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Abstract

The �eld of knowledge discovery is concerned with the theory and processes in-

volved in �nding and representing patterns and regularities previously unknown. A

new generation of knowledge discovery tools now deals with structured concepts: these

capture associations between relations among the components of structured objects.

This paper outlines a logic used to express structured concepts, and surveys a num-

ber of systems performing structured concept discovery. The paper concludes with a

discussion of important future research directions for the �eld.
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1 Introduction and motivations

The �eld of knowledge discovery is concerned with the theory and processes involved in

�nding and representing things previously unknown. Empirical discovery systems search

for regularities and detect interesting and useful patterns from incoming data. There is

increasing interest in this �eld, due to the growing number of giga- or tera-byte databases

containing largely factual information. It is becoming clear that techniques are needed for

structuring, managing, compressing, assimilating and extracting general knowledge from

these data.

As an abstract motivation for knowledge discovery, imagine that we have created a robot

and set it free in a new environment. To survive, the robot must have the ability to recognize

new things, particularly those hostile to its survival. While we, as system designers, will have

provided the robot with a language for representing facts and knowledge, we cannot have

anticipated all types of situations the robot will �nd itself in. One tactic the robot might use

is to simply remember factual descriptions of all objects encountered, matching new objects

to those in the database and making predictions on the basis of similarity. This process,

known as reasoning by analogy, will become increasingly tedious as the size of the database

grows. If the robot can discover associations and regularities in the data, these can be used

both to make expedient predictions about new objects and to index database objects for

e�cient retrieval.

Current knowledge discovery systems (Matheus et al., 1993) use a highly restricted knowl-

edge representation language for representing patterns and regularities: they can only cap-

ture associations among di�erent features of objects. A new generation of knowledge dis-

covery tools now deals with structured concepts: they capture associations between relations

among the components of objects. Such tools are essential, for example, in data analysis and

object recognition tasks where the features of an object's components alone are insu�cient

to determine its classi�cation or function. A description of the interrelationships among

parts is crucial.

This paper has two purposes. One is to present a logic in which all structured con-

cepts discovery systems can be discussed and related. Another purpose of this paper is to

survey a number of operational systems which perform discovery of structured concepts.

Although Thompson and Langley (1991) provided a survey of several systems, with recent

advancements there is a need for a broader discussion which includes theoretical foundations,

and surveys of newer systems, miscellaneous systems, and application domains. This paper

concludes with a discussion of critical future research issues in the �eld.

2 Structured concepts: theoretical foundations

A concept , de�ned extensionally, is simply a set of things in a universe of discourse. Machine

learning systems construct and manipulate intentional concept descriptions. Knowledge

representation is crucial for a machine learning system, as the set of possible learnable

concepts is restricted to the set of concepts the system can construct or represent. Much of

the early research on machine learning was restricted to a knowledge representation formally

equivalent to propositional logic. Objects are described by sets of features, or attribute/value
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pairs. Recent work has seen a shift to more powerful �rst-order formalisms capable of

describing structured objects and relational concepts.

An early paper on structured concept learning (Dietterich and Michalski, 1981) lamented

the fact that each research group was using its own notation and terminology, making it

hard to relate di�erent systems performing similar learning tasks. The situation for current

structured concept discovery systems is not much improved. This is especially regrettable in

the light of theoretical advancements in the parallel �eld of knowledge representation. This

section will outline a uni�ed notation and theory to which all current structured concept

discovery systems can be related.

2.1 Logical concepts

A �rst-order language comprises variable, constant, and predicate symbols with their arities.1

A term in a given language is either a variable or a constant. An atom is an expression

p(t1; : : : ; tn), where t1; : : : ; tn are terms, and p is an n{ary predicate symbol. An atom is

ground if it does not contain any variables. A literal is an atom (A) or the negation of an

atom (notA). A well-formed-formula in the language is formed using literals and operators

such as conjunction, negation, and implication, and the quanti�ers 8 and 9. A sentence is

a closed well-formed-formula (all variables quanti�ed). A concept can be represented by a

unary � predicate2

�x:E; (1)

where x is the only free variable in the well-formed-formula E.

The extension of a concept is all things in a universe of discourse such that when their

denoting constant is substituted for the variable x in (1), E is satis�ed. More formally, an

interpretation I of a �rst-order language is given by a structure

hD; [[�]]
I

u
i; (2)

where D is a universe of discourse, and [[�]]
I

u
is a function which maps n-ary predicates to

elements of Dn
! ftrue; falseg, sentences to ftrue; falseg, and variables to elements of D

via the variable assignment function u (see Table 1).

A theory is a set of sentences in a �rst-order language. A model for a theory is an

interpretation which maps every sentence in the set to true. A concept C is instantiated by

an object a, with respect to a theory T , if

T j= C(a); (3)

that is, if C(a) is true in all models of T . A concept C is said to subsume a concept D, with

respect to a theory T , written C �T D, if C is instantiated whenever D is:

T j= 8xD(x) ) C(x): (4)

1See (Lloyd, 1987; Genesereth and Nilsson, 1988) for detailed discussions of �rst-order logic. Here

function-free �rst-order logic is described.
2This is the standard de�nition of a concept used by the knowledge representation community (Woods,

1991; Woods and Schmolze, 1992) and the machine discovery community (Zytkow, 1993). See also (Hayes,

1985) for related knowledge representation issues. See (Tennent, 1991) for a review of the � calculus.
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Two concepts C and D are (semantically) equivalent with respect to a theory T , written

C �T D, if they co-subsume each other:

T j= 8xD(x) , C(x): (5)

Two concepts C and D are (semantically) disjoint with respect to a theory T , if instantiation

of one implies noninstantiation of the other.

Before we continue, a word about the use of concepts as a hypothesis space for knowledge

discovery is in order. Concepts are good tools for representing associations between symbolic

attributes of objects. As pointed out by Zytkow (1993), they have limitations and are not

the best formalism for capturing feature associations or numerical regularities. For example,

the statement

8x height(x) = c� weight(x)

represents a regularity between two attributes height and weightwhich holds for all objects.

This regularity, however, is poorly represented by concepts, however, as a new concept must

be produced for each value in the range of the height function.

2.1.1 A simple example

As a simple illustration of the theory outlined in this section, consider the following example,

adapted from (Buntine, 1988). Consider the simple theory T comprising the two sentences

8x cat(x)) pet(x)

8x dog(x)) pet(x):

In any model of T , cats and dogs are pets. Let the concept C1 be

�x:small(x) ^ fluffy(x) ^ dog(x):

The meaning of this concept (see Table 1; rules 9, 8, and 1) is a function that returns true

for only those objects that are 
u�y, small dogs. Let the concept C2 be

�x:fluffy(x) ^ cat(x);

that is, the concept of \
u�y cats". Then the concept of \
u�y pets"

�x:fluffy(x) ^ pet(x)

subsumes both C1 and C2 with respect to T . It subsumes C1 because all small, 
u�y dogs

are also small 
u�y pets, and hence they are also 
u�y pets. It subsumes C2 because all


u�y cats are also 
u�y pets. These subsumption relations can be veri�ed by substituting

for C and D in Expression 4.
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Table 1: The formal semantics of a restricted �rst-order logic.

1. [[p(v1; : : : ; vn)]]
I

u
= [[p]]

I

u
([[v1]]

I

u
; : : : ; [[vn]]

I

u
) (predicate application)

2. [[true]]
I

u
= true (truth constant)

3. [[false]]
I

u
= false (falsity constant)

4. [[not P ]]
I

u
= true i� [[P ]]

I

u
= false (negation)

5. [[8v P ]]
I

u
= true i� [[P ]]

I

(ujv 7!c) = true for all c 2 D (universal quanti�cation)

6. [[9v P ]]
I

u
= true i� [[P ]]

I

(ujv 7!c) = true for some c 2 D (existential quanti�cation)

7. [[9�vm P ]]
I

u
= true i� [[P ]]

I

u0
= true, where

u0 = (ujv1 7! c1; : : : ; vm 7! cm), fc1; : : : ; cmg � D, and

c1 6= c2 6= : : : 6= cm (restricted existential quanti�cation)

8. [[P ^ Q]]
I

u
= true if [[P ]]

I

u
= true and [[Q]]

I

u
= true (conjunction)

9. [[�x:E]]
I

u
= f 2 D ! ftrue; falseg; where

f(a) = [[E]]
I

(ujx7!a) (concept description)

10. [[P ) Q]]
I

u
= true if [[P ]]

I

u
= false or [[Q]]

I

u
= true (implication)

2.2 Structured concepts

Machine learning systems search over sets of possible concept de�nitions. This underlying

�rst-order language is usually referred to as a hypothesis space. The hypothesis space used

in the simple example above was weak, allowing only unary predicates. This section will

develop and discuss a more powerful hypothesis space for structured concepts.

A structured object comprises parts along with de�ned relations among these parts.3 A

structured concept has structured objects in its extension. Haussler (1989) has given a precise

characterization of a hypothesis space for structured concepts. This will be presented here,

in a form slightly modi�ed to allow for new theoretical and application developments.

An existential conjunctive concept is a closed sentence of the form

(9�vm) p1 ^ : : : ^ pk (6)

where vm denotes a set of m variables v1; : : : ; vm, each pi is a literal with variables from vm

as arguments.4 Expression (6) does not quite conform to the de�nition of a concept given by

Expression (1). It can be satis�ed by an interpretation, but is not a predicate and therefore

does not have an extension. This is easily corrected by wrapping the expression in a � form,

introducing a variable x and a new distinguished predicate �:

�x:(9�vm) �(x; vm) ^ p1 ^ : : : ^ pk (7)

3Later on we will encounter composite structured objects, which recursively comprise other structured

objects as parts.
4Haussler uses functional relations: the pi are formulae of the form p(vn) = y where p is an n{ary function.

The e�ective hypothesis space is similar, although here quantitative attributes are not expressed. An n-ary

functional relation p with jran(p)j = k will give rise to k n-ary predicates. A function with an in�nite range

requires special treatment.
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�x:9� p1 p2 p3

�(x,p1) ^

�(x,p2) ^

�(x,p3) ^

hydrogen(p1) ^

hydrogen(p2) ^

oxygen(p3) ^

bonded(p1,p3) ^

bonded(p2,p3) ^

not bonded(p1,p2) ^

angular(p1,p2,p3).

Figure 1: A water molecule. Left: molecular graph depicting two hydrogens bonded to one

oxygen atom. Right: a structured concept for the water molecule.

where �(x; vm) is shorthand for the expression

�(x; v1) ^ : : : ^ �(x; vm) (8)

The predicate �, used to decompose a single object into parts, is called a fundamental

relation (Thompson and Langley, 1989) and its intended meaning is usually the \immediate

part of" relation. Thus the meaning of (7) is \all objects containing at least these parts, in

these particular relationships".5 The predicate symbol � can only appear in this restricted

circumstance.

The notation (9�vm) in (6) (see Table 1) means that the variables v1; : : : ; vm refer to

distinct objects (see Table 1). Expression (7) captures the semantics of structured concepts

as used by many of the systems surveyed in Section 3. Stepp (1987) has called this a contains

versus an is semantics. In the latter, the concept is satis�ed by objects that have only the

described parts. An is semantics can be encoded in two ways. One is to conjoin to the

concept expression a sentence asserting that the object has no other parts. Another idea,

not suggested by Stepp, is to form an m-ary predicate from a concept with m parts. The

translation between the two forms is mechanical: in this paper I assume a contains semantics

throughout.

It may be useful at this point to visualize a structured concept | with only one binary

relation in the �rst-order language | as a labelled graph: the parts being the vertices and

relations between parts captured by edges. Figure 1 illustrates a structured concept for

a water molecule. It has three parts | two hydrogen and one oxygen | decomposed by

5Haussler calls the objects \scenes", in deference to the pioneering work of Winston (1975).
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the � relation. The quantitative angle measurement (105�) is expressed as a qualitative

angular spatial relationship (as opposed to a linear relationship). At the left is a graph

representation of the concept: to the right is its representation in �rst-order logic.6 As we

shall see, structured concept discovery systems can use various internal representations to

capture the standard semantics given in this section: the restricted �rst-order logic used here

provides a uni�ed notation.

2.3 Subsumption of concepts

Computing whether one concept subsumes | is more general than | another (recall Ex-

pression 4) is a central facility of all structured concept discovery systems. A common

method for subsumption computation is based on the so{called �-subsumption (Plotkin, 1971;

Gottlob, 1987). I assume familiarity with the idea of substitutions. �-subsumption usually

applies to logical clauses rather than concepts: the modi�cations made for the following

de�nition are very slight.

De�nition 1 A structured concept �x:(9�vm)C �-subsumes a structured concept �x:(9�wn)D

if there exists an injective substitution � : vm ! wn such that C� � D.

Proposition 1 For any two structured concepts C and D, C �; D if and only if C �-

subsumes D.

(Note that the background theory is empty in �;). The proof of this completeness result

is straightforward and related proofs can be found in (Haussler, 1989; Buntine, 1988). The

substitution � can be restricted to be injective due to the 9� quanti�er. The weakness of

�-subsumption, as pointed out by Buntine (1988), is that it assumes that the prior theory T

is empty. Although there have been many successes in machine learning in theory{free appli-

cations, recently researchers have come to realize that theory and knowledge representation

is indispensable in many domains (Stepp and Michalski, 1986).

From Expression (4), and the soundness and completeness of �rst-order logic, it follows

that the subsumption relationship C �T D can be validated using theorem proving tech-

niques. If the set of sentences

T [ f9xD(x) ^ notC(x)g

is unsatis�able, then C �T D. Unfortunately, in the presence of an arbitrary theory T , this

computation is only semi-decidable. It is, however, decidable in restricted �rst-order lan-

guages such as Datalog programs (sets of Horn clauses without function symbols). In such

theories subsumption can be computed by saturating the concepts with background knowl-

edge | expanding both concepts to semantically equivalent ones by applying all implications

in the theory (Rouveirol, 1994) | and testing for standard �-subsumption.

The instantiation problem | determining whether an object is an instance of a struc-

tured concept (recall Expression 3) | is very similar to the subsumption problem. In fact,

6Note the semantics assigned to the graph structure in Figure 1; the absence of an edge means that the

vertices are not related by that relation (e.g., the two hydrogens are not bonded). For brevity, negated

angular relationships are omitted from the �gure.
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many machine learning systems rely on the single representation trick (Cohen and Feigen-

baum, 1982) by representing objects as specially identi�ed individual concepts. In many

terminological knowledge representation systems (Nebel, 1990; MacGregor and Brill, 1992),

instantiation is also computed as subsumption between a concept and an individual concept.

The �-subsumption problem is known to be NP-complete (Garey and Johnson, 1979,

problem LO18). Since any structured concept discovery algorithm will need to perform

something closely related to subsumption checking, as we shall see below, the need for

managing complexity arises. While structured concepts are very powerful, in order to be of

practical use the average-case complexity of subsumption checking should be polynomial.

The complexity of subsumption can be managed in various ways, while retaining the

spirit of structured concepts. One is to simply acknowledge cases where subsumption may

take an inordinate amount of time to compute, relying on an operator to make guiding

decisions. Another is to curtail the expressiveness of the hypothesis space, for example, by

omitting background theories and requiring that all attributes in a structured concept occur

only once. In such a case, there will only be one possible matching between any two concept

variables, and subsumption can be computed in polynomial time. Another is to sacri�ce

completeness of subsumption checking, for example, by employing a beam search through

possible �-substitutions (Dietterich and Michalski, 1981). Another is to restrict the number of

variables in a structured concept by aggregating groups of parts into lower-level objects. The

knowledge representation community has two views on this tradeo� between expressiveness

and tractability (Levesque and Brachman, 1987; Doyle and Patil, 1991). Some researchers

assert that the expressiveness of a knowledge representation language (or machine learning

hypothesis space) should not be compromised. Others argue that a hypothesis space should

be restricted so that sound and complete inferences can be made in reasonable time.

2.4 Common subsumers and generalization

Machine learning systems rely extensively on computing a concept in a hypothesis space

which subsumes two or more other concepts. For two concepts C and D, and theory T , a

common subsumer is a concept L such that L �T C and L �T D. A least common subsumer

has the additional property that for no other common subsumer L0
�T= L in the hypothesis

space does L �T L0.

Constructing a common subsumer between two structured concepts is straightforward

and can be done in linear time: essentially any injective matching between parts of the con-

cepts will build a common subsumer (Haussler, 1989). Computing a least common subsumer

is di�cult, and is readily shown to be isomorphic to the maximal matching problem which

is known to be NP-complete (Garey and Johnson, 1979, problem GT50). See (Barrow and

Burstall, 1976; McGregor, 1982) for further discussions of the maximal common subgraph

problem.

A task closely related to the common subsumer problem is the generalization problem:

given a theory T and a concept D, produce another concept C in the hypothesis space such

that C �T D. One rule of generalization, which incorporates a non-empty theory T and en-

compasses many of those generalization rules presented by (Dietterich and Michalski, 1981),

is truncation: removing literals from saturated concepts (Rouveirol, 1994). For example, the
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concept C1 from Section 2.2.1 is saturated to the concept

�x:small(x) ^ fluffy(x) ^ dog(x ^ pet(x):

A subsuming concept is then produced by removing one or more literals from this saturated

concept.

As an aside, in the �eld of inductive logic programming (Muggleton, 1992) (see also

Section 2.6.1 below), it is common to employ Plotkin's (1971) least general generalization

algorithm as a common subsumer method. While the algorithm runs in polynomial time in

the size of two input concepts, when used with a background theory it may produce very

long expressions. These will likely contain many redundant variables and literals which ag-

gravate subsequent subsumption computations. Removing these redundant literals requires

expensive subsumption testing.

2.5 Concept classi�cation and organization

Most structured concept discovery systems organize their discoveries into a network of con-

cepts. A concept taxonomy is an acyclic directed graph with vertices denoting concepts and

edges denoting subsumption, modulo transitivity and re
exivity. A new concept is classi�ed

by placing it in its correct location in the taxonomy, just below all most speci�c subsumers,

and just above all most general subsumees (Woods, 1991). A concept C in the taxonomy

is a most speci�c subsumer of a concept Q if C �T Q, and for any other concept D in the

taxonomy, D �T Q implies D �T C. Similarly, a concept C in the taxonomy is a most

general subsumee of a concept Q if Q �T C, and for any other concept D in the taxonomy,

Q �T D implies C �T D.

To illustrate the theory outlined in this section, refer to Figure 2, which shows a taxonomy

of structured concepts. A diagrammatic notation is used: two parts are related if and only

if they are connected (on an adjacent row, column, or diagonal) in the diagram. For the two

query concepts Q1 and Q2 at the right of Figure 2, the most speci�c subsumers (mss) and

most general subsumees (mgs) are as follows:

mss(Q1) = fC6;C1g

mgs(Q1) = ;

mss(Q2) = fC5;C7g

mgs(Q2) = fC12g

The children or immediate subsumees (ims) of various concepts in the taxonomy are

ims(C1) = fC7;C9g

ims(C5) = fC10g

ims(C12) = ;

The fringe of | all concepts subsumed by | various concepts in the taxonomy are

fringe(C1) = fC7;C9;C11;C12;C13g

fringe(C8) = fC10;C11;C12;C13g

fringe(C12) = ;
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Figure 2: A structured concept taxonomy and two query structures.

Concept taxonomies can be used as background theories, as will be seen in a couple structured

concept discovery systems below. For example, the taxonomy of Figure 2 is a representation

of the theory

8xC12(x)) C10(x)

8xC10(x)) C6(x)

8xC9(x)) C4(x)

8xC3(x)) C0(x)

: : :

2.6 Structured concept discovery

Concept discovery systems can be categorized into three groups, based on their degree of

autonomy. Concept learning systems are \supervised" by a teacher and restricted by the

assumption that all examples are covered by one concept. Conceptual clustering systems are

\unsupervised" and autonomously partition a set of examples using multiple concepts. Ex-

ploratory approaches are not necessarily guided by examples, and must explore the incoming

data or hypothesis space autonomously.

Although the sections below will introduce concept learning, the main focus of this paper

will be on conceptual clustering of structured objects. A number of di�erent systems for this

task will be reviewed in Section 3.

2.6.1 Concept learning

The goal of concept learning, one of the most fundamental and well-studied machine learning

tasks, can be stated very simply. Given a target concept and examples of that concept, form
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an intensional description of the concept. The inference from examples to concept description

is inductive, rather than deductive.

More formally, consider a universe of discourse D and let S � D be the set of objects

that belong to the target concept. Furthermore, let E � S be a �nite set of examples of the

concept. Giving names e1; : : : ; en to these examples, axiomatize the world using a theory T ,

and create a concept C such that for i 2 f1; : : : ; ng

T j= C(ei): (9)

Note that this expression can be computed by multiple proofs of instantiation relationships.

Concept learning from positive examples is an underconstrained task. Many concepts C

will satisfy (9), including the two trivial concepts

�x:true;

and

�x:(x = e1) _ : : : _ (x = en):

(Note that this expression is only valid in a hypothesis space supporting disjunction and

equality). This invokes the well-known problem of induction: there is no logical basis for

choosing between two or more admissible concepts. The problem arises regardless of the

choice of hypothesis space. In structured concept learning there have been several attempts

to address this problem. The most common one is to use negative examples of the concept,

insisting that no negative example is instantiated by the concept (Muggleton and Feng, 1992;

Winston, 1975; Quinlan, 1990). Another technique is to de�ne the hypothesis space such

that the system is incapable of expressing unreasonable inductive choices. Another is to

minimally generalize the examples E, for instance, by creating their least common subsumer
(Dietterich and Michalski, 1981). Another is to use an extra-logical preference criterion over

inductive hypotheses. For example, both Conklin and Witten (1994) and Muggleton et al.
(1992) show how the tradeo� between theory simplicity and the �t of a theory to examples

can be balanced using a minimal length encoding heuristic. Finally, some systems rely on

an \oracle" or a user to ensure them that overgeneralization has not occurred (Sammut and

Banerji, 1986).

There has been much work on structured concept learning. Dietterich and Michalski
(1981) present a survey of early work, including Winston's (1975) landmark ARCH sys-

tem. Researchers later realized that the hypothesis space of logic programs (Lloyd, 1987) is

very rich, supports disjunctive concepts, and naturally uni�es and supports structured con-

cept learning (Shapiro, 1983; Buntine, 1988). The new �eld of inductive logic programming
(Muggleton, 1992) has made great strides in formalizing the tasks of induction, generaliza-

tion, and new predicate discovery in the presence of rich background theories expressed as

logic programs.7 The �eld is advancing rapidly: see (Aha, 1992) and (Muggleton, 1993) for

reviews.

7Although systems such as FOIL (Quinlan, 1990) and GOLEM (Muggleton and Feng, 1992) allow only

ground atoms as background knowledge.
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2.6.2 Conceptual clustering

The task of concept learning, described in the previous section, is to discover a concept which

is satis�ed by a given set of examples. The task of conceptual clustering is to discover a set

of concepts which, taken together, cover a set of examples. An early de�nition of conceptual

clustering was set out by Fisher and Langley (1986): there are many slight variations on

the task. Consider a universe of discourse D and let E � D be a �nite set of examples.

Giving names e1; : : : ; en to these examples, axiomatize the world using a theory T , create a

partitioning R of the examples, and for each r 2 R create a concept C such that for all e 2 r

T j= C(e): (10)

A conceptual clustering system must therefore address two problems (Fisher and Langley,

1986). The aggregation problem creates useful partitions of the example set. The charac-

terization problem | the inductive concept learning problem | creates disjoint concepts

which cover these sets. Conceptual clustering systems have tackled the vast search space of

clusterings in various ways. One is to de�ne a preference ordering on clusterings. Another is

to perform incremental hill-climbing over the space of clusterings, perhaps also using pref-

erence criteria (Lebowitz, 1987; Fisher, 1987). A clustering will depend in such systems on

the order of example presentation. Another is to enforce the restriction that the partition

should be disjoint, as is done by the CLUSTER/2 system (Michalski and Stepp, 1983b). In

this case, instances of other concepts can be used as negative examples to a concept learning

algorithm. Another approach is to �x the number of clusters in advance, and search over this

much restricted hypothesis space. For example, the CLUSTER/2 system selects a �xed-size

set of \seed" objects which are assumed to belong to disjoint clusters.

Conceptual clustering can be viewed as a restricted discovery process, as concepts repre-

sent recurrent structure among their instances. As we have seen, this recurrent structure can

be put to many uses, such as indexing new structured objects with the same regularities,

and making analogical inferences. When the exhaustiveness and disjointness restrictions

of clustering are dropped or weakened, conceptual clustering is transformed into a more

abstract discovery process: these are instances of concept discovery systems. Most work

on conceptual clustering has focused on concepts expressed as attribute-value restrictions

(disallowing any binary predicates). Recently there has been much interest in structured

conceptual clustering.8 The concept discovery systems reviewed in the next section all per-

form conceptual clustering of structured objects.

It is appropriate at this point to review a fundamental distinction between conceptual

clustering (as developed by the �eld of machine learning) and numerical taxonomy (as devel-

oped by the �eld of pattern recognition). Numerical taxonomy methods represent objects as

vectors in a multidimensional parameter space. A concept is also a vector representing a most

representative instance or a centroid of a region of multidimensional space. Instantiation re-

lations are not computed by model-theoretic proof, but rather by measuring the similarity

between an instance to a concept. The distinction between numerical taxonomy and con-

ceptual clustering is blurred in some systems. For example, as we shall see, some systems

8It appears that one of the �rst suggestions that conceptual clustering systems might use structured

objects was given by Langley and Carbonell (1984).
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Table 2: Pertinent questions for structured concept discovery systems.

What is the hypothesis space?

Can multilevel structured objects be represented?

What form, if any, of background knowledge is employed?

How is background knowledge used?

What is the learning algorithm? Is it incremental?

What is the complexity of subsumption testing and concept discovery?

What is the appropriate or intended semantics of concepts?

What form of memory structure is created by the system?

Are discovered concepts semantically or structurally disjoint?

How are new concepts created?

How are concepts selectively acquired?

Does the system monitor and evaluate its own performance?

use a model-theoretic de�nition of subsumption, but use a similarity semantics for instantia-

tion. Other types of clustering can be characterized by the semantics given to concepts: for

example, fuzzy clustering (Bezdek and Pal, 1992) and probabilistic clustering (Cheeseman

et al., 1988). See (Pitt and Reinke, 1988; Gennari et al., 1989; Fisher and Langley, 1986;

Michalski and Stepp, 1983a) for further comparisons of conceptual clustering and numerical

taxonomy.

3 A review of selected methods

The preceding sections have laid the theoretical foundations for presenting a number of

implemented systems which perform structured concept discovery. The order of presentation

is roughly according to the �rst date of publication. Each system surveyed has di�erent

strengths, weaknesses, and features. Table 2 lists a number of questions that will be addressed

throughout this section.

There has been a history in structured concept discovery research of modifying an

attribute-value system to deal with structured descriptions. For example. CLUSTER/S

is derived from CLUSTER/2, MERGE is derived from UNIMEM, LABYRINTH is derived

from COBWEB. In the appropriate sections below a description of the associated attribute-

value conceptual clustering system will be given.

3.1 MERGE

The UNIMEM system (Lebowitz, 1987), like COBWEB, addresses the problem of incremen-

tal conceptual clustering in an attribute-value hypothesis space. UNIMEM has an interesting

evaluation scheme for concepts, based on a predictability analysis (Lebowitz, 1986b). Similar

to COBWEB, this is based on how well inferences about missing features can be made using

a discovered concept. For each feature (unary literal) in a concept, a con�dence score says

how many times that feature had been con�rmed or discon�rmed by examples in the past.
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After a new example passes through a concept | during the most speci�c subsumer com-

putation | the con�dence values are inspected. Features with low con�dence are removed.

If this results in a concept with too few features, the concept is removed. When an example

reaches a most speci�c subsumer, high similarity with any of its immediate subsumees will

trigger the creation of the least common subsumer9, and the requisite local rearrangement

of the concept taxonomy.

The MERGE system (Wasserman, 1985) extends the UNIMEM system to deal with mul-

tilevel structured objects and binary relations. The hypothesis space used is presented in
(Wasserman and Lebowitz, 1983). Like UNIMEM, MERGE �nds the most speci�c sub-

sumers of an input example and, for each, computes the similarity between its immediate

subsumees and the example. To test for similarity of two structured concepts, MERGE

considers all possible matchings between their parts, and counts common literals for each

matching. These common literals, for the maximal matching, can be used to build a com-

mon subsumer. The decomposition of an object into parts seems to be only for memory

organization purposes, and it appears that the � relation is considered to be transitive, as

the part decomposition is sometimes ignored when computing a structural match between

two concepts. The LABYRINTH (Thompson and Langley, 1991) and IMEM (Conklin and

Glasgow, 1992) systems, surveyed below, remedy this problem.

MERGE is closely related to UNIMEM, and therefore inherits the strengths and weak-

nesses of that system. Examples are instantiated according to similarity with concepts

in the network, and the semantics of the system is largely operational. Whereas links in

the concept taxonomy usually denote model-theoretic subsumption, it is not clear that the

feature removal process preserves the integrity of the concept taxonomy. Like UNIMEM,

MERGE cannot employ background knowledge. A strength of MERGE, like UNIMEM, is

that concepts can be nondisjoint. This introduces 
exibility into the clustering process in

that multiple concepts can be used to describe the same example.

3.2 Levinson

Levinson (1985) describes a self-organizing information retrieval system for graphs. A

database of graph structures is indexed using a taxonomy of discovered structured con-

cepts. Subsumption is computed using a subgraph isomorphism test. The hypothesis space

used | connected graphs with labelled edges and vertices | is equivalent to structured

concepts with unary and binary predicates. Only one relation is allowed between any two

parts. Negation can be expressed using special \negated" edges.10 Multilevel objects, multi-

nary relations, or background knowledge cannot be expressed, although recent research by

Levinson (1994) corrects these problems.

The central tenet of Levinson's work is that a taxonomy provides an e�cient indexing

mechanism for structured objects. This indexing mechanism can be used to answer three

9In an attribute-value hypothesis space such as that used by UNIMEM, there is a unique least common

subsumer for any two concepts.
10The absence of an edge in a graph does not mean that two parts are not related; if this were so,

the subgraph isomorphism test for subsumption would be unsound, and a slightly modi�ed de�nition of

\subgraph" must be employed. See also the footnote to Figure 1.
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types of queries. The generalization query asks, for some structured concept Q, what con-

cepts are most speci�c subsumers of Q. The specialization query determines the most general

subsumees of Q. A close match to Q is any concept subsumed by one of Q's most speci�c

subsumers, that is, some concept in the fringe of some element of mss(Q). Conklin (1993a)

outlines the properties of a similarity measure for which close match retrieval is sound with

respect to similarity.

Levinson's learning algorithm is similar to that of UNIMEM (and MERGE). It is incre-

mental, incorporating individuated structured objects one by one into an evolving concept

taxonomy. For each close match of an input example, the system computes a maximal com-

mon subgraph (thereby a least common subsumer) and a minimal di�erent subgraph.11 A

minimal di�erent subgraph of two concepts is a most general generalization of one which does

not subsume the other. The newly-formed concept is retained and classi�ed (see Section 2.5)

only if it may improve retrieval e�ciency of objects already encountered. Since concepts

added early on in an incremental stream of examples may later turn out to be detrimental

to retrieval e�ciency, the system has a concept \garbage collection" utility which removes

undesirable concepts. Levinson's learning algorithm di�ers slightly from UNIMEM's in that

the latter inspects only the immediate subsumees, while Levinson inspects the complete

fringe of a most speci�c subsumer. Similarity is not used as a basis for discovered concept

acquisition.

Levinson introduced some important ideas to structured concept discovery, including its

formulation in terms of information retrieval, the restricted yet powerful hypothesis space

of labelled graphs, and the criterion for retaining concepts. The approach relies extensively

on maximal common subgraph calculation and subsumption computation. Although an

e�cient topological search is used to compute the most speci�c subsumers of an example,

mechanisms for improving the average-case complexity of subsumption computation must

exist. This problem will be revisited in Section 4 of this paper.

3.3 CLUSTER/S

As discussed earlier, the CLUSTER/2 system (Michalski and Stepp, 1983b) transforms the

abstract conceptual clustering task into a series of supervised learning problems. Unlike all of

the systems surveyed above, CLUSTER/2 uses background knowledge. This is expressed as

a network of determination rules between attributes. Examples are not completely saturated

with the background knowledge, rather, the network directs the partial saturation process by

inspecting the set of attributes present in an example. The intuition behind this restricted

saturation process is that not all background knowledge will be relevant to a given clustering

task (Fisher and Pazzani, 1991). CLUSTER/2 uses a complex evaluation function to drive

its search over clusterings: this is roughly based on the simplicity of cluster descriptions and

the �t of the clustering to the examples.

11By de�nition, a maximal common subgraph is not a subgraph of any other subgraph. A maximum

common subgraph has more vertices than any other maximal common subgraph. Levinson uses a heuristic

common subgraph algorithm which does not guarantee the computation of either a maximal or a maximum

common subgraph (Levinson, personal correspondence). It is also not clear what the learning algorithm does

when more than one maximal common subgraph exists.
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The CLUSTER/S (Stepp and Michalski, 1986) system clusters structured objects, and

invokes CLUSTER/2 as a subroutine. Examples are preprocessed by CLUSTER/S | trans-

lated into an attribute-value language | where CLUSTER/2 can apply. Essentially this

involves �nding a common subsumer L of all structured examples (using a heuristic beam

search), and freezing a subset of variables in each example by substituting unique constants

for them. Some variables, not participating in L but connected by relations to variables in

L, are also frozen. The resulting variable-free descriptions are then processed by the CLUS-

TER/2 system. A postprocessing step melts the discovered concepts, substituting variables

for constants and converting them back into a structured concept representation.

Despite the important advances made by CLUSTER/S as one of the �rst structured con-

cept discovery systems to incorporate background knowledge, it has a shortcoming. Since

only one least common subsumer of all examples is computed, the system cannot be applied

to problems where there is no single, meaningful common subsumer. Although CLUSTER/S

uses a hypothesis space capable of representing taxonomies of structured concepts, its dis-

covery algorithm is limited.

3.4 KBG

Like MERGE, KBG (Knowledge Base Generalizer) (Bisson, 1992a) uses a similarity valua-

tion to provoke concept discovery. Highly similar examples are generalized. An example in

KBG is a subset of a database of ground atomic facts. Negated literals cannot be expressed.

Background knowledge is applied to each example by a complete saturation process. Un-

like CLUSTER/S, which controls saturation, KBG computes a deductive �xpoint of each

example. Following this process, each example is individuated.12

The uniqueness of the KBG learning algorithm is in its computation of similarity between

two examples. Unlike MERGE, KBG does not consider all possible matchings between

structured concepts. The similarity measure (Bisson, 1992b) considers, for each pair of

objects in an example, the number of common predicates in which the pair occur as the

same argument. Partial relational similarity is taken into account by inductively considering

the similarity of other pairs of entities in each common predicate. The result of a similarity

computation is a valuation between the two examples, and a valuation between each pair of

objects in the examples. The similarity computation is polynomial in the number of literals

in the examples.

The learning algorithm of KBG operates as follows. For a set E of examples, KBG

builds a square similarity matrix from all similarity valuation computations. Following this

process, the system chooses the two13 most similar examples A and B of E and, using the

injective matching derived by the similarity computation, computes a common subsumer G

(not necessarily a least common subsumer). The clustering process iterates with the new set

E�fA;Bg+ fGg of \examples", and terminates when this set is a singleton. The resulting

concept taxonomy is incomplete: some subsumption relationships are not present. This is

12Bisson refers to \exemplifying of a generalization"; the inverse of individuation. To remain in line with

the theoretical foundations section, I prefer to view KBG as working with individuated examples.
13KBG will consider common subsumers of more than two examples using a thresholding method, but for

simplicity here I shall only consider the two-example case. Thresholding also allows discovered concepts to

be nondisjoint.
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because discovered concepts are not classi�ed back into the concept taxonomy. To correct

this, a postprocessing step determines subsumption relationships missed during the learning

algorithm (Bisson, personal correspondence). This would appear to be an expensive step,

since it involves subsumption computations. Note that the learning algorithm is otherwise

quite e�cient, since least common subsumer and subsumption computations are avoided.

The price paid for this e�ciency is that overly-general concepts may be created.

3.5 LABYRINTH

The LABYRINTH system (Thompson and Langley, 1991) is based on the COBWEB concep-

tual clustering system (Fisher, 1987). COBWEB manipulates probabilistic concepts. These

concepts encompass a set of features, along with a conditional probability of the feature given

membership in the concept. Although COBWEB creates a concept hierarchy, links between

concepts do not represent logical subsumption. The goal of COBWEB is to create concepts

that maximize the expected number of features that can be correctly predicted for instances

of the concept. COBWEB passes examples through its hierarchy | a process analogous to

the computation of a most speci�c subsumer (Section 2.5) | potentially creating new con-

cepts in the process. Concept discovery is guided by a measure which attempts to maximize

intracluster similarity and intercluster dissimilarity. When an example is sorted to a node in

the hierarchy, it may recursively pass through that node, or trigger concept formation at that

level. Two other learning operators are employed to compensate for incremental learning

and example presentation order e�ects: these attempt to correct a suboptimal hierarchy by

merging or splitting concepts at a level of the hierarchy.

Concepts in COBWEB are probabilistic, and there is no use for model-theoretic sub-

sumption. This means that the results of discovery can be di�cult to interpret (Langley,

personal correspondence). All concepts in COBWEB are \disjoint", however, unlike model-

theoretic systems, where disjointness is a semantic property of the discovered concepts (recall

Section 2.1), in COBWEB disjointness is a purely structural property of a particular concept

taxonomy.

LABYRINTH extends the weak hypothesis space of COBWEB, and is capable of express-

ing multilevel structured objects with binary relations between parts. Of the systems sur-

veyed earlier which use background knowledge, none were \constructive": able to use named

discovered concepts as new unary predicates in the �rst-order language. The LABYRINTH,

SUBDUE, and IMEM systems incorporate this important idea. LABYRINTH can express

negated literals. A concept with n parts will have n probability distributions for the labels

of all possible component concepts. For every binary predicate symbol there will be an

additional O(n2) entries in the concept.

LABYRINTH recursively incorporates an individuated structured object in a depth-�rst

fashion; for a level-1 concept this entails classifying each level-0 part, obtaining a level-0 label

for each part. For all possible matchings of labels to concept parts, LABYRINTH evaluates

the score of the match. This matching process is performed with each child of a node; this

determines the roles of parts so that COBWEB's category utility measure can be applied.

As an object progresses through the taxonomy, LABYRINTH considers generalizing the

features of a node in the taxonomy. This involves computing a common subsumer of two
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corresponding features and evaluating the resulting concept using an equation designed to

avoid overgeneralization. Unlike CLUSTER/S and KBG which preprocess examples using

saturation, in LABYRINTH background knowledge is applied during concept formation.

Previously discovered concepts can be used as background knowledge. LABYRINTH has

some problems that prohibit its use on real applications. The time complexity introduced

by its exhaustive matching routine will be unacceptable in domains with large structured

objects.

3.6 SUBDUE

The systems presented so far have performed generalization from two or more examples. By

contrast, the SUBDUE system of Cook and Holder (1994) analyzes a single structured object

to detect recurrent connected subgraphs. The hypothesis space appears to be equivalent to

that of Levinson's system, although an \inexact" subgraph isomorphism test is used to

validate subsumption relationships. A minimal length encoding measure is used to quantify

the \interestingness" of a discovered structured concept. This measure coaxes the system

away from concepts which are too general or too speci�c. Overly general concepts will require

much additional information to reconstruct the original graph, while overly speci�c concepts

will be too complex. In neither case will the original structured object be compressed well

by the discovered concept.

The fundamental limitation of this method is that, by de�nition, substructures which

do not recur within a single structured object will not o�er any compression and will not

be proposed by SUBDUE. Although this is an unrealistic restriction for general machine

learning, future work could pro�tably combine inter-examplemethods with SUBDUE's intra-

example discovery method.

In SUBDUE, the components of a concept can refer to a previously discovered concept.

Thus, the system is capable of building a concept taxonomy of multilevel structured concepts.

Once a substructure is identi�ed in an example, that example is \parsed" and re-expressed

using that substructure. This is in contrast to the LABYRINTH and IMEM systems which

assume that examples are parsed in compatible ways. The parsing process of SUBDUE

appears to have unspeci�ed semantic implications, since new � relations, and new predicates

expressing relations between higher-level objects must be introduced into the underlying

�rst-order language.

3.7 IMEM

The IMEM (Image MEMory) system (Conklin and Glasgow, 1992) incorporates aspects of

both LABYRINTH and Levinson's system. Like LABYRINTH, it can represent multilevel

structured concepts, negated literals, and can use the names of discovered concepts as new

unary predicates. The learning algorithm of IMEM is similar to Levinson's, and it also uses a

model-theoretic semantics for concepts. Unlike both systems, IMEM can express multinary

relations between parts.

The knowledge representation scheme used by IMEM is somewhat unique. It uses a

syntax called an image term to represent structured concept descriptions. An image term
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is formed by associating an image (a set of concept/coordinate pairs) with a set of relation

identi�ers. To each relation identi�er there corresponds a partial Boolean-valued function

mapping a tuple of image components to values. Relations are computed directly from the

image using functions. The space complexity of a structured concept description is therefore

linear rather than polynomial in the number of concept variables. Implicitly present in a

structured concept description, for a given relation, are all tuples for which the associated

partial function is de�ned. The drawback of this complete representation is that only coarse-

grained truncation is available as a generalization operator. IMEM uses two truncation

operators: removing a part from an image (i.e., removing all literals that involve a given

variable), or removal of a relation from a relation set (i.e., removing all literals with a given

predicate symbol). Although a complete representation is weaker than an arbitrary graph

representation, as used by Levinson for example, it is comprehensible and has been shown to

be surprisingly e�ective in characterizing many di�erent types of spatial concepts. It should

be noted that the subsumption problem in this representation remains NP-complete.

IMEM uses background knowledge in the form of a concept taxonomy. This can be viewed

as an attribute hierarchy, but like LABYRINTH, discovered concepts also constitute dynamic

background knowledge. This knowledge is applied after a maximal structural match. This

generalization operator is called \part replacement" as it replaces a component of an image

with a more general one.

Of the systems surveyed IMEM is most closely related to Levinson's. The learning al-

gorithm di�ers slightly in that IMEM, after computing the most speci�c subsumers of an

example, computes a common subsumer with only one most similar concept. IMEM, unlike

Levinson's system, does not compute \greatest di�erent" subsumers. IMEM was designed

as a self-organizing information retrieval system for images. It supports generalization, spe-

cialization, and close match queries. Like Levinson's system, the concept taxonomy formed

is sound and complete with respect to subsumption. Whereas Levinson uses a heuristic

designed to speed graph retrieval, IMEM uses a heuristic designed to maximize intercluster

dissimilarity and intracluster similarity. These measures are in line with classical information

retrieval goals of balancing recall and precision (Salton and McGill, 1983).

3.8 Miscellaneous systems

This paper has surveyed several major structured concept discovery systems in detail. Each

system represented some advancement over previous systems in the technology of structured

concept formation. Several general-purpose discovery systems were omitted. Although sec-

ondary to its main goal of concept learning, Winston's (1975) ARCH system includes a

\grouping" method which discovers concepts comprising, for example, sequences of parts re-

lated by a common relation. These structured concepts are used to deepen the hierarchical

description of an object.

The RINCON system (Wogulis and Langley, 1989) attempts to improve the e�ciency

of the relational concept instantiation problem by creating and retaining \intermediate"

concepts. The DMP system (Parsons, 1989) discovers structured concepts within a database

of ground facts. The CAFE system of Handa et al. (1994) has made minor extensions

to LABYRINTH's hypothesis space and concept evaluation function. It allows the parts
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of concepts to be \context-sensitive" by including a description of the inverse of the �

relation. Mineau and Godin (1994) describe a conceptual clustering system for restricted

structured concepts. In contrast to other systems, their system creates a complete concept

lattice: every subsumer of the examples is formed and made explicit. The IDS system
(Nordhausen and Langley, 1990) has a structured concept discovery component very similar

to MERGE. Yoshida et al. (1993) describe CLIP, an intra-example discovery system similar

to the SUBDUE system.

There has been a longstanding interest in the computer vision and pattern recogni-

tion communities in the use of structured object representations and relational models.

Structured objects and concepts are a powerful way to describe the necessary and su�-

cient features and relations of a visual object. Most of the machine learning work in this

area has been in supervised concept learning (Winston, 1975; Connell and Brady, 1987),

although researchers have also considered the problem of organizing relational models for

e�cient search. A common solution is to perform a numerical clustering procedure on a

database of structured objects (Sengupta and Boyer, 1993; Shapiro and Haralick, 1982;

Segen, 1990). Structured concepts will then have a similarity semantics, and links in the

cluster taxonomy will not necessarily re
ect subsumption. Dey et al. (1993), by contrast, do

use a model-theoretic notion of subsumption. Conklin (1993b) shows how the IMEM system

applies to the relational model organization problem. In a somewhat related �eld, research

in retrieval of structured pictures from image databases has used a concept abstraction or

generalization operator (Chang and Liu, 1984).

The notion of a structured concept reappears frequently in many di�erent problem do-

mains. The structural chemistry community, for example, has had a longstanding interest

in graph structures. An early system, Meta-DENDRAL (Cohen and Feigenbaum, 1982),

created a taxonomy of molecular graphs for use in mass spectrum analysis. The system of

Okada and Wipke (1989) indexes a database of molecular graphs using a taxonomy of dis-

covered maximal common subgraphs. Okada (1993) shows how this taxonomy can be used

for analogical inference. Structurally similar molecules are retrieved by a most speci�c sub-

sumer computation, and properties of molecules are inferred from similar instances. Wilcox

and Levinson (1986) show how Levinson's system can be applied to a database of molecular

structures for e�cient information retrieval. LABYRINTH has been applied to the problem

of DNA promoter sequence recognition (Thompson et al., 1991). IMEM has been applied to

the discovery of small molecule conformation classes (Conklin et al., 1993), and to protein

motif discovery (Conklin et al., 1994).

3.9 Discussion

The previous section has surveyed a number of structured concept discovery systems. These

were reviewed with particular attention to the knowledge level, that is, to the expressive

power of the hypothesis space and the meaning of concept subsumption and not to the

speci�c symbol structures used. Table 3 presents these systems according to several dimen-

sions. The \semantics" column refers to the underlying semantic theory of a concept. In

the case of probabilistic concepts (LABYRINTH), concepts are interpreted as conditional

probability distributions over literals. This interpretation has the undesirable property of
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Table 3: A comparison of several structured concept discovery systems. Incr: incremental,

Nd: nondisjoint, SA: selective acquisition method.

Name Relations Level Theory Semantics Incr Nd SA

MERGE (1985) binary any no combined yes yes similarity

Levinson (1985) binary 1 no model yes yes cost

CLUSTER/S (1986) multinary n/a yes model no no seed

KBG (1992) multinary n/a yes model no yes similarity

LABYRINTH (1991) binary any yes probability yes no probability

SUBDUE (1994) binary any no similarity no yes compression

IMEM (1992) multinary any yes model yes yes similarity

not supporting a clear de�nition of subsumption. In the case of model-theoretic semantics,

the most common form, concepts have an extension (recall Section 2), and subsumption is

de�ned as a subset relation between extensions in all possible interpretations of the concept.

In these systems, unlike probabilistic systems, links between concepts in a taxonomy have a

sound denotation with respect to subsumption. Finally, the MERGE system uses a confus-

ing combined semantics, where links in the concept taxonomy may denote model-theoretic

subsumption, but instantiation is performed using a similarity comparison with a concept.

The reasons for this unfortunate development stemmed from the early UNIMEM system,

which was more concerned with structural memory organization than with sound semantic

principles.

The \Relations", \Level", and \Theory" columns of Table 3 attempt to give an idea

of the expressive power of a hypothesis space. For example, the LABYRINTH system

employs background knowledge, supports multilevel structured concepts, and allows only

binary relations between parts to be expressed. Multinary relations can be expressed as

compositions of binary relations, but this becomes tedious with large structured objects. The

CLUSTER/S and KBG systems do not represent structured objects as multilevel objects:

rather, they support arbitrary conjunctive expressions. While their hypothesis space is

strictly more expressive than that of other systems, they will su�er from severe computational

di�culties when subsumption between large structured concepts must be performed. In

systems which employ a true multilevel organization for structured concepts, objects can be

organized so that a less expensive subsumption computation is faced (recall Section 2.3).

The \Nd" column of Table 3 states whether the classes produced by the discovery al-

gorithm are nondisjoint. As stated earlier, the ability to produce nondisjoint categories is

one of the di�erences between a conceptual clustering and a more 
exible concept discov-

ery system. In the two systems that produce disjoint classes, a distinction must be made

as to whether classes are structurally disjoint (LABRYRINTH), or whether they are also

semantically disjoint (CLUSTER/S).

The \Incr" column of Table 3 denotes whether learning algorithm is incremental. Non-

incremental systems, such as CLUSTER/S and KBG, will have serious di�culties in coping

with large numbers of examples. Extending CLUSTER/S to be incremental would be di�-

cult due to its semantic disjointness requirement on discovered concepts. As pointed out by
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Bisson (1992b), KBG would be fairly easy to coax into an incremental mode.

Finally, the \Sa" column of Table 3 refers to the manner in which concepts are selectively

acquired (Markovitch and Scott, 1993) or discovered. LABYRINTH is derived from COB-

WEB and uses a predictiveness measure to judge the expected worth of a potential concept.

Concepts formed by the CLUSTER/S system wholly depend on the initial \seed" objects

selected from the pool of examples. Levinson (1985) employs a sophisticated heuristic which

measures whether the new concept will lead to more e�cient retrieval of existing examples.

The most common selective acquisition mechanism is to create a concept when a new ex-

ample is similar to a previous example. This similarity function can be purely structural

(IMEM), based also on similarity of unary attributes (MERGE), or can be pseudo-structural

(KBG).

4 Conclusions

This paper has presented a uni�ed theory of structured concept discovery, and has discussed

in detail several operational machine learning systems in this paradigm. Strengths and weak-

nesses of each system were outlined. This section will present some potentially important

future research directions for the �eld. Haussler (1989) attempted a similar task; however,

since that paper was mainly concerned with hypothesis space theory and not with operational

systems, several issues were not anticipated. Below I will critically review a few of Haus-

sler's proposals, focusing on if and how they have been addressed by current state-of-the-art

systems. I will then propose my own new set of critical future research directions.

One of Haussler's proposals was to replace the 9� quanti�er (Section 3.2) by the 9 quan-

ti�er. This has the e�ect that a part of a structured object can instantiate more than one

variable of a structured concept. In computer vision terminology, this means considering a

relational homomorphism rather than a relational monomorphism between concept variables
(Vosselman, 1992; Haralick and Shapiro, 1993). In terms of �-subsumption computation, it

means searching over the much larger space of both injective and non-injective substitutions.

This tradeo� with added search complexity must be justi�ed with convincing examples. In

computer vision and chemistry applications, for example, monomorphisms are commonplace.

None of the systems surveyed above use general relational homomorphisms.

A second proposal of Haussler is to increase hypothesis space power by including dis-

junction as a basic operator. Although this sounds simple enough, there are several ways

disjunction might be incorporated. One is to allow arbitrary disjunctive normal form expres-

sions as concept descriptions. As mentioned earlier, the �eld of inductive logic programming

uses such a hypothesis space. A simpler idea is to allow disjunction among unary predi-

cates over the same variable. Something similar to disjunction can already be expressed by

any conjunctive hypothesis space using background knowledge. A common subsumer of two

attributes will include in its extension all objects with either attribute. This mechanism

is not quite equivalent to disjunction as the common subsumer may be more general than

the disjunction of the two attributes. This points to a problem when incorporating proper

attribute disjunction: when generalization is to be performed, the least common subsumer

can tend to be overly complex and speci�c. It is necessary to introduce additional preference

criteria for candidate generalizations. It appears that this is a classical complexity versus
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�t problem, and Conklin and Witten's (1994) complexity-based induction approach may be

useful here.

Another topic that came up in Haussler's paper was relation subsumption. For example,

the relation \close" subsumes the relation \very close". In chemistry, bonds of lower orders

can be viewed as subsuming those of higher orders (Okada and Wipke, 1989). The use of

relation subsumption is also related to the use of more powerful types of background knowl-

edge, e.g., de�nite clause programs as used by the inductive logic programming community.

The KBG system uses a taxonomy of relations that is applied during the saturation process.

Finally, Haussler refers to the need to consider multilevel structured objects. Clearly this

proposal has been satis�ed and implemented in the LABYRINTH and the IMEM structured

concept discovery systems.

I shall divide my proposals into two types; those concerned with hypothesis space power

and those concerned with memory organization, retrieval, and system issues.

A recurrent issue in knowledge representation is �nding a good ontology; predicates used

to describe objects in the world. Structured concept discovery systems face the same prob-

lems. For example, personal experience with the IMEM system has indicated that \correct"

concepts emerge almost immediately from examples when the appropriate set of relations are

used. This indicates that a topic of great importance is the investigation of constructive learn-

ing, whereby a concept discovery system has the ability to propose, represent, and evaluate

new relations to be used the �rst-order language. Crandell and Smith (1983), for example,

do a relational clustering to discover an ontology for molecules. The relational discovery

task is di�cult because of the enormous space of new relations that can be constructed from

an initial language. On a brighter note, however, all structured concept discovery systems

perform a constructive discovery of concepts | essentially unary relations | and it seems

like much of the theory is already in place to cluster relational examples.

An intriguing extension to a hypothesis space is to allow for cyclic concepts, where the

name of a concept reappears in its description. Consider, for example, the concept of a

crystal, which is a basic structural motif repeated ad in�nitum. Such a concept could have

the form

X
def
= M _ : : :X : : :

whereM is the basic motif. The �eld of inductive logic programming has already investigated

recursive relational concepts; many of these principles could apply to structured concept dis-

covery. Cyclic concepts are also studied by the knowledge representation community (Nebel,

1991). In pragmatic terms, a cyclic structured concept would be a compact representation of

what would otherwise require arbitrarily many separate concepts of various speci�city. None

of the surveyed systems purportedly allow for cyclic de�nitions, in fact, few (e.g., IMEM,

LABYRINTH) allow for a discovered concept to be expressed in terms of another previously

discovered one.

The computational advantages of using a multilevel description have been pointed out

in this paper. However, penalties are incurred by moving to a multilevel representation.

First, there is no \correct", and sometimes no intuitive, way to decompose an object into

subgroups. This is reminiscent of the general segmentation problem of computer vision and

the \perceptual grouping" task (Marr, 1982; Pentland, 1986). Multilevel concept instantia-

tion will require that a structured object be parsed in a way compatible with the concept.
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Also, when an object is parsed, \cousin" relationships are awkward to maintain. The latter

problem is a necessary tradeo� that must be accepted; the former could be addressed by a

rigorous and extended theory for the � relation.

A topic that must be explored in more detail is the evaluation of discovered concepts

during selective acquisition and retention. Recall that a selective acquisition method decides,

at the time a concept is created, whether it should be incorporated into the background

knowledge. A selective retention mechanism decides, in the future, whether to discard a

concept that does not appear to be \useful". Thus any scheme for evaluation concepts

must be based on a theory of pragmatics or learning performance. For the concept learning

task, the goal is to improve the accuracy of classi�cation. A selective acquisition measure

should aim to learn concepts that may have higher accuracy, whereas a selective retention

mechanism would discard concept descriptions with low accuracy.

For general concept discovery, unfortunately, evaluation is not so clear. Many di�erent,

and equally valid, retention measures can be proposed. One can wish that known concepts

are \rediscovered", or that discovered concepts are somehow interesting, unanticipated, or

intuitively plausible to a human expert. This was the evaluation mechanism used by Con-

klin et al. (1993) in their discovery of pyranose molecule con�gurations. A stronger, less

subjective criterion is employed by Levinson's system, where a discovered concept must im-

prove retrieval e�ciency. LABYRINTH tries to maximize the inferential predictiveness of

features. IMEM aims for a balanced concept taxonomy for information retrieval purposes.

The CLUSTER/S system employs a detailed evaluation function for proposed clusterings,

but is not based on any theory of pragmatics. To summarize this discussion, there is no

\correct" concept evaluation criterion, and this points perhaps for a need for a stronger

theory of pragmatics for concept discovery.

The �nal future research topic I shall discuss is that of knowledge base organization and

structured concept retrieval as borne out by the concept classi�cation process (Section 2.5).

There is no reason to suppose that the number of discovered structured concepts in an ap-

plication will be small, and if many or all of these are to be retained it is necessary to employ

e�cient implementation techniques. It seems clear that the size of the concept descriptions

must be kept to a minimum. Lebowitz' (1986a) idea is to employ \inheritance" in the frame

or object-oriented programming sense. For propositional calculus and frame-based represen-

tations, inheritance is deterministic. For structured concepts it is necessary to specify, in

the form of a graph embedding, how the parent and child concept are structurally related.

Ellis (1991) o�ers an intriguing approach, which is to specify a sequence of transformation

rules which rewrites the parent concept into equivalence with the child. In both of these

approaches, in a deep concept taxonomy much of the structure of lower concepts can be

\inherited" from above, perhaps resulting in a signi�cant savings in memory.

Levinson (1992) presents a technique for reducing the average-case complexity of struc-

tured concept subsumption checking during classi�cation. The technique assigns properties

to nodes in a graph, thereby making them more speci�c and restricting the number of pos-

sible concepts they can subsume. A taxonomy of these \node descriptors" is used to index

database graphs. Soundness of the technique can only be guaranteed by an subsequent ex-

pensive subsumption test, but the algorithm avoids this test. A similar method has been

used in chemical structure retrieval systems (Nagy et al., 1988) which must avoid as many
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subgraph isomorphism tests as possible.

Conklin and Jenkins (1994) observe that a concept taxonomy, in a standard termino-

logical logic (Nebel, 1990), can be viewed formally as a mathematical category, where the

nodes of the category are canonical-form terms and the arrows are injective subsumption

mappings. A speedup theorem of the paper is that the presence of the cached mappings

determines subsumption relationships between concepts in the taxonomy and a new query

concept. This theorem does not lead to a reduction in storage complexity, but rather a

reduction in the number of primitive subsumption tests. Barrow et al. (1972) also make a

category-theoretic connection between subsumption and relational structures, and present a

similar speedup theorem. The authors state that \the remaining problem of this approach

is that of setting up the modules [concepts] and network [concept taxonomy] automatically

in a `learning phase'." Clearly, this \remaining problem" can now be addressed by the new

generation of structured concept discovery systems. Levinson's (1994) \Method V" retrieval

algorithm uses a very similar arrow caching technique. All of these methods are fundamen-

tally di�erent from Ellis' (1991) technique, as the category theorem states that all injective

mappings between parent and child concept must be cached, whereas Ellis' approach only

stores one set of transformations.

Finally, although the picture is improving with recent forays into chemistry, vision, and

database applications, there are many other interesting domains where data is described

by structured objects and the �eld must be acutely concerned with moving away from toy

\blocks-world" problems. Concept discovery systems must be able to deal with very large

amounts of data. This requires a real concern for e�cient implementation techniques. There

is much research to be done, but the future looks bright and it should be possible to retain the

high expressive power and generality of structured concept discovery systems while achieving

results in important speci�c applications.

5 Acknowledgements

I would like to thank Gilles Bisson, Diane Cook, Bob Levinson, and Kevin Thompson for their

very helpful comments on an earlier draft of this paper. This research has been supported

by a Postgraduate Scholarship from the Natural Science and Engineering Research Council

of Canada.

26



References

[Aha, 1992] Aha, D. 1992. Relating relational learning algorithms. In Muggleton, S., editor,

Inductive Logic Programming. Academic Press. 233{260.

[Barrow et al., 1972] Barrow, H. G.; Ambler, A. P.; and Burstall, R. M. 1972. Some tech-

niques for recognising structure in pictures. In Watanabe, S., editor, Frontiers of Pattern

Recognition. Academic Press. 1{29.

[Barrow and Burstall, 1976] Barrow, H. G. and Burstall, R. M. 1976. Subgraph isomor-

phism, matching relational structures and maximal cliques. Information Processing Letters

4(4):83{84.

[Bezdek and Pal, 1992] Bezdek, J. C. and Pal, S. K. 1992. Fuzzy models for pattern recog-

nition: methods that search for structures in data. IEEE Press.

[Bisson, 1992a] Bisson, G. 1992a. Conceptual clustering in a �rst order logic representa-

tion. In Neumann, B., editor, Proc. ECAI{92: Tenth European Conference on Arti�cial

Intelligence. John Wiley and Sons. 458{462.

[Bisson, 1992b] Bisson, G. 1992b. Learning in FOL with a similarity measure. In Proc.

AAAI-92. The MIT Press. 82{87.

[Buntine, 1988] Buntine, W. 1988. Generalized subsumption and its application to induction

and redundancy. Arti�cial Intelligence 36:149{176.

[Chang and Liu, 1984] Chang, S. K. and Liu, S. Y. 1984. Picture indexing and abstraction

techniques for pictorial databases. IEEE Trans. Pattern Analysis and Machine Intelligence

6(4):475{484.

[Cheeseman et al., 1988] Cheeseman, P.; Kelly, J.; Self, M.; Stutz, J.; Taylor, W.; and Free-

man, D. 1988. Autoclass: A Bayesian classi�cation system. In Proceedings of the Fifth

International Workshop on Machine Learning.

[Cohen and Feigenbaum, 1982] Cohen, P. R. and Feigenbaum, E. A. 1982. The Handbook of

Arti�cial Intelligence, volume 3. William Kaufmann.

[Conklin et al., 1993] Conklin, D.; Fortier, S.; and Glasgow, J. 1993. Knowledge discovery in

molecular databases. IEEE Trans. Knowledge and Data Engineering 5(6):985{987. Special

Issue on Learning and Discovery in Knowledge-Based Databases.

[Conklin et al., 1994] Conklin, D.; Fortier, S.; and Glasgow, J. 1994. Knowledge discovery of

multilevel protein motifs. In Altman, R.; Brutlag, D.; Karp, P.; Lathrop, R.; and Searls,

D., editors, Proceedings of the Second International Conference on Intelligent Systems for

Molecular Biology. AAAI Press.

[Conklin and Glasgow, 1992] Conklin, D. and Glasgow, J. 1992. Spatial analogy and sub-

sumption. In Sleeman, D. and Edwards, P., editors, Machine Learning: Proceedings of the

Ninth International Conference (ML92). Morgan Kaufmann. 111{116.

27



[Conklin and Jenkins, 1994] Conklin, D. and Jenkins, M. A. 1994. Compilation of descrip-

tion logics. Unpublished research report, in preparation.

[Conklin and Witten, 1994] Conklin, D. and Witten, I. H. 1994. Complexity{based induc-

tion. Machine Learning 16(3).

[Conklin, 1993a] Conklin, D. 1993a. Machine discovery of protein motifs. Submitted for

publication.

[Conklin, 1993b] Conklin, D. 1993b. Transformation-invariant indexing and machine dis-

covery for computer vision. In Bowyer, K. and Hall, L., editors, Machine Learning in

Computer Vision: What, Why, and How?, number FSS-93-04 in AAAI 1993 Fall Sympo-

sium Series. 10{14.

[Connell and Brady, 1987] Connell, J. and Brady, M. 1987. Generating and generalising

models of visual objects. Arti�cial Intelligence 31:159{183.

[Cook and Holder, 1994] Cook, D. J. and Holder, L. B. 1994. Substructure discovery using

minimum description length and background knowledge. Journal of Arti�cial Intelligence

Research 1:231{255.

[Crandell and Smith, 1983] Crandell, C. W. and Smith, D. H. 1983. Computer-assisted

examination of compounds for common three-dimensional substructures. J. Chem. Inf.

Comp. Sci. 23:186{197.

[Dey et al., 1993] Dey, L.; Das, P.; and Chaudhury, S. 1993. Recognition and learning of

unknown objects in a hierarchical knowledge base. In Bowyer, K. and Hall, L., editors,

Machine Learning in Computer Vision: What, Why, and How?, number FSS-93-04 in

AAAI 1993 Fall Symposium Series. 15{19.

[Dietterich and Michalski, 1981] Dietterich, T. G. and Michalski, R. S. 1981. Inductive learn-

ing of structural descriptions. Arti�cial Intelligence 16:257{294.

[Doyle and Patil, 1991] Doyle, J. and Patil, R. S. 1991. Two theses of knowledge represen-

tation: Language restrictions, taxonomic classi�cation, and the utility of representation

services. Arti�cial Intelligence 48(3):261{297.

[Ellis, 1991] Ellis, G. 1991. Compiling conceptual graphs. In Processing Declarative Knowl-

edge '91 : Lecture Notes in Arti�cial Intelligence 567. Springer-Verlag. 41{55.

[Fisher and Langley, 1986] Fisher, D. and Langley, P. 1986. Conceptual clustering and its re-

lation to numerical taxonomy. In Gale, W. A., editor, Arti�cial Intelligence and Statistics.

Addison-Wesley. chapter 4, 77{116.

[Fisher and Pazzani, 1991] Fisher, D. H. and Pazzani, M. 1991. Theory-guided concept

formation. In Fisher, D. H.; Pazzani, M.; and Langley, P., editors, Concept Formation:

Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann. 165{177.

28



[Fisher, 1987] Fisher, D. H. 1987. Knowledge acquisition via incremental conceptual clus-

tering. Machine Learning 2:139{172.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. 1979. Computers and in-

tractability: A guide to the theory of NP-completeness. W. H. Freeman.

[Genesereth and Nilsson, 1988] Genesereth, M. R. and Nilsson, N. J. 1988. Logical Founda-

tions of Arti�cial Intelligence. Morgan Kaufmann.

[Gennari et al., 1989] Gennari, J. H.; Langley, P.; and Fisher, D. 1989. Models of incremental

concept formation. Arti�cial Intelligence 40:11{61.

[Gottlob, 1987] Gottlob, G. 1987. Subsumption and implication. Information Processing

Letters 24:109{111.

[Handa et al., 1994] Handa, K.; Nishikimi, M.; and Matsubara, H. 1994. Utilizing structure

information in concept formation. Machine Intelligence 13.

[Haralick and Shapiro, 1993] Haralick, R. M. and Shapiro, L. G. 1993. Computer and Robot

Vision, volume 2. Addison-Wesley.

[Haussler, 1989] Haussler, D. 1989. Learning conjunctive concepts in structural domains.

Machine Learning 4:7{40.

[Hayes, 1985] Hayes, P. J. 1985. The logic of frames. In Brachman, R. J. and Levesque,

H. J., editors, Readings in knowledge representation. Morgan Kaufmann.

[Langley and Carbonell, 1984] Langley, P. and Carbonell, 1984. Approaches to machine

learning. J. American Society for Information Science 35(5):306{316.

[Lebowitz, 1986a] Lebowitz, M. 1986a. Concept learning in a rich input domain:

generalization-based memory. In Michalski, R.; Carbonell, J.; and Mitchell, T., editors,

Machine Learning: An Arti�cial Intelligence Approach, volume II. Morgan Kaufmann.

193{214.

[Lebowitz, 1986b] Lebowitz, M. 1986b. Integrated learning: Controlling explanation. Cog-

nitive Science 10:219{240.

[Lebowitz, 1987] Lebowitz, M. 1987. Experiments with incremental concept formation:

UNIMEM. Machine Learning 2:103{138.

[Levesque and Brachman, 1987] Levesque, H. J. and Brachman, R. J. 1987. Expressiveness

and tractability in knowledge representation and reasoning. Computational Intelligence

3:78{92.

[Levinson, 1985] Levinson, R. A. 1985. A Self{Organizing Retrieval System for Graphs.

Ph.D. Dissertation, University of Texas at Austin.

[Levinson, 1992] Levinson, R. 1992. Pattern associativity and the retrieval of semantic net-

works. Computers Math. Applic. 23(6):573{600.

29



[Levinson, 1994] Levinson, R. A. 1994. UDS: A universal data structure. Technical Report

UCSC-CRL-94-15, University of California, Santa Cruz.

[Lloyd, 1987] Lloyd, J. W. 1987. Foundations of logic programming. Springer{Verlag.

[MacGregor and Brill, 1992] MacGregor, R. and Brill, D. 1992. Recognition algorithms for

the LOOM classi�er. In Proc. AAAI-92. The MIT Press. 774{779.

[Markovitch and Scott, 1993] Markovitch, S. and Scott, P. D. 1993. Information �ltering:

selection mechanisms in learning systems. Machine Learning 10:113{151.

[Marr, 1982] Marr, D. 1982. Vision. Freeman.

[Matheus et al., 1993] Matheus, C. J.; Chan, P. K.; and Piatetsky-Shapiro, G. 1993. Systems

for knowledge discovery in databases. IEEE Trans. Knowledge and Data Engineering

5(6):903{913.

[McGregor, 1982] McGregor, J. J. 1982. Backtrack search algorithms and the maximal com-

mon subgraph problem. Software|Practice and Experience 12:23{34.

[Michalski and Stepp, 1983a] Michalski, R. S. and Stepp, R. E. 1983a. Automated construc-

tion of classi�cations: Conceptual clustering versus numerical taxonomy. IEEE Trans.

Pattern Analysis and Machine Intelligence 5(4):219{243.

[Michalski and Stepp, 1983b] Michalski, R. S. and Stepp, R. E. 1983b. Learning from ob-

servation: conceptual clustering. In Michalski, R.; Carbonell, J.; and Mitchell, T., editors,

Machine Learning. Tioga. 331{363.

[Mineau and Godin, 1994] Mineau, G. W. and Godin, R. 1994. Automatic structuring of

knowledge bases by conceptual clustering. IEEE Trans. Knowledge and Data Engineering.

To appear.

[Muggleton et al., 1992] Muggleton, S.; Srinivasan, A.; and Bain, M. 1992. Compression,

signi�cance and accuracy. In Sleeman, D. and Edwards, P., editors, Machine Learning:

Proceedings of the Ninth International Conference (ML92). Morgan Kaufmann. 338{347.

[Muggleton and Feng, 1992] Muggleton, S. and Feng, C. 1992. E�cient induction of logic

programs. In Muggleton, S., editor, Inductive Logic Programming. Academic Press. 281{

298.

[Muggleton, 1992] Muggleton, S. 1992. Inductive logic programming. In Muggleton, S.,

editor, Inductive Logic Programming. Academic Press. 3{27.

[Muggleton, 1993] Muggleton, S. 1993. Inductive logic programming: derivations, successes

and shortcomings. In Bradzil, P. B., editor, ECML-93 : Lecture Notes in Arti�cial Intel-

ligence 667. Springer Verlag. 21{38.

[Nagy et al., 1988] Nagy, M.; Kozics, S.; Veszpremi, T.; and Bruck, P. 1988. Substructure

search on very large �les using tree-structured databases. In Warr, W. A., editor, Chemical

Structures: The International Language of Chemistry. Springer{Verlag. 127{130.

30



[Nebel, 1990] Nebel, B. 1990. Reasoning and Revision in Hybrid Representation Systems.

Springer{Verlag.

[Nebel, 1991] Nebel, B. 1991. Terminological cycles: Semantics and computational proper-

ties. In Sowa, J. F., editor, Principles of Semantic Networks. Morgan{Kaufmann. 331{361.

[Nordhausen and Langley, 1990] Nordhausen, B. and Langley, P. 1990. An integrated ap-

proach to empirical discovery. In Shrager, J. and Langley, P., editors, Computational

models of scienti�c discovery and theory formation. Morgan Kaufmann. chapter 4, 97{

128.

[Okada and Wipke, 1989] Okada, T. and Wipke, W. T. 1989. CLUSMOL: A system for the

conceptual clustering of molecules. Tetrahedron Computer Methodology 2(4):249{264.

[Okada, 1993] Okada, T. 1993. Similarity and analogy based on discrimination net. In Warr,

W., editor, Chemical Structures 2. Springer-Verlag. 389{398.

[Parsons, 1989] Parsons, T. J. 1989. Conceptual clustering in relational structures: An

application in the domain of vision. In EWSL89, Proceedings of the Fourth European

Working Session on Learning. 163{177.

[Pentland, 1986] Pentland, A. 1986. Perceptual organization and the representation of nat-

ural form. Arti�cial Intelligence 28:293{331.

[Pitt and Reinke, 1988] Pitt, L. and Reinke, R. E. 1988. Criteria for polynomial-time (con-

ceptual) clustering. Machine Learning 2:371{396.

[Plotkin, 1971] Plotkin, G. D. 1971. A note on inductive generalisation. Machine Intelligence

6:101{124.

[Quinlan, 1990] Quinlan, J. R. 1990. Learning logical de�nitions from relations. Machine

Learning 5(3):239{266.

[Rouveirol, 1994] Rouveirol, C. 1994. Flattening and saturation: two representation changes

for generalization. Machine Learning 14(2):219{232.

[Salton and McGill, 1983] Salton, G. and McGill, M. J. 1983. Introduction to modern infor-

mation retrieval. McGraw-Hill.

[Sammut and Banerji, 1986] Sammut, C. and Banerji, R. B. 1986. Learning concepts by

asking questions. In Michalski, R.; Carbonell, J.; and Mitchell, T., editors, Machine

Learning: An Arti�cial Intelligence Approach, volume II. Morgan Kaufmann. 167{191.

[Segen, 1990] Segen, J. 1990. Graph clustering and model learning by data compression. In

Proceedings of the Seventh International Conference on Machine Learning. 93{101.

[Sengupta and Boyer, 1993] Sengupta, K. and Boyer, K. 1993. Information theoretic cluster-

ing of large structural modelbases. In Int. Conf. Computer Vision and Pattern Recognition.

174{179.

31



[Shapiro and Haralick, 1982] Shapiro, L. G. and Haralick, R. M. 1982. Organization of rela-

tional models for scene analysis. IEEE Trans. Pattern Analysis and Machine Intelligence

4(6):595{602.

[Shapiro, 1983] Shapiro, E. Y. 1983. Algorithmic program debugging. The MIT Press.

[Stepp and Michalski, 1986] Stepp, R. E. and Michalski, R. S. 1986. Conceptual clustering:

inventing goal-oriented descriptions of structured objects. In Michalski, R.; Carbonell,

J.; and Mitchell, T., editors, Machine Learning: An Arti�cial Intelligence Approach, vol-

ume II. Morgan Kaufmann. 471{498.

[Stepp, 1987] Stepp, R. E. 1987. Machine learning from structured objects. In Proceedings

of the Fourth International Workshop on Machine Learning. Morgan Kaufmann. 353{363.

[Tennent, 1991] Tennent, R. D. 1991. Semantics of programming languages. Prentice{Hall.

[Thompson et al., 1991] Thompson, K.; Langley, P.; and Iba, W. 1991. Using background

knowledge in concept formation. In Proceedings of the Eighth International Workshop on

Machine Learning. Morgan Kaufmann.

[Thompson and Langley, 1989] Thompson, K. and Langley, P. 1989. Organization and re-

trieval of composite concepts. In Proceedings of the Case{Based Reasoning Workshop.

Morgan Kaufmann. 329{333.

[Thompson and Langley, 1991] Thompson, K. and Langley, P. 1991. Concept formation in

structured domains. In Fisher, D. H.; Pazzani, M.; and Langley, P., editors, Concept

Formation: Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann.

127{161.

[Vosselman, 1992] Vosselman, G. 1992. Relational matching: Lecture Notes in Computer

Science 628. Springer-Verlag.

[Wasserman and Lebowitz, 1983] Wasserman, K. and Lebowitz, M. 1983. Representing com-

plex physical objects. Cognition and Brain Theory 6(3):333{352.

[Wasserman, 1985] Wasserman, K. 1985. Unifying representation and generalization: Un-

derstanding hierarchically structured objects. Ph.D. Dissertation, Department of Computer

Science, Columbia University.

[Wilcox and Levinson, 1986] Wilcox, C. S. and Levinson, R. A. 1986. A self{organized

knowledge base for recall, design, and discovery in organic chemistry. In Pierce, T. H.

and Hohne, B. A., editors, Arti�cial Intelligence Applications in Chemistry. American

Chemical Society. 209{230.

[Winston, 1975] Winston, P. H. 1975. Learning structural descriptions from examples. In

Winston, P. H., editor, The Psychology of Computer Vision. McGraw-Hill.

[Wogulis and Langley, 1989] Wogulis, J. and Langley, P. 1989. Improving e�ciency by learn-

ing intermediate concepts. In Proc. IJCAI{89. Morgan{Kaufmann. 657{662.

32



[Woods and Schmolze, 1992] Woods, W. and Schmolze, J. 1992. The KL-ONE family. Com-

puters Math. Applic. 23(6).

[Woods, 1991] Woods, W. 1991. Understanding subsumption and taxonomy: A framework

for progress. In Sowa, J. F., editor, Principles of Semantic Networks. Morgan{Kaufmann.

45{94.

[Yoshida et al., 1993] Yoshida, K.; Motoda, H.; and Indurkya, N. 1993. Unifying learn-

ing methods by colored digraphs. In Tecuci, G.; Kedar, S.; and Kodrato�, Y., editors,

Proceedings of the IJCAI-93 Workshop on Machine Learning and Knowledge Acquisition.

253{269.

[Zytkow, 1993] Zytkow, J. 1993. Cognitive autonomy in machine discovery. Machine Learn-

ing 12:7{16. Introduction to Special Issue on Machine Discovery.

33


