
Structured Parallel Computation in

Structured Documents

D.B. Skillicorn

skill@qucis.queensu.ca

March 1995

External Technical Report

ISSN-0836-0227-

95-379

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Document prepared March 6, 1995

Copyright c
1995 D.B. Skillicorn

Abstract

Document archives contain large amounts of data to which sophisticated queries

are applied. The size of archives and the complexity of evaluating queries makes

the use of parallelism attractive. The use of semantically-based markup such as

SGML makes it possible to represent documents and document archives as data

types.

We present a theory of trees and tree homomorphisms, modelling structured

text archives and operations on them, from which it can be seen that:

� many apparently-unrelated tree operations are homomorphisms;

� homomorphisms can be described in a simple parameterised way that gives

standard sequential and parallel implementations for them;

� special classes of homomorphisms have parallel implementations of practical

interest. In particular, we develop an implementation for path expression

search, a novel powerful query facility for structured text, that takes time

logarithmic in the text size.

Keywords: structured text, categorical data type, software development

methodology, parallel algorithms, query evaluation.

1

1 Structured Parallel Computation

Computations on structured documents are a natural application domain for

parallel processing. This is partly because of the sheer size of the data involved.

Document archives contain terabytes of data, and analysis of this data often

requires examining large parts of it. Also, advances in parallel computer design

have made it possible to build systems in which each processor has sizeable

storage associated with it, and which are therefore ideal hosts for document

archives. Such machines will become common in the next decade.

The use of parallelism has been suggested for document applications for

some time. Some of the drawbacks have been pointed out by Stone [24] and

Salton and Buckley [17] { these centre around the need of most parallel ap-

plications to examine the entire text database where sequential algorithms

examine only a small portion, and the consequent performance degradation

in accessing secondary storage. While this point is important, it has been

to some extent overtaken by developments in parallel computer architecture,

particularly the storage of data in disk arrays, with some disk storage local to

each processor. As we shall show, the use of parallelism allows such an increase

in the power of query operations that it will be useful even if performance is

not signi�cantly increased.

Parallel computation is di�cult in any application domain for the following

reasons:

� There are many degrees of freedom in the design space of the soft-

ware, because partitioning computations among processors strongly in-

uences communication and synchronisation patterns, which in turn

have a strong e�ect on performance. Hence �nding good algorithms

requires extensive searching in the absence of other information;

� Parallelism in an algorithm is only useful if it can be harnessed by some

available parallel architectures, and harnessed in an e�cient way;

� Expressing algorithms in a way that is abstract enough to survive the

replacement of underlying parallel hardware every few years is di�cult;

� It is hard to predict the performance of software on parallel machines

without actually developing it and trying it out.

2

Making parallelism the workhorse of structured document processing requires

�nding solutions to these di�culties.

The extensive use of semantically-based markup, and particularly the use

of SGML [13], means that most documents have a de facto tree structure. This

makes it possible to model them by a data type with enough formality that

useful theory can be applied. We will use the theory of categorical data types

[19], a particular approach to initiality, emphasising its ability to hide those

aspects of a computation that are most di�cult in a parallel setting.

Categorical data types generalise abstract data types by encapsulating not

only representation of the type, but also the implementation of homomor-

phisms on it. In object-oriented terms, the only methods available on con-

structed types are homomorphisms. As a parallel programming model this is

ideal, since the partitioning of the data objects across processors, and the com-

munication patterns required to evaluate homomorphisms can remain invisible

to programmers. Programs can be written as compositions of homomorphisms

without any necessary awareness that the implementations of these homomor-

phisms might contain substantial parallelism.

Recall that a homomorphism is a function that respects the structure of its

arguments. If an argument object is a member of a data type with constructor

./, then h is a homomorphism if there exists an operation ~ such that

h(a ./ b) = h(a)~ h(b)

This equation describes two di�erent ways of computing the result of applying

h to the argument a ./ b. The left hand side computes it by building the

argument object completely and then just applying h to this object. The

right hand side, however, applies h to the component objects from which the

argument was built, and then applies the operation ~ to the results of these

two applications.

There are two things to note about the computation strategy implied by

the right hand side. The �rst is that it is recursive. If b is itself an object built

up from smaller objects, say b = c ./ d , then

h(b) = h(c)~ h(d)

3

and so

h(a ./ b) = h(a)~ (h(c)~ h(d))

The structure of the computation follows the structure of the argument. Sec-

ond, the evaluations of h on the right hand sides are independent and can

therefore be evaluated in parallel if the architecture permits it. These simple

ideas lead to a rich approach to parallel computation.

Homomorphisms include many of the interesting functions on constructed

data types. In particular, all injective functions are homomorphisms. Fur-

thermore, all functions can be expressed as almost-homomorphisms [2], the

composition of a homomorphism with a projection, and this is often of prac-

tical importance.

In the next section we introduce the construction of a type for trees to

represent structured text. We show that the construction reduces algorithm

design for homomorphisms to the simpler problem of �nding component func-

tions, and illustrate a recursive parallel schema for computing homomorphisms

on trees. In Section 3, we distinguish four special kinds of homomorphisms

that capture common patterns for information
ow in tree algorithms, and for

which it is worth optimizing the standard schema implementation. These are:

tree maps, tree reductions, upwards and downwards accumulations. In the

subsequent �ve sections we illustrate tree homomorphisms of increasing so-

phistication, beginning with the computation of global document properties,

then search problems (that is, query evaluation), and �nally problems that

involve communicating information throughout documents.

2 Parallel Operations on Trees

We build the type of homogeneous binary trees, that is trees in which internal

nodes and leaves are all of the same type. Binary trees are too simple to

represent the full structure of tagged texts, since any tagged entity may contain

many subordinate entities, but it simpli�es the exposition without a�ecting

any of the complexity results.

In SGML an entity is delimited by start and end tags. The region between

the start and end tags is either `raw' text or is itself tagged. The structure is

4

document

chapter chapter chapter chapter

section section section

para parapara

Figure 1: Modelling a Document as Tree

hierarchical, and can be naturally represented by a tree whose internal nodes

represent tags, and whose leaves represent `raw' data. All nodes may contain

values for attributes. In particular, tags will often have associated text { for

example, chapter tags contain the text of the chapter heading as an attribute,

�gure tags contain �gure captions, and so on. Thus a typical document can

be represented as a tree of the kind shown in Figure 1. Document archives can

be modelled by trees as well, in which nodes near the root represent document

classi�cations, as shown in Figure 2. We build trees over some base type

A that can model entities and their attributes. For our purposes this is a

tuple consisting of an entity name and a set of attributes. In our particular

examples it will su�ce to have one attribute, the string of text associated with

each node of the document.

Trees have two constructors:

Leaf : A! Tree(A)

Join : Tree(A)�A � Tree(A)! Tree(A)

The �rst constructor, Leaf, takes a value of type A and makes it into a tree

consisting of a single leaf. The second constructor, Join, takes two trees and

a value of type A and makes them into a new tree by joining the subtrees and

5

document

chapter chapter

section

para parapara

section

document

chapter chapter

document

chapter chapter

manuals novels

archive

Figure 2: Modelling a Document Archive

6

d

b

a

c

e

Join(Join(Leaf (d); b;Leaf (e)); a;Leaf (c))

Figure 3: A Constructor Expression and the Tree it Describes

putting the value of type A at the internal node generated. Thus a tree is

either a single leaf, or a tree obtained by joining two subtrees together with a

new value at the join. A constructor expression describing a tree and the tree

itself are shown in Figure 3.

De�nition 1 A homomorphism, h, on trees is a function that respects tree struc-

ture, that is there must exist functions f1 and f2 such that

h(Leaf (a)) = Leaf (f1(a))

and

h(Join(t1; a; t2)) = f2(h(t1); a; h(t2))

Call f1 and f2 component functions of the homomorphism h.

Here f2 is the glueing function that relates the e�ect of h on pieces of the

argument to its e�ect on the whole argument. Notice that if h has type

h : Tree(A)! P

then the types of f1 and f2 are

f1 : A! P

7

f2 : P � A� P ! P

Thus �nding a homomorphism amounts to �nding such a pair of functions.

However, �nding h means being aware of the structure of Tree(A), which is

usually complex, whereas f1 and f2 are operations on (usually) simpler types.

This is a considerable practical advantage.

Result 2 [19] Every homomorphism on trees is actually a function between an

algebra (that is, a set with some operations de�ned on it) (Tree(A);Leaf ; Join)

and a related algebra (P ; f1; f2) for some type P and a pair of functions

f1 : A! P

f2 : P � A� P ! P

Note that the type signatures of f1 and f2 are obtained from those of Leaf and

Join by replacing occurrences of Tree(A) by P .

Furthermore, the homomorphism to each such algebra is unique, and there

is therefore a one-to-one correspondence between algebras and homomorphisms.

Each homomorphism is completely determined by the functions f1 and f2.

This correspondence justi�es the notation

Hom(f1; f2)

for the (necessarily unique) tree homomorphism from (Tree(A);Leaf ; Join) to

the algebra (P ; f1; f2).

Using the fact that h is a homomorphism and that it corresponds to a pair

of component functions, we can now make formal the recursive computation of

h that we saw earlier. The recursive schema for evaluating all tree homomor-

phisms is shown in pseudocode in Figure 4. It is clear that the two recursive

calls to evaluate tree homomorphism can be executed in parallel. Using this

simple approach to parallelism, all tree homomorphisms on trees can be eval-

uated in parallel time proportional to the height of the tree (assuming that

the evaluation of f1 and f2 take only constant time).

Here are some simple examples of tree homomorphisms:

8

evaluate_tree_homomorphism(f1, f2, t)

case t of

Leaf(a) :

return f1(a) ;

Join(Tree(t1), a, Tree(t2)) :

return f2(

evaluate_tree_homomorphism(f1, f2, t1),

a,

evaluate_tree_homomorphism(f1, f2, t2))

end case

end

Figure 4: Tree Homomorphism Evaluation Schema

Example 3 The tree homomorphism that computes the number of leaves in

a tree replaces the value at each leaf by the constant 1, and then sums these

values over the tree. It is given by

number-of-leaves = Hom(K1; f2)

where K1 : A ! N is the constant 1 function and f2 : N � A � N ! N is

f2(t1; a; t2) = t1 + t2. The recursive schema specialises to:

evaluate_tree_homomorphism(t)

case t of

Leaf(a) :

return K_1 (a) ; { = 1 }

Join(Tree(t1), a, Tree(t2)) :

return

evaluate_tree_homomorphism(t1)

+

evaluate_tree_homomorphism(t2)

end case

end

Example 4 The tree homomorphism to compute the number of internal nodes

in a tree replaces each leaf by the value 0 and then adds 1 to the sum for each

9

internal node encountered. It is

number-of-internal-nodes = Hom(K0; f2)

where K0 : A ! N is the constant 0 function, and f2 : N � A � N ! N is

f2(t1; a; t2) = t1 + t2 + 1.

Example 5 The tree homomorphism that �nds the maximum value in a tree

does nothing at the leaves and at internal nodes selects the maximum of the

three values from its two subtrees and the node itself. It is

treemax = Hom(id ; f2)

where f2(t1; a; t2) = "(t1; a; t2) and " is ternary maximum.

The fact that all tree homomorphisms are the same in some sense is useful

in two ways. First, �nding tree homomorphisms reduces to �nding component

functions. Since component functions describe local actions at the nodes of

trees, they are usually simpler conceptually than homomorphisms. There is a

separation between common global tree structure and detailed node compu-

tations. Second, there is a common mechanism for computing any homomor-

phism, so it makes sense to spend time optimising it, rather than developing

a variety of ad hoc techniques.

Nevertheless, there are some classes of homomorphisms for which better

implementations are possible. These classes have many members that are of

practical interest.

3 Four Classes of Tree Homomorphisms

There are four special classes of homomorphisms that are paradigms for com-

mon tree computations. They are: tree maps, tree reductions, and two forms

of tree accumulations, upwards and downwards.

In our discussion of implementations, we will assume either the EREW

PRAM or a distributed-memory hypercube architecture as the target com-

10

puter. The EREW PRAM does not charge for communication, and our im-

plementations can all be arranged on the hypercube so that communication

is always with nearest neighbours, except for the tree contraction algorithm

used in several places. This enables us to include communication costs in our

complexity measures. We use a result of Mayr and Werchner [16] to justify

the complexity of tree contraction on the hypercube. We will also assume that

a tree of n nodes is processed by an n-processor system, so that there is a

processor per tree node. We return to this very unrealistic assumption later.

A tree map is a tree homomorphism that applies a function to all the nodes

of a tree, but leaves its structure unchanged. If f is some function f : A! B ,

then TreeMap(f) is the function

TreeMap(f) = Hom(Leaf � f ; Join � id � f � id) : Tree(A)! Tree(B)

The recursive schema becomes

evaluate_tree_homomorphism(t)

case t of

Leaf(a) :

return Leaf(f(a)) ;

Join(Tree(t1), a, Tree(t2)) :

return Join(

evaluate_tree_homomorphism(t1),

f(a),

evaluate_tree_homomorphism(t2))

end case

end

The recursion \unpacks" the argument tree into a set of leaves and internal

nodes. These are then joined back together in exactly the same structure,

except that the function f is applied to each value before it is placed back in

the tree. The resulting tree has exactly the same shape as the argument tree;

only the values (and types) at the leaves and internal nodes have changed.

Using the recursive schema as an implementation is therefore unnecessarily

cumbersome. A tree map can be computed directly by skipping the disassem-

bly and subsequent reassembly and just applying f to each leaf and internal

11

node. In a parallel implementation tree map can be computed without any

communication.

Let ti(f) denote the time complexity of f in i processors. The sequential

complexity of a tree map is given by

t1(TreeMap(f)) = n � t1(f)

and the parallel complexity by

tn(TreeMap(f)) = t1(f)

A tree reduction is a tree homomorphism that replaces structure without

explicitly manipulating values. Applied to a tree, a tree reduction most often

produces a single value. Formally, a tree reduction is a tree homomorphism

TreeReduce(g) = Hom(id ; g) : Tree(A)! A

where the type of g is

g : A � A� A! A

The recursive schema becomes

evaluate_tree_homomorphism(t)

case t of

Leaf(a) :

return a ;

Join(Tree(t1), a, Tree(t2)) :

return g(

evaluate_tree_homomorphism(t1),

a,

evaluate_tree_homomorphism(t2))

end case

end

Figure 5 shows a tree and the result of applying a reduction to it.

A tree reduction can be computed in parallel in time proportional to the

height of the tree, assuming that each application of the function g takes

12

a

cb

ed

g(g(d ; b; e); a; c)

Figure 5: A Tree Contraction

constant time. Knowing the result of the reduction on subtrees, the result of

the reduction on the tree formed by joining them requires a further application

of g, so that critical path is the application of gs along the longest branch.

The sequential complexity of tree reduction is

t1(TreeReduce(g)) = n � t1(g)

and the parallel complexity is

tn(TreeReduce(g)) = ht � t1(g)

where ht is the height of the tree.

Somewhat surprisingly, tree reduction can be computed much faster for

many kinds of functions g. For theoretical models such as the EREW PRAM

and more practical architectures such as the hypercube, tree reduction can be

computed in time logarithmic in the number of nodes of the tree, subject to

some mild conditions on the function g [1, 16], described in Appendix A. This

is a big improvement over the method suggested above, since a completely left

or right branching tree with n nodes requires time proportional to n to reduce

directly, whereas the faster algorithm takes time log n.

The key to fast tree reduction is making some useful progress towards the

eventual result at many nodes of the tree, whether or not the reductions for

13

the subtrees of which they are the root have been completed. Naive reduction

applies g only at those nodes both of whose children are leaves. For an un-

balanced tree, this creates a chain of reductions whose length is proportional

to the height of the tree. However, for well-behaved reduction operations it

is also possible to carry out partial reductions for nodes only one of whose

descendants is a leaf. This brings the time complexity of the tree reduction

down to logarithmic in the size of the tree, no matter how unbalanced it is.

The details are given in Appendix A.

Thus we have a parallel time complexity for tree reduction of

tn(TreeReduce(g)[tree contraction]) = log n

since t1(g) must be O(1).

The third useful family of tree homomorphisms are the upwards accumu-

lations. Upwards accumulations are operations in which data can be regarded

as
owing upwards in the tree, and where the computations that take place at

each node depend on the results of computations at lower nodes. These are

like tree reductions that leave all their partial results behind. The �nal result

is a tree of the same shape as the argument tree, in which each node is the

result of a tree reduction rooted at that node. This is illustrated in Figure 6.

Upwards accumulations is characterized as follows. Let subtrees be the

function that replaces each node of a tree by the subtree rooted at that node.

Hence it takes a tree and produces a tree of trees. Although subtrees is a

messy and expensive function, it is still a homomorphism.

Upwards accumulations are those functions that can be expressed as the

composition of subtrees with a tree homomorphism mapped over the nodes of

the intermediate tree.

upwards accumulation = TreeMap(Hom(f1; f2)) � subtrees

If Hom(f1; f2) : Tree(A)! X then the upwards accumulation has type signa-

ture Tree(A)! Tree(X).

Computing an upwards accumulation in the way implied by this de�nition

is expensive. The point of de�ning upwards accumulations like this is that

the result at any node shares large common expressions with the results at its

14

e

d

b c

a

d

c

e

f2(f1d ; b; f1e)

f2(f2(f1d ; b; f1e); a; f1c)

Figure 6: An Upwards Accumulation

immediate descendants. Therefore, the number of partial results that must be

computed in an upwards accumulation is linear in the number of tree nodes.

Thus it is possible that there is a fast parallel algorithm, provided the depen-

dencies introduced by the communication involved are not too constraining;

and indeed there is. The algorithm is an extension of tree contraction; when

a node u is removed, it is stacked by its remaining child. When this child

receives its �nal value, it unstacks u and computes its �nal value. Details may

be found in [7].

The sequential time complexity of an upwards accumulation is

t1(UpAccum(f1; f2)) = n(t1(f1) + t1(f2))

its parallel time complexity is

tn(UpAccum(f1; f2)) = t1(f1) + ht � t1(f2))

and its parallel time complexity using extended tree contraction is

tn(UpAccum(f1; f2)[tree contraction]) = log n

15

because f1 and f2 must be O(1).

The fourth useful family of tree homomorphisms are the downwards ac-

cumulations. Downwards accumulations replace each node of a tree by some

function of the nodes on the path between it and the root. This models func-

tions in which the
ow of information is broadcast down through the tree.

We �rst de�ne the type of non-empty paths, which are like lists except

that they have two concatenation constructors, left turn, ^, and right turn,

_. This type models the paths that occur between the root of a tree and

any other node, where it is important to remember whether the path turns

towards a left or right descendant at each step. The two constructors are

mutually associative, that is

(a?b)??c = a?(b??c)

where ? and ?? are either of the constructors. Homomorphisms on paths are

the unique arrows to algebraic structures

(P ; f : A! P ;(;) : P � P ! P)

where (and) satisfy the same mutual associativity property. De�ne paths to

be the function that replaces each node of a tree by the path between the root

and that node. A downwards accumulation is a tree homomorphism that can

be expressed as the composition of paths with a path homomorphism mapped

over the nodes of the intermediate tree.

downwards accumulation = TreeMap(PathHom((;))) � paths

If PathHom((;)) : Path(A)! X then the downwards accumulation has type

signature Tree(A)! Tree(X).

A downwards accumulation is shown in Figure 7. The value that results at

each node of the tree depends on the values of the nodes that appear in the path

between the node and the root, together with their structural arrangement,

that is, the combination of left and right turns that appear along the path.

Clearly it is expensive to compute a downwards accumulation by computing

all of the paths and then mapping a path reduction over them. However, there

are again large common expressions between each node and its parent, so that

16

e

a

a) c

a (b (d

a

b c

d

a (b

a (b) e

Figure 7: A Downwards Accumulation

17

the total number of expressions to be computed is linear in the size of the tree.

As a result, there is an algorithm that runs in parallel time proportional to

the logarithm of the number of the nodes in the tree [7].

The sequential time complexity of a downwards accumulation is

t1(UpAccum((;)) = n(t1(() + t1()))

its parallel time complexity is

tn(UpAccum((;)) = t1(() + ht � t1()))

and its parallel time complexity using extended tree contraction is

tn(UpAccum((;))[tree contraction]) = log n

because (and) must be O(1).

These complexity results are based on the assumption of one processor

per document node. It is possible to implement all of these homomorphisms

using fewer processors by allocating a region of each tree to a processor which

then applies each homomorphism to that region. The actual partitioning is

complex, because a partition of a tree into regions is not normally itself a

tree. However, with some care it is possible to get implementations of the fast

parallel operations above in time complexity

n=p + log p

for trees of size n using p processors [20]. For small p, this gives almost linear

speed-up over sequential implementations, while for large p it gives almost

logarithmic execution times.

Binary trees are easily extended to trees in which each internal node has

a list of subtrees (so-called Rose trees [6]). Rose trees much more naturally

model SGML tagged text. The complexity of the algorithms we will present

only changes by a constant factor, since any Rose tree can be replaced by a

binary tree without changing the order of magnitude of the the number of

nodes.

18

4 Global Properties of Documents

We now have a set of homomorphic tree operations that can be evaluated in

parallel e�ectively. We now begin to show how these operations can be applied

to structured text.

We begin with operations that are tree maps or tree reductions. A broad

class of such operations are those that count the number of occurrences of

some text or entity in a document. In such tree homomorphisms, the pair of

functions used are of the general form

f1(a) = if (a = entity name) then 1 else 0

f2(t1; a; t2) = t1 + t2 + (if (a = entity name) then 1 else 0)

with types

f1 : A! N

f2 : N � A �N! N

Some tree operations can be factored into the composition of a tree map

and a tree reduction. This is often an easy way to understand and compute

the complexity of a homomorphism. Notice that f2 above can be written as

f2 = (� id � f1 � id

where (is ternary addition. We can express the `count entities' homomor-

phism above as a composition like this:

count entities = TreeReduce(() � TreeMap(f1)

The tree map can be computed in a single parallel step, taking time t1(f1). The

tree reduction step can be computed using tree contraction in a logarithmic

number of steps, each involving an application of functions related to f2, taking

time log n. Thus the total parallel time complexity of evaluating this tree

homomorphism is

tn(total time) = log n + t1(f1) (1)

19

The following document properties of frequency can be determined in the

parallel time given by Equation 1:

� number of occurrences of a word (that is, a delimited terminal string),

� number of occurrences of a structure or entity (section, subsection, para-

graph, �gure),

� number of reference points (labels).

An extension of these counting tree homomorphisms produce simple data

types as results. For example, to produce a list of the di�erent entity names

used in a document, we use a tree homomorphism with component functions

f1(a) = fentity name ag

f2(t1; a; t2) = [(t1; t2; fentity name ag)

that produces a set containing the entity names that are present. Each leaf is

replaced by the name of the entity it represents. Internal nodes merge the sets

of entity names of their descendants with the name of the entity they represent.

Using sets means that we record each entity name only once in the �nal set.

To determine the number of di�erent entities present in a document, we need

only to compute the size of the set produced by this tree homomorphism.

Changing the set used to a list, we de�ne a tree homomorphism to produce

a table of contents. It is

f1(a) = [a:string]

f2(t1; a; t2) = a:string ++ t1 ++ t2

where ++ is list concatenation, and a:string extracts the string attribute as-

sociated with node a. This homomorphisms produces a list of all of the tag

instances in the document in level order. The parallel time complexity of

these tree homomorphisms is not straightforward to compute for two reasons:

the operation of concatenation is not necessarily constant time, so the com-

putation of f2 will not be; and the size of lists grows with the distance from

the leaves, creating a communication cost that must be accounted for on real

computers [21].

20

Another useful class of tree homomorphisms computing global properties

are those that compute properties of extent. The most obvious example com-

putes the length of a document in characters. It is

f1(a) = length(a:string)

f2(t1; a; t2) = t1 + t2 + length(a:string)

Similarly, the tree homomorphism that computes the deepest nesting depth of

structures in a document is

f1(a) = 0

f2(t1; a; t2) = "(t1; t2) + 1

Again their parallel time complexity is given by Equation 1.

Software is an example of structured text. Some tree homomorphisms that

apply to software are: computing the number of statements, and building a

simple (that is, unscoped) symbol table.

5 Search Problems

Another important class of operations on structured text involve searching

them for data matching some key. Four levels of search can be distinguished:

1. Search on index terms. This requires preprocessing of the document

to allocate search terms (with the attendant problems of choice varying

between individuals). It is usually implemented using indexing. Paral-

lelism can be used by partitioning the index.

2. Search on full text. This is implemented using a signature �le tech-

nique [4, 22, 23] or special purpose hardware [10, 11]. Parallelism can be

used by partitioning the signature �le.

3. Search on non-hierarchical tagged regions. This is a more expres-

sive variant of full text search in which non-hierarchical tags are present

in the text. Searches may include references to tags as well as to content.

This approach is used in the PAT system [8] for searching the Oxford

21

English Dictionary. The descriptive markup of historical documents is

typically too ad hoc to be captured by SGML-style tags, but is never-

theless an important part of the organisation of the document. The PAT

index contains the strings beginning at each new word or tag position in

the document, stored in a Patricia trie.

Fulcrum use a similar idea with zone tags, associating a set of zones

with each range of the text. Zones are added to the document index,

allowing searches to be based on both content and zone. This allows

content references to be modi�ed by limited context information (e.g.

\dog" within a section heading) [12].

4. Search on full text and structure. This allows search to include

information about both contents and tags, and uses regular expressions,

so that content references can be modi�ed by context information (e.g.

\dog" within the third section heading), and truncated term expansion

is trivially available. No existing system has this capability, but the path

expressions query language [14] allows such queries to be expressed, and

we show in subsequent sections how such searches may be implemented

e�ciently.

Fortunately, this fourth level of search is no more expensive to implement

in parallel than the previous three. Thus even if parallelism does not provide

absolute performance improvements because of limits on disk speeds, it can

provide improvements in functionality. We explore this style of search further

in the next two sections.

6 Parallel Search of Flat Text

There is a well-known parallel algorithm for recognizing whether a given string

is a member of a regular language in time logarithmic in the length of the string

[5, 9]. This algorithm is naturally parallel and readily adapted to document

search, even on quite modest parallel computers. Although it was described

for the Connection Machine [9] it never seems to have been used on any real

parallel system. It is related to the technique used by Hollaar [10, 11], but is

more expressive, since the use of special-purpose hardware limits the
exibility

of Hollaar's searches. We describe the parallel algorithm and show how it

22

a

b

c a

c

b

s1

s3

s2

s0

Figure 8: A Simple Finite State Automaton

allows queries that are regular expressions, and hence can search for patterns

involving both content and tags.

Suppose that we want to determine if a given string is a member of a

regular language over some alphabet fa; b; cg. The regular language can be

de�ned by a �nite state automaton, whose transitions are labelled by elements

of the alphabet. This automaton is preprocessed to give a set of tables, each

one labelled with a symbol of the alphabet, and consisting of pairs of states

such that the labelling symbol labels a transition from the �rst pair in each

state to the second. For example, given the automaton in Figure 8, the tables

are:
a b c

(s0; s1) (s0; s2) (s2; s1)

(s1; s2) (s2; s3) (s1; s3)

The tree homomorphism (on lists) consists of two functions:

f1(a) = Table(a) = f(si ; sj) j 9 transitionsi
a
! sjg

f2(t1; t2) = f(si ; sk) j (si ; sj) 2 t1; (sj ; sk) 2 t2g

It will be convenient to write f2 as an in�x binary operation, ~, on tables. The

function f1 replaces each symbol in the input string with the table de�ning how

that symbol maps states to states. The function f2 then composes tables to

re
ect the state-to-state mapping of longer and longer strings. Consider ~

23

applied to the tables for a and b.

a b ab

(s0; s1) ~ (s0; s2) = (s1; s3)

(s1; s2) (s2; s3)

At the end of the reduction, the single resulting table expresses the e�ect of

the entire input string on states. If it contains a pair whose �rst element is

the initial state and whose second element is a �nal state, the string is in the

regular language.

All of the tables are of �nite size (no larger than the number of transitions

in the automaton). Each table composition takes no longer than linear in the

number of states of the automaton. The reduction itself takes time logarithmic

in the size of the string being searched on a variety of parallel architectures

[18].

The regular language recognition problem is easily adapted for query pro-

cessing. Suppose we wish to determine if some regular expression, RE, is

present in an input string. This regular expression de�nes a language, L(RE),

that is then extended to allow for the existence of other symbols and for the

string described by the regular expression to appear in a longer string. Call

this extended language L(RE)0. Then the search problem becomes: is the text

s in the language L(RE)0? There is a �nite state automaton corresponding to

L(RE)0. It is based on the �nite state automaton for L(RE) with the addition

of extra transitions labelled with symbols from the extended alphabet. It can

be as large as exponential in the size of the regular expression, but is indepen-

dent of the size of the string being searched. An example of the automaton

corresponding to the search for the word \cat" is shown in Figure 9 and the

resulting algorithm on an input string \bcdabcat" in Figure 10.

Queries that are boolean expressions of simpler regular language queries

could be evaluated by evaluating the simple queries independently and then

carrying out the required boolean operations on the results. However, the clo-

sure of the class of regular languages under union, intersection, complementa-

tion, and concatenation means that such complex queries can be evaluated in

a single pass through the data by constructing the appropriate deterministic

�nite state automaton. For example, a query of the form \are x and y in the

24

0 1 2 3

c

a,t,?

c

a t

c,a,t,?

a,?

ct,?

Figure 9: Finite State Automaton for \cat"

b c d a b c a t

0; 0 0; 1 0; 0 0; 0 0; 0 0; 1 0; 0 0; 0
1; 0 1; 1 1; 0 1; 2 1; 0 1; 1 1; 2 1; 0
2; 0 2; 1 2; 0 2; 0 2; 0 2; 1 2; 0 2; 3
3; 3 3; 3 3; 3 3; 3 3; 3 3; 3 3; 3 3; 3

0; 1 0; 0 0; 1 0; 0
1; 1 1; 0 1; 1 1; 3
2; 1 2; 0 2; 1 2; 0
3; 3 3; 3 3; 3 3; 3

0; 0 0; 3
1; 0 1; 3
2; 0 2; 3
3; 3 3; 3

0; 3
1; 3
2; 3
3; 3

Figure 10: Algorithm Progress for the Search

25

text" amounts to asking if the text is a string of the augmented language of

the intersection of the regular languages of the strings x and y.

Regular language recognition for strings is easily generalized to trees. The

�rst step applies a tree map that replaces each node of the tree by a table,

mapping states to states, that is the tree homomorphism:

Hom(f1(a) = Leaf � Table(a); f2 = Join � id � f1 � id)

The second step is a tree reduction, in which the tables of a node and its

two subtrees are composed using a ternary generalisation of the composition

operator used in the string algorithm above:

Hom(id ; f2(t1; t2; t3) = ~(t2; t1; t3))

where table composition has been generalized to a ternary operation

~(t2; t1; t3) = f(si ; sl) j (si ; sj) 2 t2; (sj ; sk) 2 t1; (sk ; sl) 2 t3g

Notice that the composition of tables composes the table belonging to the in-

ternal node �rst, followed by the tables corresponding to the subtrees in order.

This represents the case where the text in the internal node represents some

kind of heading. The order may or may not be signi�cant in an application,

but care needs to be taken to get it right so that strings that cross entity

boundaries are properly detected. The extension of the search in a linear

string to a tree is shown in Figure 11.

This algorithm takes parallel time logarithmic in the number of nodes of

the tree, using the tree contraction algorithm discussed in the previous section.

The automaton can be extended as before to solve query problems, giving a

fast parallel query evaluator for a useful class of queries.

Query evaluation problems that are of this kind include: word and phrase

search, and boolean expressions involving phrase search. Such queries are of

about the complexity of those permitted by the PAT system.

Because the tree structure of structured text encodes useful information,

we now turn to extending this search algorithm to a new kind of search in

which not only the presence of data but also its relationships can be expressed

in the query. This increases the power of the query language substantially. It

26

0,0

1,0

2,0

3,3

0,1

1,1

2,1

3,3

a

0,0

1,2

3,3

2,0

t

0,0

2,3

3,3

1,0

0,0

1,2

2,0

3,3

0,0

1,2

2,0

3,3

0,1

1,1

2,1

3,3

0,0

1,0

2,3

3,3

0,0

1,2

2,0

3,3

0,0

1,0

2,0

3,3

0,0

1,0

2,0

3,3

0,0

1,2

2,0

3,3 3,3

0,3

1,3

2,3

(1)

a

c

a t

b (2)

b

))

a

c

(3)

c

a

ta

b

a catb

))(4)

Figure 11: Algorithm Progress for Tree Search

27

turns out that such structured queries can still be computed in parallel within

logarithmic time bounds, making structured queries of practical importance.

7 Accumulations and Information Transfer

Accumulations allow nodes to �nd out information about all their neighbours

in a particular direction. Upwards accumulation allow each node of a tree to

accumulate information about the nodes below it. Downwards accumulations

allow each node to accumulate information about those nodes that lie between

it and the root. Powerful combination operations are formed when an upwards

accumulation is followed by a downwards accumulation, because this makes

arbitrary information
ow between nodes of the tree possible. As we have

seen, both kinds of accumulations can be computed fast in parallel if their

component functions are well-behaved.

Some examples of upwards accumulations are: computing the length in

characters of each object in the document; and computing the o�set from

each segment to the next similar segment (for example the o�set from each

section heading to the next section heading).

Some examples of downwards accumulations are: structured search prob-

lems, that is searching for a part of a document based on its content and its

structural properties; and �nding all references to a single label. Structured

search is so important that we investigate its implementation further in the

next section.

Gibbons gives a number of detailed examples of the usefulness of upwards

followed by downwards accumulations in [6]. Some examples that are im-

portant for structured text are: evaluating attributes in attribute grammars

(which can represent almost any property of a document); generating a symbol

table for a program written in a language with scopes; rendering trees, which

is important for navigating document archives; determining which page each

object would fall on if the document were produced on some device; determin-

ing which node the ith word in a document is in, and determining the font of

each object (in systems where font is relative not absolute, such as LaTEX).

Operations such as resolving all cross references and determining all the

28

references to a particular point can also be cast as upwards followed by down-

wards accumulations, but the volume of data that might be moved on some

steps makes this expensive.

8 Parallel Search of Structured Text

Queries on structured text involve �nding nodes in the tree based on informa-

tion about the content of the node (its text and other attributes) and on its

context in the tree, particularly its relative context such as \the third section".

Here are some examples, based on [14]:

Example 6 document where (`database' in document)

This returns those documents that contain the word `database'.

Example 7 document where (`Smith' in Author)

This returns those documents where the word `Smith' occurs as part of the

Author structure within each document. This query depends partly on structural

information (that an Author substructure exists) as well as text. Notice that the

object returned depends on a condition on the structure below it in the tree.

Example 8 Section of document where (`database' in docu-

ment)

This returns all sections of documents that contain the word `database'. The

object returned depends on a condition of the structure above it in the tree. Notice

that there is a natural way to regard this as a two-step operation: �rst select the

documents, then select the sections.

Example 9 Section of document where (`database' in Section-

Heading)

This returns those sections whose headings contain the word `database'. Notice

that the object returned depends on a condition of a structure that is neither above

or below it in the tree, but is nevertheless related to it.

29

All of these queries describe patterns in the tree; patterns may include

\don't care"s in both the nodes and the branch structure. Queries are relative

to a particular node in the tree (usually the root) and return a bag of nodes

corresponding to the roots of trees containing the pattern (bags are sets in

which repetitions count; we want to know all the places where a pattern is

present, so the result must allow for more than one solution). Allowing queries

to take a bag of nodes as their inputs, so that searches begin from all of these

nodes, allows queries to be composed. Note that a node is precisely identi�ed

by the path between itself and the root, so we might as well think of node

identi�ers as paths.

There are two di�erent kinds of bag operations in the query examples

above. The �rst are �lters that take a bag of nodes and return those elements

of the bag that satisfy some condition. The second are moves that take a bag

of nodes and return a bag in which each node has been replaced either by a

node related to it (its ancestor, its descendant, its sibling to the right) or by

one of its attributes. A simple query is usually a �lter followed by the value of

an attribute at all the nodes that have passed the �lter. More complex queries

such as the last example above require more complex moves.

This insight is the critical one in the design of path expressions [15], a

general query language for structured text applications. The crucial property

of path expressions that we require is that �lters can be broken up into searches

for patterns that are single paths, and are therefore expressible as regular

expressions over paths.

Such �lters can be computed by replacing each node of the structured text

tree by the path from it to the root, and then applying the regular string

recognition algorithm, extended to include left and right turns, to each of

these paths. Those nodes for which the string recognition algorithm returns

True are the nodes selected by the �lter.

For example, a query about the presence of a chapter whose �rst section

contains the word \About" is equivalent to asking if there is a path in the tree

that contains the following:

(entity = chapter) left turn (entity = section) ^ (\About" 2 section.string)

30

a

b a

b c

a t

L

L

L R

R

R

Figure 12: A Tree Annotated with Turn Information

A tree annotated with left and right turns is shown in Figure 12, and the

result of applying the paths function to it is shown in Figure 13.

The regular language recognition algorithm for strings can be extended

to paths straightforwardly. The query string may contain references to right

and left turns, and so may the extended regular language. Otherwise the

operations of table construction and binary table composition (~) behave just

as before.

Filters can be expressed as

�lter = TreeMap(PathHom(Table;~)) � paths

The right hand side replaces the text tree with the tree in which each node

contains the path between itself and the root. The TreeMap then maps the reg-

ular language recognition algorithm for paths over each of these nodes. Those

that �nd an instance of the string are the roots of subtrees that correspond to

the query pattern.

But we have already seen that operations that can be expressed as maps

over paths are downward accumulations, and hence can be computed e�ciently

in parallel when the component functions are well-behaved. We have also seen

that table composition is a constant-time, associative function and so satis�es

31

a

aRa

aRaRc

aRaRcLa aRaRcRt

aRaLb

aLb

Figure 13: The Result of Applying the paths Function

the requirements for tree contraction. Thus there is a logarithmic time parallel

algorithm for computing such �lters

tn(�lter) = log n

Path expression queries may therefore be included in structured text systems

without additional cost, dramatically improving the sophistication of the way

in which such resources can be queried.

9 Conclusions

The SGML approach of structural tagging of entities makes it possible to model

structured text as a data type. This in turn makes it possible to use the ma-

chinery of categorical data types to examine trees and tree homomorphisms.

This reveals the underlying similarities between apparently di�erent opera-

tions on structured text, suggests sequential and parallel implementations for

them, and shows how their construction can be reduced to the construction of

component functions.

In particular we have shown how tree contraction and its extensions can

be used to build fast parallel implementations of standard search techniques.

32

A major contribution of the paper is the discovery of a fast parallel imple-

mentation for searches based on path expressions. These allow much more

sophisticated searching than existing query languages with the same perfor-

mance.

A The Tree Reduction Algorithm

The tree reduction algorithm is well-known in the parallel algorithms litera-

ture. We follow the presentation in [7].

We begin by de�ning a contraction operation that applies to any node and

its two descendants, if at least one descendant is a leaf. Suppose that each

internal node u contains a pointer u.p to its parent, a boolean
ag u.left that

is true if it is a left descendant, a boolean
ag u.internal that is true if the

node is an internal node, a variable u.g describing an auxiliary function of type

A! A, and, for internal nodes, two pointers, u.l and u.r pointing to their left

and right descendants respectively.

We describe an operation that replaces u, u.l, and u.r, where u.l is a leaf,

by a single node u.r as shown in Figure 14. A symmetric operation contracts

in the other direction when u.r is a leaf. The operations required are

u.r.g �x. u.g(f2(u.l.g(u.l.a), u.a, u.r.g(x)))

u.r.p u.p

if u.left then u.p.l u.r else u.p.r u.r

u.r.left u.left

if u = root then root u.r

The �rst step is the most important one. It `folds' in an application of f2 so

that the function computed at node u.r after this contraction operation is the

one that would have been computed at u before the operation. The contraction

algorithm will only be e�cient if this step is done quickly and the resulting

expression does not grow long. We will return to this point below.

The contraction operations must be applied to about half of the leaves on

each step if the entire contraction is to be completed in about a logarithmic

33

u

u.l u.r

u

u.l
u.r

BEFORE

AFTER

Figure 14: A Single Tree Contraction Step: Nodes u and u.l are deleted from

the tree, and u.r is updated

34

number of steps. The algorithm for deciding where to apply the contraction

operations is the following:

1. Number the leaves left to right beginning at 0 { this can be done in

O(log n) time using O(n= log n) processors [3].

2. For every u such that u.l is an even numbered leaf, perform the contrac-

tion operation.

3. For every u that was not involved in the previous step, and for which u.r

is an even numbered leaf, perform the contraction operation.

4. Renumber the leaves by dividing their positions by two and taking the

integer part.

Su�cient conditions for preventing the lambda expressions in the u.gs from

growing large are the following [1]

1. For all nodes u, the sectioned function f2(; a;) of type A � A ! A is

drawn from an indexed set of functions F , and the function u.g is drawn

from an indexed set of functions G. Both F and G contain the identity

function.

2. All functions in F and G can be applied in constant time.

3. For all fi in F , g in G, and a in A, the functions �x :fi(g(x); a) and

�x :fi (a; g(x)) are in G and their indices can be computed from a and

the indices of fi and g in constant time.

4. For all gi ; gj in G, the composition gi � gj is in G and its indices can be

computed from i and j in constant time.

These conditions ensure three properties: that no function built at a node

takes more than constant time to derive from the functions of the three nodes

it is replacing, that no such function takes more than constant time to evaluate,

and that no such function requires more than a constant amount of storage.

Together these three properties guarantee that the tree contraction algorithm

executes in logarithmic parallel time.

35

References

[1] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A

simple parallel tree contraction algorithm. In Proceedings of the Twenty-

Fifth Allerton Conference on Communication, Control and Computing,

pages 624{633, September 1987.

[2] M. Cole. Parallel programming, list homomorphisms and the maximum

segment sum problem. In D. Trystram, editor, Proceedings of Parco 93.

Elsevier Series in Advances in Parallel Computing, 1993.

[3] R. Cole and U. Vishkin. Faster optimal parallel pre�x sums and list

ranking. Information and Control, 81:334{352, 1989.

[4] C. Faloutsos and S. Christodoulakis. Signature �les: An access method for

documents and its analytical performance evaluation. ACM Transactions

on O�ce Information Systems, 2:267{288, April 1984.

[5] Charles N. Fischer. On Parsing Context-Free Languages in Parallel En-

vironments. PhD thesis, Cornell University, 1975.

[6] J. Gibbons. Algebras for Tree Algorithms. D.Phil. thesis, Programming

Research Group, University of Oxford, 1991.

[7] J. Gibbons, W. Cai, and D.B. Skillicorn. E�cient parallel algorithms for

tree accumulations. Science of Computer Programming, 23:1{14, 1994.

[8] G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text:

PAT trees and PAT arrays. In W.B. Frakes and R. Baeza-Yates, editors,

Information Retrieval: Data Structures and Algorithms, pages 66{82.

Prentice-Hall, 1992.

[9] W. Daniel Hillis and G.L. Steele. Data parallel algorithms. Communica-

tions of the ACM, 29, No.12:1170{1183, December 1986.

[10] L. Hollaar. The Utah Text Search Engine: Implementation experiences

and future plans. In Database Machines: Fourth International Workshop,

pages 367{376. Springer-Verlag, 1985.

[11] L. Hollaar. Special-purpose hardware for text searching: Past experience,

future potential. Information Processing and Management, 27:371{378,

1991.

36

[12] Fulcrum Technologies Inc. Ful/text reference manual. Fulcrum Technolo-

gies, Ottawa, Ontario, Canada, 1986.

[13] Information processing { text and o�ce systems { standard generalized

markup language (sgml), 1986.

[14] I.A. Macleod. A query language for retrieving information from hierar-

chical text structures. The Computer Journal, 34, No.3:254{264, 1991.

[15] I.A. Macleod. Path expressions as selectors for non-linear text. Preprint,

1993.

[16] E.W. Mayr and R. Werchner. Optimal routing of parentheses on the

hypercube. In Proceedings of the Symposium on Parallel Architectures

and Algorithms, June 1993.

[17] G. Salton and C. Buckley. Parallel text search methods. Communications

of the ACM, 31:203{215, 1988.

[18] D.B. Skillicorn. Architecture-independent parallel computation. IEEE

Computer, 23(12):38{51, December 1990.

[19] D.B. Skillicorn. Foundations of Parallel Computing. Cambridge Series in

Parallel Computation. Cambridge University Press, 1994.

[20] D.B. Skillicorn. Parallel implementation of tree skeletons. Technical Re-

port 95-380, Queen's University, Department of Computing and Informa-

tion Science, March 1995.

[21] D.B. Skillicorn and W. Cai. A cost calculus for parallel functional pro-

gramming. Journal of Parallel and Distributed Computing, to appear.

An early version appears as Department of Computer Science Technical

Report 92-329.

[22] C. Stan�ll and B. Kahle. Parallel free-text search on the Connection

Machine. Communications of the ACM, 29:1229{1239, 1986.

[23] C. Stan�ll and R. Thau. Information retrieval on the Connection Machine.

Information Processing and Management, 27:285{310, 1991.

[24] H. Stone. Parallel querying of large databases. IEEE Computer, 20,

No.10:11{21, October 1987.

37

