS91, HS90, SR87].

A node feasible schedule is one in which constraints on all tasks are guaranteed to be
met. When a task arrives, if there is a feasible schedule the node scheduler accepts the task
and assigns a scheduled start time and a scheduled completion time; such a task is said to
be activated. When another task arrives, the node scheduler may reschedule the previously
scheduled tasks in order to accept it. Accordingly, the scheduled start and completion times
assigned to the previously scheduled tasks may be altered. The scheduled completion time
assigned to a task is not greater than the task deadline, and the actual execution time of
a task is assumed to be less than or equal to its worst-case estimate. To increase resource
utilization, a task may start earlier than scheduled if the node scheduler and dispatcher are
adaptive. Finally, a task may not be schedulable by the node scheduler; in such a case,
it can be transferred to another node using some task node assignment protocol such as a
bidding algorithm.

The COS controls the transmission and reception of messages, for which there exists a
message transmission protocol and a message reception protocol. The former transmits mes-
sages produced by application and system tasks, while the latter accepts messages from the
communication channel (CH) and passes them to the ACS (i.e. to the message distributor)
if they are not corrupted. Corrupted messages are discarded. There is a dedicated controller
for the COS.

3.2 Message Characteristics

A message m is characterized by the following parameters:

5

Figure 2: Various Times and Parameters Associated with A Message

� pt(m): production time, the time at which m becomes available for transmission,

� rt(m): recognition time, the time at which the production of m is recognized.

� dl(m): deadline, the time by which m must have been delivered to its destination,

� len(m): length, the total number of bits in m, i.e. the total number of time units
needed to transmit the message without collision, and

� ls(m): latest sending time, dl(m)� len(m), i.e. the latest time for guaranteeing timely
delivery. (Notice that this assumes a propagation delay of one time unit.)

The real time (sometimes called current time) is the value of a local physical clock, while
the virtual time is the value of a virtual clock. We normally denote the former by t and the
latter by v. The ratio of virtual to real clock speed is �. The laxity of a message m, lax(m),
is de�ned to be ls(m) � t. A message is said to be tardy when its laxity becomes negative.
Unless speci�ed otherwise, all times characterizing a message are real. When clear, we may
omit the argument `m' from the above message characteristics. Figure 2 illustrates the
relationship among the various times and parameters associated with a message.

Since we focus on message transmission protocols, the tasks that do not produce messages
are not our concern; hence, we deal with only the tasks that produce messages. We also
assume that messages are recognized when their producer tasks are activated. Messages are
also assumed to be produced and queued no later than their latest sending times.

6

Figure 3: Node Architecture for Best-E�ort Protocols

3.3 Message Transmission Model

CSMA/CD transmission protocols can operate in either an asynchronous (unslotted) or a
synchronous (slotted) mode. In asynchronous mode, each node runs a copy of the protocol
independently using local observations of the channel. In synchronous mode, all nodes run
their local copies of the protocol in lock-step; the time axis is divided into a sequence of
time units, called slots, and each node can transmit messages only at the beginning of each
slot. We assume synchronous mode; that is, the best-e�ort protocol in each node is invoked
at the beginning of each slot. The maximum end-to-end propagation delay for a bit is the
slot length � .

As shown in Figure 3, each node maintains two queues:

� a future queue QF containing the characteristics of future messages and

� a current queue QC containing the messages that have been produced and are not
tardy.

Messages produced by application tasks are queued in the order of latest sending time with
BVTL, and of deadline with BVTD. When a future message is recognized, the ACS places
an entry into QF . When it is actually produced, the ACS moves the entry from QF to QC .
Tardy messages are simply discarded from QC . While the solid arrows in Figure 3 represent
message retrieval and transmission, the dotted arrow merely denotes information about the
characteristics of future messages.

4 Best-E�ort Protocols

4.1 Problems Addressed

Several problems can be identi�ed in the VTL and VTD protocols. Although these problems
may occur only rarely, depending upon the characteristics of the application tasks. the
impact may be signi�cant for particular applications.

� A collided message may become tardy. Since message tardiness is not checked at the
time of a collision, a collided and tardy message can be retransmitted.

� At the time of a collision, there may be a message that is newly produced and the
most urgent, but which is not considered for transmission.

7

Figure 4: Message Production and Latest Sending Times

� Both the VTL protocol and the VTD protocol may waste one time-unit when the
channel becomes idle after the successful transmission or the collision of a message.
As a result, a message that could be successfully transmitted, can become tardy. For
example, consider a message m with ls = 300 and dl = 330 and assume that the
virtual clock runs at 35 times the rate of the real clock, i.e. � = 35. It collides at
t = 299 and is queued back with modi�ed VS (say, V S = 299 in VTL and V S = 325
in VTD). Assume an idle state at t = 300 (after the collision). In this state, each
protocol discards tardy messages and sets v equal to t; if a message whose V S = v

is found, it is transmitted. Since m has V S < v (V S = 299) in VTL and V S > v

(V S = 325) in VTD, it cannot be transmitted and becomes tardy in the next idle
state (at t = 301). By letting the virtual clock advance � (one tick of the real clock)
and modifying `V S = v' into `V S � v', m may be successfully transmitted. Also,
message tardiness needs to be checked at the continuous channel idle state to prevent
transmission of tardy messages.

In addition to these problems, the virtual clock may greatly exceed the real clock when
the system is lightly loaded. As a consequence, a message may be transmitted unnecessarily
early, which may in turn aggravate system performance. Consider the example shown in
Figure 4. The channel is initially idle at t = v = 0. The virtual clock starts to run at three
times the rate of the real clock (� = 3). Assume that message m with ls = 32 and len = 10
is produced at t = 12 (v = 36). Since V S(m) < v, the VTL protocol starts transmission
of m; the virtual clock stops. The transmission of m completes at t = 22. Assume that
another message mf with ls = 20 and len = 5 is produced during the transmission of m,
say at t = 17. Since ls(mf) = 20, mf becomes tardy and is discarded. If the protocol
has clairvoyancy about mf, it could transmit both m and mf successfully by delaying m's
transmission until t = 20 (because ls(mf) = 20). A similar situation can occur in the VTD
protocol.

4.2 Protocol Descriptions

In the best-e�ort protocols, as in the VTL and the VTD protocols, each node maintains two
clocks: a virtual clock and a real clock. The virtual clock runs at a rate � times faster than
that of the real clock. While the channel is busy, the virtual clock stops. When a message is
newly produced, the virtual parameter VS is initialized to ls in BVTL and to dl in BVTD.
As shown in Table 1, there are �ve possible protocol states. The actions taken in each of
these states are as follows:

� State II:
The virtual clock runs continuously. Tardy messages are discarded. If there exists a
most urgent message m in QC whose V S � v there are three possibilities:

C1: There exists no most urgent future message. m is transmitted.

8

Table 1: Protocol States

C2: There exists a most urgent future message mf, and mf can be delivered by its
deadline even after m's transmission (i.e. lax(mf) > len(m)). m is transmitted.

C3: There exists a most urgent future message mf which cannot be successfully trans-
mitted. In this case the algorithm checks whether or not m could be successfully
transmitted after waiting for and transmitting mf. There are two subcases:

C3a: m could be transmitted later (i.e. lax(m) > lax(mf) + len(mf)). In
this case the algorithm waits until mf is produced. (We discuss two waiting
strategies later in this section.)

C3b: m could not be transmitted later. m is transmitted.

� States BI and CI:
The virtual clock is set equal to t + �. Tardy messages are discarded. If there is a
most urgent message m whose V S � v, there are four cases corresponding to cases
C1, C2, C3a, or C3b.

� State BSY:
A node that is transmitting a message continues its transmission. Other nodes wait
for the completion of this transmission.

� State COL:
If a collided message becomes tardy, it is discarded. Otherwise, each node checks
whether there exists a newly produced most urgent message. If so, the collided message
is put back into the message queue QC . The associated VS parameter is modi�ed by
a value randomly drawn from (t; ls) in BVTL and from (t; dl) in BVTD.

With the most urgent message m (it could be a collided message or a newly produced
message), check whether or not there exists a future message that will be the most
urgent when produced. There are four cases corresponding to cases C1, C2, C3a, or
C3b. In cases C1, C2 and C3b, m is either transmitted with retransmission probability
P, or put back into the message queue QC . In case C3a, m is put back into the queue,
and a suitable waiting action is taken (See below.).

Two waiting strategies can be used for the most urgent future message mf:

� a local waiting strategy and

9

� a global waiting strategy.

With a local waiting strategy, only its host node waits for a message mf, while all the
nodes wait in the global waiting strategy. With local waiting, the host node simply waits
for mf without sending any messages. With global waiting, the host node transmits a
synchronization message with the shortest length (i.e. one-bit message). When the channel
is sensed idle after the successful transmission or collision of the synchronization message,
each node resets its virtual clock to t+�. As a result, the most urgent future message has a
chance for transmission. The ls value of a synchronization message is taken to be equal to
r. Consequently, when it has a collision, it becomes tardy and is discarded. The best-e�ort
protocols use local waiting only when lax(mf) is one. Otherwise, global waiting is used.

5 Run-Time Clairvoyancy Support

Monitoring techniques generally involve two phases:

� a setup phase, and

� a checking phase.

During the setup phase, usually at design time, a monitoring system or program is provided
with semantic information about the program to be monitored. Such semantic information
may include an allowed range for a monitored value or condition, an allowed sequence of
event occurrences, a time-bound within which a speci�ed event must occur, or an estimated
execution time of a real-time task. During the checking phase at run-time, the monitoring
system collects run-time information about the program being monitored and observes any
discrepancies between this information and the design information. A discrepancy may
indicate a violation of a system property, or provide information about resource utilization.

The best-e�ort protocols attempt to wait when a most urgent future message could not
be successfully transmitted if a less urgent but currently available message is transmitted
�rst. However, no waiting occurs if the less urgent message would become tardy as a result.
The value lax(mf) occurring in case `C3a' of the best-e�ort protocols represents the time
interval that a best-e�ort protocol must wait for mf in the worst-case. Since a message is
usually produced earlier than its latest sending time, it is possible to increase the chance
to transmit a more urgent future message if the protocol is provided with more accurate
information about when future messages will be produced. A monitoring technique can be
used to provide such information; the monitoring program predicts the production time of a
message by measuring the segment execution times of the task producing the message. We
call this the measured production time of a future message mf and denote it by mpt(mf). To
accommodate this monitoring support, we modify case `C3a' in the protocol description as
follows:

lax(m) > rtup(mf) + len(mf)

where rtup(mf) (read as `remaining time until production' ofmf) is de�ned to bempt(mf)�t.

5.1 Semantic Information

An aperiodic task execution T is characterized by the following parameters:

� ar(T): arrival time, the point in time at which T arrives.

� dl(T): deadline, the point in time by which T must complete,

� wet(T): worst-case execution time, the estimated time interval needed to complete T
in the worst-case,

10

� PL(T): placement constraint, a speci�cation of a particular processor or processors on
which T must be assigned for execution, and

� R(T): resource requirement, the set of resources required by T.

When a task arrives, it is activated by the node scheduler if there is a feasible schedule. The
activation time of T is denoted by at(T). All the required resources for a task execution are
allocated when the task is activated, and are not released until the completion or cancellation
of the task 2. Tasks having resource conicts cannot be scheduled in parallel. Once started,
tasks cannot be preempted. The start time and the completion time of a task T are denoted
by st(T) and ct(T) respectively. We de�ne the start delay of a task T to be st(T) � at(T),
which represents the elapsed period of time from T's activation to T's start; it is denoted
by std(T). A task may produce multiple messages. Of course, each task will not produce its
�rst message earlier than its start time nor produce its last message later than its completion
time (hence its deadline).

The semantic information about a task is obtained by dividing it into a set of sequential
disjoint program segments based on its syntactic structure. A statement in which a message
is produced becomes a natural point for task segmentation. The information needed for
estimating worst-case segment execution time includes the longest execution paths, the
maximumnumber of loops, and the worst-case message queuing delays and resource holding
times. We denote the estimated worst-case execution time of a segment Si of a task T by
wet(T:Si). A task T's estimated worst-case execution time is the sum of its segments'
worst-case execution times:

wet(T) =
nX

i=1

wet(T:Si)

We also specify for each segment the set of required resources. A resource set required for
a segment Si of a task T is denoted by R(T:Si). The set of required resources is the union
of its segments' resource sets:

R(T) =
n[

i=1

R(T:Si)

The information about segmented tasks and the characteristics of tasks and messages form
the semantic information base for monitoring. Figure 5 shows an example of a segmented
task T; it consists of n sequential program segments and produces two messages m1 and m2
at the end of segment Sj and of segment Sn. Note that a message is recognized when its
producer task is activated.

5.2 Run-Time Support

There are two ways to monitor real-time task behavior:

� an embedded method, and

� a concurrent method.

With the embedded method, a monitoring program is inserted into the program being
monitored. With the concurrent method, a monitoring program runs in parallel with a
program being monitored; a program statement, which invokes a routine that provides run-
time information to the monitoring program, is inserted at particular points in the program
being monitored. For the monitoring of task segments, we use the embedded method.

2This assumption may be relaxed with run-time task monitoring.

11

Figure 5: A Segmented Task

The time discrepancy of a segment is the di�erence between its speci�ed execution time
bound and the observed execution time; we denote the time discrepancy incurred by segment
Si of task T by �(T:Si). A monitoring program is invoked when a task is activated, started
or completed, a task segment is completed, and a message is produced. The actions taken
by this monitoring program are as follows:

� When a message m is recognized (recognition event):

{ Queue m's characteristics into QF .

{ Set mpt(m) to ls(m).

� When m's producer task T is started (start event):

{ Update mpt(m) by st(T) +
Pn

i=1wet(T:Si),
where st(T) stands for T's start time and
the message m is assumed to be produced at segment Sn.

� When a segment Sk is completed (segment event):

{ Subtract �(T:Sk) from mpt(m), where 1 � k < n.

That is, mpt(m) = st(T) +
Pn

i=1wet(T:Si)�
Pk

i=1�(T:Si).

� When m is produced (message production event):

{ Queue m into QC.

{ Remove m's characteristics from QF .

5.3 Assisting Task Scheduling

The execution times of real-time tasks are, in general, stochastic. Hence, estimated worst-
case times are usually used for determining scheduling guarantees. Since actual execution
times may be less than worst-case estimates, some processor time can be left unused. Task
scheduling algorithms can be improved using information about such available processor
time. Furthermore, some tasks can heavily use not only a processor but other resources as
well. The set of resources used by such a task may not need to be held until task completion;
for example, some resources may be used once and not again during the remaining execution.
Such resources may be released early for use by other tasks. Of course, the choice of which
resources can be released early may depend on run-time conditions. With information
about resources that can be released early and available processor time, a task scheduler

12

may be able to schedule newly arrived tasks that might otherwise not be scheduled. There
is a resource reclaiming algorithm that measures and provides underutilized yet reclaimable
processor times to a task scheduler [SRS90]. However, this algorithm is invoked only when a
task is completed and the next task is to be dispatched. The resources that may be released
early are not considered. Integrating such an algorithm with our task segmentation and
monitoring support may allow a task scheduler to schedule tasks more adaptively.

6 Performance Analysis

6.1 Simulation Model

For the evaluation of protocol performance, we introduce a simulation model, parameterized
by the number of nodes and the distributions of task and message characteristics. Tasks are
activated (and messages are recognized) as a Poisson process. That is, inter-task activation
(and inter-message recognition) times are exponentially distributed. For simplicity, each
task is assumed to produce a message when it completes. The number of segments in a
task is randomly chosen from one to seven task segments. The start delay and the actual
execution time of a task are uniformly distributed with mean 200 time units. Since each
message has the same start delay and execution time by average, the mean of the inter-
message recognition times is identical to that of the inter-message production times. We
de�ne the mean message production rate � to be the reciprocal of the mean inter-message
production time. Message lengths are exponentially distributed with mean message length
AL. A message length cannot be less than one nor greater than 10 � AL. Message laxities
are uniformly distributed in the interval (0; laxvar �AL) where laxvar is a positive integer
greater than one. We establish the estimated worst-case execution time of a task as the
actual execution time plus a value randomly chosen in the interval (lax=2; lax), where lax is
the laxity of a message produced by the task. We set the latest sending time of a message
to be the sum of the message laxity, the start delay, and the actual execution time of its
producer task.

The system load LD is de�ned to be:

LD = � �AL �N

where N is the number of nodes in the system. Given LD, AL and N, the mean message
production rate � can be obtained. The fraction of channel time used by successfully
transmitted messages is known as the e�ective channel utilization. The maximum value
of the e�ective utilization over all possible loads is known as the capacity of the protocol.
The capacity is perhaps most greatly a�ected by the value of the normalized end-to-end
propagation delay �, de�ned as � = �=AL [KSY84]. We measure the performance of our
best-e�ort protocols with � = 0.1 and 0.01 (i.e. mean message lengths are 10 and 100) and
with laxvar= 3 and 9. The retransmission probability P of a collided message is set to be
0.5.

In real-time distributed systems, tasks in general have stochastic execution times so that
the times at which they produce messages are not regular. As the execution time variance
of each task increases, more future urgent messages may occur. Moreover, the asynchronous
activations of the aperiodic tasks increase the irregularity of message production times.
It is this irregularity that real-time protocols attempt to exploit to increase the chance
of successful message transmission while decreasing the chance of message collisions. To
investigate the variation in performance as the number of urgent future messages increases
we introduce a parameter SEQ, called the sequencer, into our simulation model. As the
sequencer value increases, the number of messages in each cluster tends to increase, where a

13

cluster is a sequence of consecutive messages produced by the same node. As a consequence,
each node tends to have less chance of message collision but to have an increasing chance of
having urgent future messages. Each node has an equal chance of producing n consecutive
messages, where the number n is a random number drawn from the interval (0; SEQ).

Each simulation experiment comprised six runs. The simulation period for each run is
taken to be 5000 times the mean inter-message production time. In order to alleviate the
initial bias, we collect simulation statistics after 5 � N messages where N is the number of
nodes in the system. Each of the data points forming performance graphs shown in this
section was obtained by averaging the values from these six simulation runs. Our goal
is to generate a 90% con�dence interval whose width is within 5% of each of these data
points. Shapiro and Wilk's statistic [SW65] was used to test normality of the statistical
data obtained from thirty �ve simulation runs; the result was insigni�cant at a 10% level.
Applying the t-distribution formula [Dev87] showed that six runs were su�cient to satisfy
our 5% width requirement.

6.2 Performance Measures

As the primary performance measure, we use the message loss ratio ML de�ned as:

ML =
NDM

NSM +NDM

where NDM is the total number of discarded messages and NSM is the total number of
successfully transmitted messages.

It can be useful to know how much performance improvement is obtained by one protocol
over another in terms of message loss. We use the performance improvement PI for such
purposes. It is de�ned as:

PI = NSMx � NSMy

where NSMx and NSMy respectively represent the total number of successfully transmitted
messages by the protocols x and y.

The e�ective channel utilization ECU shows how e�ectively the communication channel
is used. The ECU is de�ned as:

ECU =
TSM

TSIM

where TSM is the total time units used for the transmission of successful messages and
TSIM is the total time units simulated.

6.3 Comparative Analysis

To analyze the performance of our best-e�ort protocols, three di�erent classes of baseline
protocols are used:

� The VTL and VTD protocols,

� The centralized LLF (CL) and EDF (CD) protocols. These protocols have perfect
knowledge about the nodes and the channel, and can transmit messages with no
collisions. That is, no time units are wasted for channel idle or collision state detection.
The CL protocol shows behavior identical to that of the non-preemptive LLF task
scheduler, and the CD protocol shows behavior identical to that of the non-preemptive
EDF task scheduler.

14

� The clairvoyant CL and CD protocols. These protocols not only have perfect knowl-
edge about the nodes and the channel but also have clairvoyancy about future mes-
sages.

While each protocol in the second class shows the best performance achievable with its own
transmission policy but with no clairvoyancy, each protocol in the third class does so with
clairvoyancy incorporated. Of course, the protocols in both of these classes are not realizable
in practice. We label the performance curves of the clairvoyant CL and CD protocols with
basic clairvoyancy BCL and BCD and those with enhanced clairvoyancy MCL and MCD.
Similarly, we label the performance curves of the BVTL and BVTD protocols with basic
clairvoyancy BVTL and BVTD and those with enhanced clairvoyancy MVTL and MVTD.

The performance of the virtual-time CDMA/CD protocols is shown to be not sensitive
to the number of nodes but sensitive to the virtual clock rate � [ZR87]. First, we tested the
VTL and VTD protocols with an increasing number of nodes; their performance is shown
to be quite insensitive to the number of nodes. Then, to �nd the � value that gives the best
ML and ECU, we tested the VTL and VTD protocols under various loads from 0.1 to 1.2
and when �=0.1 and 0.01. The best � values for both protocols are in the range of (21,27)
when �=0.1 and of (31,37) when �=0.01. Based on these results, we analyze and compare
the best-e�ort protocols with these two protocols in a system of 10 nodes. We use �=25
when � = 0:1 and � = 35 when � = 0:01. The value of the sequencer SEQ is set to be 10.

Each graph in Figure 6 shows the message loss ratio with increasing system load when
�=0.1. The top two graphs (a) and (b) show the message loss ratios of the LLF-based
protocols with laxvar 3 and 9 respectively, the bottom two graphs (c) and (d) show those
of the EDF-based protocols. Corresponding to each of these graphs, the graphs in Figure 7
show the performance improvement of the best-e�ort protocols and the centralized protocols
over the VTL and VTD protocols. While each of the BCL and BCD curves shows the
maximum(ideal) performance improvement achievable with basic clairvoyancy at each given
load, each of the MCL and MCD curves does so with enhanced clairvoyancy.

According to the results shown in these graphs, the best-e�ort protocols yield message
loss ratios lower than those of the VTL and VTD protocols respectively. Only when the
system has a very high load (1.0 or more), do they show similar or slightly worse per-
formance than the VTL and VTD protocols. The overhead introduced by local and global
waiting is the main cause of this phenomenon. Also, the best-e�ort protocols with enhanced
clairvoyancy yield better performance over those with basic clairvoyancy. However, under
very high or overloaded conditions (0.9 or more), the performance of the former may be-
come poorer than that of the latter. This is because enhanced clairvoyancy results in more
waiting attempts, which in turn results in increased channel overhead.

Each graph in Figure 8 and Figure 9 shows the message loss and the corresponding
performance improvement in the case of � = 0:01. With small laxities (laxvar = 3), the
best-e�ort protocols always show low message loss ratios not only over the VTL and VTD
protocols but also over the CL and CD protocols. Even with large laxities (laxvar = 9),
they show lower message loss ratios until the system load is very high (0.9 or more). The
performance improvement of the best-e�ort protocols over the VTL and VTD protocols,
however, tend to degrade under high system load and overload conditions.

As mentioned earlier, as the sequencer value is increased each node tends to have fewer
message collisions but to have more urgent future messages. Figure 10 shows the change
in the message loss as the sequencer value is increased. While little performance change
is observed in the VTL and VTD protocols, continuous performance improvements are
observed in the best-e�ort protocols with basic and enhanced clairvoyancy. Note that each
performance curve of the best-e�ort protocols (i.e. BVTL, BVTD, MVTL and MVTD)
approaches that of the corresponding centralized ideal protocols (i.e. BCL, BCD, MCL,

15

and MCD) respectively as the sequencer value is increased.
Although not shown in this paper, we have also compared the e�ective channel utiliza-

tions of the best-e�ort protocols with those of the VTL and VTD protocols. When � is
small (0.01), the best-e�ort protocols with basic and enhanced clairvoyancy (over VTL and
VTD) show better utilization up to LD = 0:5. When the load is in the range of (0.6,1.0),
depending on the message laxity and the sequencer value, utilization is sometimes better and
sometimes poorer. With large � (0.1), the e�ective utilization of the best-e�ort protocols is
better up to LD = 0:4 and sometimes better within LD = (0:5; 0:7).

We have not compared the performances of the LLF-based protocols and the EDF-based
protocols because the main purpose of the simulation is to compare the protocols with and
without clairvoyancy. In general, the LLF-based protocols can transmit more message bits
(i.e. high ECUs), while the EDF-based protocols can transmit more messages (i.e. low
MLs). As indicated in [ZR87], however, the EDF-based protocols tend to be biased towards
shorter length messages.

7 Conclusion

Two clairvoyant virtual-time protocols, called best-e�ort protocols, and run-time support
methods allowing them to have clairvoyancy, have been described. By making use of design-
time speci�cation and run-time information about the messages and corresponding tasks,
these protocols attempt to wait for and deliver urgent future messages that might otherwise
be discarded.

According to simulation experiments the best-e�ort protocols always have better per-
formance, in terms of message loss, than the V TL and V TD protocols under reasonable
system loads (0.1 to 0.9). However, due to the time and channel overheads caused by global
and local waiting, they show similar or slightly worse performance when the system load
is quite high (1.0 or more). As an approach to alleviating this problem, the system could
maintain system-load information which can be used by the best-e�ort protocols when mak-
ing decisions about delivering urgent future messages. Lastly, the best-e�ort protocols show
improving performance as the number of urgent future messages increases.

Although applied to virtual-time CSMA/CD protocols, the run-time support methods
proposed here can also be applied to other communication protocols such as token passing
protocols with a reservation facility. For example, in the case of token passing protocols
some extra bits may need to be added in the token for message urgency indication and other
necessary information.

Acknowledgments

The authors would like to thank Queen's STATLAB for their help re�ning the statistical
methods used in this paper.

16

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(a)

Laxity(0,30)

LD

ML

VTL �

�

�

�

�

�

�

�

�

�

�

BVTL
MVTL 4

4

4

4

4

4

4

4

4

4

4

CL ?

?

?

?

?

?

?

?

?

?

?

?

BCL
MCL 2

2

2

2

2

2

2

2

2

2

2

2

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(b)

Laxity(0,90)

LD

ML

VTL �

�

�

�

�

�

�

�

�

�

�

�

BVTL
MVTL 4

4
4

4

4

4

4

4

4

4

4

4

CL ?

?

?

?

?

?

?

?

?

?

?

?

BCL
MCL 2

2
2

2

2

2

2

2

2

2

2

2

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(c)

Laxity(0,30)

LD

ML

VTD �

�

�

�

�

�

�

�

�

�

�

�BVTD
MVTD 4

4

4

4

4

4

4

4

4

4

4

4

CD ?

?

?

?

?

?

?

?

?

?

?

?

BCD
MCD 2

2

2

2

2

2

2

2

2

2

2

2

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(d)

Laxity(0,90)

LD

ML

VTD �

�

�

�

�

�

�

�

�

�

�

�

BVTD
MVTD 4

4
4

4

4

4

4

4

4

4

4

4

CD ?

?

?

?

?

?

?

?

?

?

?

?

BCD
MCD 2

2
2

2
2

2

2

2

2

2

2

2

Figure 6: Message Loss (� = 0:1)

17

0:00

50:00

100:00

150:00

200:00

250:00

300:00

350:00

400:00

450:00

500:00

550:00

600:00

650:00

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(a)

LD

PI
BVTL
MVTL 4

4
4 4 4 4 4 4 4 4

4
4

CL ?

?

?

?

?

?

?

?

?

?

?

?

BCL
MCL 2

2

2

2

2

2

2

2

2

2
2

2

0:00

50:00

100:00

150:00

200:00

250:00

300:00

350:00

400:00

450:00

500:00

550:00

600:00

650:00

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(b)

LD

PI
BVTL
MVTL 4

4
4 4 4

4 4 4
4

4 4
4

CL ?

?
?

?

?

?

?

?

?

?

?

?BCL
MCL 2

2

2

2

2

2

2

2

2

2

2

2

0:00

50:00

100:00

150:00

200:00

250:00

300:00

350:00

400:00

450:00

500:00

550:00

600:00

650:00

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(c)

LD

PI
BVTD
MVTD 4

4
4 4 4 4

4 4 4
4

4 4

CD ?

?

?

?

?

?

?

?

?

?

?

?

BCD
MCD 2

2

2

2

2

2

2

2

2

2

2

2

0:00

50:00

100:00

150:00

200:00

250:00

300:00

350:00

400:00

450:00

500:00

550:00

600:00

650:00

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(d)

LD

PI
BVTD
MVTD 4

4
4

4
4

4 4 4

4 4 4 4

CD ?

?
?

?

?

?

?

?

?

?

?

?

BCD
MCD 2

2

2

2

2

2

2

2

2

2

2

2

Figure 7: Performance Improvement (� = 0:1)

18

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(a)

Laxity(0,300)

LD

ML

VTL �

�

�

�

�

�

�

�

�

�

�

�

BVTL
MVTL 4

4

4

4

4

4

4

4

4

4

4

4

CL ?

?

?

?

?

?

?

?

?

?

?

?

BCL
MCL 2

2

2

2

2

2

2

2

2

2

2

2

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(b)

Laxity(0,900)

LD

ML

VTL �

�

�

�

�

�

�

�

�

�

�

�

BVTL
MVTL 4

4
4

4

4

4

4

4

4

4

4

4

CL ?

?

?

?

?

?

?

?

?

?

?

?

BCL
MCL 2

2
2

2

2

2

2

2

2

2

2

2

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(c)

Laxity(0,300)

LD

ML

VTD �

�

�

�

�

�

�

�

�

�

�

�

BVTD
MVTD 4

4

4

4

4

4

4

4

4

4

4

4

CD ?

?

?

?

?

?

?

?

?

?

?

?

BCD
MCD 2

2

2

2

2

2

2

2

2

2

2

2

0:00

0:05

0:10

0:15

0:20

0:25

0:30

0:35

0:40

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(d)

Laxity(0,900)

LD

ML

VTD �

�

�

�

�

�

�

�

�

�

�

�

BVTD
MVTD 4

4
4

4
4

4

4

4

4

4

4

4

CD ?

?

?

?

?

?

?

?

?

?

?

?

BCD
MCD 2

2
2

2
2

2

2

2

2

2

2

2

Figure 8: Message Loss (� = 0:01)

19

0:00

20:00

40:00

60:00

80:00

100:00

120:00

140:00

160:00

180:00

200:00

220:00

240:00

260:00

280:00

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(a)

LD

PI

BVTL
MVTL 4

4

4

4
4

4

4
4 4

4 4
4

CL ?

?
?

? ?

? ?
?

?

?
?

?

BCL
MCL 2

2

2

2

2

2
2

2

2

2 2 2

0:00

20:00

40:00

60:00

80:00

100:00

120:00

140:00

160:00

180:00

200:00

220:00

240:00

260:00

280:00

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(b)

LD

PI

BVTL
MVTL 4

4

4

4

4 4 4

4

4

4

4

4

CL ?

? ?
?

?

?

?

?
?

?

?

?

BCL
MCL 2

2

2

2

2

2

2
2 2

2

2

2

0:00

20:00

40:00

60:00

80:00

100:00

120:00

140:00

160:00

180:00

200:00

220:00

240:00

260:00

280:00

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(c)

LD

PI

BVTD
MVTD 4

4

4

4

4

4 4 4

4
4

4 4

CD ?

?

?

?
?

?
? ?

?
?

?

?

BCD
MCD 2

2

2

2

2

2 2

2

2

2

2

2

0:00

20:00

40:00

60:00

80:00

100:00

120:00

140:00

160:00

180:00

200:00

220:00

240:00

260:00

280:00

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0 1:1 1:2

(d)

LD

PI

BVTD
MVTD 4

4

4

4

4
4

4
4

4 4

4

4

CD ?

? ?

?
?

?

?

?

?

? ?

?

BCD
MCD 2

2

2

2

2

2

2

2

2 2 2

2

Figure 9: Performance Improvement (� = 0:01)

20

0:10

0:11

0:12

0:13

0:14

0:15

0:16

0:17

0:18

0:19

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

(a)

LD=0.5
SEQ

ML

VTL �

� � � � � � � � � � � � � � � �

BVTL
MVTL 4

4

4

4
4

4
4 4

4 4 4 4 4 4 4 4 4

CL ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

BCL
MCL 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0:27

0:28

0:29

0:30

0:31

0:32

0:33

0:34

0:35

0:36

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

(b)

LD=1.0
SEQ

ML

VTL �

� �
�

� � �
� � � � � � � � � �

BVTL
MVTL 4

4

4

4

4

4
4 4

4 4
4 4 4 4 4 4 4

CL ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

BCL
MCL 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0:10

0:11

0:12

0:13

0:14

0:15

0:16

0:17

0:18

0:19

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

(c)

LD=0.5
SEQ

ML

VTD �

� � � � � � � � � � � � � � � �

BVTD
MVTD 4

4

4

4

4
4 4 4 4

4 4 4 4 4 4 4 4

CD ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

BCD
MCD 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0:21

0:22

0:23

0:24

0:25

0:26

0:27

0:28

0:29

0:30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

(d)

LD=1.0
SEQ

ML

VTD �

�
� � � � � � � � � � � � � � �

BVTD
MVTD 4

4

4

4

4

4
4 4

4
4

4
4 4 4

4 4 4

CD ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

BCD
MCD 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 10: Message Loss with Varying Sequencer (� = 0:01, Laxity = (0; 300))

21

References

[Cas91] T.L. Casavant. Panel session: Debugging and performance monitoring for dis-
tributed systems: Problems and prospects. Proceedings of the 11th International
Conference on Distributed Computing Systems, pages 378{383, May 1991.

[CJD91] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of real-time
systems. Proceedings of the Real-Time Systems Symposium, pages 74{83, De-
cember 1991.

[Dev87] J.L. Devore. Probability and Statistics for Engineering and the Sciences.
Brooks/Cole Publishing Company, 1987.

[DM89] M.L. Dertouzos and A.K. Mok. Multiprocessor on-line scheduling of hard real-
time tasks. IEEE Transactions on Software Engineering, 15(12):1497{1506, De-
cember 1989. Also shown in Proceedings of the 7th Texas Conference on Com-
puter Systems, November 1978, pages from 5-1 to 5-12.

[GG90] P. Gopinath and R. Gupta. Applying compiler techniques to scheduling in real-
time systems. Proceedings of the Real-Time Systems Symposium, pages 247{256,
December 1990.

[Gor91] M.M. Gorlick. The ight recorder: An architectural aid for system monitoring.
Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,
pages 175{183, May 1991.

[HS90] D. Haban and K.G. Shin. Application of real-time monitoring to scheduling
tasks with random execution times. IEEE Transactions on Software Engineering,
16(12):1374{1389, December 1990. Also in Real-Time Systems Symposium 1989,
pages 172-181.

[HS91] W.A. Halang and A.D. Stoyenko. Constructing Predictable Real-Time Systems.
Kluwer Academic Publishers, 1991.

[HW90] D. Haban and D. Wybranietz. A hybrid monitor for behavior and performance
analysis of distributed systems. IEEE Transactions on Software Engineering,
16(2):197{211, February 1990.

[JG90] F. Jahanian and A. Goyal. A formalism for monitoring real-time constraints at
run-time. The 20th Symposium on Fault-Tolerant Computing, pages 148{155,
June 1990.

[JLT85] E.D. Jensen, C.D. Locke, and H. Tokuda. A time-driven scheduling model for
real-time operating systems. Proceedings of the Real-Time Systems Symposium,
pages 112{122, December 1985.

[KSY83] J.F. Kurose, M. Schwartz, and Y. Yemini. Controlling window protocols for
time-constrained communication in a multiple access environment. Proceedings
of the 8th Data Communications Symposium, 13(4):75{84, October 1983.

[KSY84] J.F. Kurose, M. Schwartz, and Y. Yemini. Multiple-access protocols and time-
constrained communication.ACM Computing Surveys, 16(1):43{70,March 1984.

[LSMC90] J.E. Lumpp, Jr., H.J. Siegel, D.C. Marinescu, and T.L. Casavant. Speci�ca-
tion and identi�cation of events for debugging and performance monitoring of
distributed multiprocessor systems. Proceedings of the 10th International Con-
ference on Distributed Computing Systems, pages 476{483, June 1990.

22

[Lu82] D.J. Lu. Watchdog processors and structural integrity checking. IEEE Transac-
tions on Computers, 31(7):681{685, July 1982.

[MK85] M.L. Molle and L. Kleinrock. Virtual Time CSMA: Why two clocks are better
than one. IEEE Transactions on Communications, 33(9):919{933, September
1985.

[MM88] A. Mahmood and E.J. McClusky. Concurrent error detection using watchdog
processors- a survey. IEEE Transactions on Computers, 37(2):160{174, February
1988.

[PTW88] S.S. Panwar, D. Towley, and J.K. Wolf. Optimal scheduling policies for a class
of queues with customer deadlines to the beginning of service. Journal of the
ACM, 35(4):832{844, October 1988.

[PZ78] L. Pouzin and H. Zimmermann. A tutorial on protocols. Proceedings of the
IEEE, 66(11):1346{1370, November 1978.

[SR87] J.A. Stankovic and K. Ramamritham. The design of the Spring kernel. Proceed-
ings of the Real-Time Systems Symposium, pages 146{157, December 1987.

[SRS90] C. Shen, K. Ramamritham, and J.A. Stankovic. Resource reclaiming in real-
time. Proceedings of the Real-Time Systems Symposium, pages 41{50, December
1990.

[SW65] S.S. Shapiro and M.B. Wilk. An analysis of variance test for normality. Biomet-
rica, 52:591{611, 1965.

[TFCB90] J.J.P. Tsai, K. Fang, H. Chen, and Y. Bi. A noninterference monitoring and re-
play mechanism for real-time software testing and debugging. IEEE Transactions
on Software Engineering, 16(8):897{916, August 1990.

[TKM88] H. Tokuda, M. Kotera, and C.W. Mercer. A real-time monitor for a distributed
real-time operating system. Proceedings of the ACM SIGPLAN and SIGOPS
Workshop on Parallel and Distributed Debugging, pages 68{77, May 1988.

[WS88] K. Wilken and J.P. Shen. Continuous signature monitoring: E�cient concurrent-
detection of processor control-ow errors. Proceedings on International Test Con-
ference, pages 914{925, September 1988.

[ZR87] W. Zhao and K. Ramamritham. Virtual time CSMA protocols for hard real-time
communication. IEEE Transactions on Software Engineering, 13(8):938{952,
1987.

[ZSR90] W. Zhao, J.A. Stankovic, and K. Ramamritham. A window protocol for
transmission of time-constrained messages. IEEE Transactions on Computers,
39(9):1186{1203, September 1990.

23

