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1 Introduction

A common approach to improving the run-time performance of a software

system is to measure various run-time properties of the components of the

system to �nd \bottlenecks" that account for the majority of the time cost of

the system. By analogy, a promising approach to reducing life-cycle costs of

software development has been to measure properties of software artifacts to

�nd \complexity" bottlenecks that account for the majority of the di�culty

of developing or maintaining the software.

With object-oriented systems, the structure (and thus some of the complex-

ity) of much of the code should re
ect similar structure in analysis and design

artifacts. Thus, it should in principle become possible to more accurately pre-

dict development and maintenance costs for object-oriented systems. Many

object-oriented metrics have been proposed, but there is as yet no consensus

on which are best, and most have not been well-validated.

Our contribution is to provide a data model for a database of design in-

formation from which most of the proposed OO metrics can be computed.

Combined with suitable tools to extract basic design information from designs

(or, perhaps, from code), such a database would make it easier to compare

metrics and validate a large number of metrics from the same basic data.

To prepare for presenting the data model, we discuss the di�erences be-

tween traditional and OO metrics, present a list of the most known sets of OO

metrics that have been derived so far, and show some of the various guidelines

along which OO metrics are classi�ed.

2 Traditional versus Object-Oriented Metrics

The OO paradigm for software development di�ers from the traditional pro-

cedural paradigm, which suggests that OO metrics should di�er from their

traditional counterparts. However, there has been no universal agreement

as to the signi�cance of the di�erence(s) between the metrics, with opinions

ranging from a total rejection of the traditional metrics to more positive, yet

cautious approaches to making use of them within the OO methodologies.

Opponents of the use of traditional metrics within the OO paradigm argue

that such metrics were originally designed to go along procedural methodolo-

gies and languages, and therefore fail to capture such concepts as inheritance

and polymorphism which are unique to the OO paradigm[AKM94, LHKS95,

LH93]. Henderson-Sellers[HS91] notes that \the traditional and OO paradigms
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di�er in that the traditional paradigm requires more e�ort during the coding

and maintenance phases than its OO counterpart", and that \the OO method-

ologies put more emphasis on the earlier stages of analysis and design", thus

implying that a new set of metrics is needed to re
ect those di�erences. Moreau

and Dominick[MD89] point out that \many existing metrics that have been

utilized within conventional programming environments are inappropriate for

evaluating object-oriented systems in certain circumstances". They mention

the traditional lines of code (LOC) metric as an example that would be \a

very poor indicator of developmental complexity [a measurement pertaining

to OO] within object-oriented systems since only a small part of the code

is likely to be unique to an object [due to inheritance-related reuse of code]".

Other traditional metrics such as Halstead's \Software Science" metrics[Hal77]

and McCabe's \cyclomatic complexity"[McC76] are judged as needing to be

\recalibrated to OO systems to be e�ective"[LK94].

On the other side of the debate, some researchers and practitioners think

that there is still hope for the set of traditional metrics in the world of object-

orientation, especially since those metrics have already been de�ned, well-

tested and calibrated. Tegarden[TSM92] argues that traditional metrics \are

well understood by researchers and practitioners". He further presents the re-

sults form experiments he conducted on four software systems[TSM92], using

the traditional metrics of source lines of code, Halstead's \software science"

metrics[Hal77], and McCabe's \cyclomatic complexity"[McC76]; he notes that

the use of inheritance and/or polymorphism should decrease the complexity

of an OO system, and the results from the experiments show that this is cap-

tured by the traditional metrics. However, they conclude that \additional

metrics are required to measure all aspects of OO systems". A similar ex-

periment was performed by Coppick and Cheatham[CC92] who also applied

Halstead's[Hal77] and McCabe's[McC76] metrics to objects and found that

the results were \intuitively reasonable". Finally, Binkley and Schach[BS96]

observe that \there is a tendency for some developers to reinvent the wheel

as they unnecessarily rede�ne well-known metrics in purely object-oriented

terms ..."; they list Chidamber and Kemerer[CK94] as some of the example

researchers who have \reinvented the wheel" in their de�nition of new metrics;

for instance, the lack of cohesion metric (LCOM) was (re-)de�ned speci�cally

for OO systems, while \it has been shown that the cohesion of a class can be

expressed in terms of classical cohesion".

Our perspective on this issue is that it does not matter, from our narrow

focus. We propose to develop a design database from which many di�erent
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metrics can be computed; in so far as both traditional and new metrics can

be computed from the same information, we can represent all of them without

prejudice. We expect others to validate and compare the metrics; our data

model might serve as a useful adjunct to a major comparison among metrics.

3 An Overview of Existing Object-Oriented

Metrics

In this section, we show some of the most widely cited OO metrics, together

with their pros and cons (derived from both the literature and from our own

re
ections).

3.1 Moreau and Dominick

Moreau and Dominick[MD89] were some the earliest researchers whose work

we surveyed who de�ned metrics for the OO paradigm1.i Only three metrics

were derived:

1. Message vocabulary size (MVS ): The number of di�erent types of mes-

sage sent by a particular object; it is related to the number of functions

that the programmer must be familiar with to comprehend the object.

2. Inheritance complexity (IC ): \Compound" and \multilevel" inheritance

contribute to the complexity of building, understanding, and maintaining

an object. They believe that size of the inheritance tree is a \simple"

approximation to such a metric.

3. Message domain size (MDS ): The number of distinct procedures within

the object that manipulate its state, thus the number of \types of mes-

sages to which an object will respond".

The three de�ned metrics need clari�cations, such as what exactly is meant

by \sending messages", and how the metrics are to be computed. The metrics

were not tested nor validated, a fact also acknowledged by the authors them-

selves. We can, however, draw some parallels between these metrics and the

three OO software quality abstractions of coupling, inheritance complexity,

1In fact, we obtained a copy of an earlier work by Morris [Mor89], in which he de�ned
metrics for OO environments, just before printing; thus his work could unfortunately not
be included in this report.
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and cohesion. Hence, this research could be considered as the basis for an

expanded and more sensitive collection of metrics for the OO paradigm.

3.2 Chidamber and Kemerer

The Chidamber and Kemerer[CK94] (C & K) metrics suite is the most cited

set of metrics we have found, and also the most criticized. The original suite

was derived in 1991 in [CK91], and the popularity of the paper prompted a

newer version in 1994. There are six metrics in the suite, all of them being

design metrics:

1. Weighted Methods per Class (WMC). Consider a class C1 with methods

M1; : : : ;Mn that are de�ned in the class. Let c1; : : : ; cn be the complexity

of the methods, then

WMC =
nX
i=1

ci

If all method complexities are equal to unity, then WMC = n, or the

number of methods. The authors add that the complexity metric to be

used here was deliberately not speci�ed \to allow for the most general

application of the metric".

It is thought that in OO systems, methods are, in general, small enough

so that the complexity of each could be considered as equal to unity.

Henderson-Sellers[HS96] notes that if ci is taken as equal to V(G), the

cyclomatic complexity[McC76], then for class i, WMC =
Pm

j=1 Vij(G),

where m is the number of methods in class i; but if ci = 1, thenWMC �

NOM (number of methods).

2. Depth of Inheritance Tree (DIT). Depth of inheritance of a class is its

depth in the inheritance tree; if multiple inheritance in involved, then

the depth of the class is the length of the maximum path from the node

representing the class to the root of the tree.2

3. Number of Children (NOC). Number of immediate subclasses subordi-

nated to a class in the class hierarchy.

2We assume that the depth of the root class is 0, since the authors show a 0 as the
minimum DIT value in one of the experiments; also, in the interpretation of DIT, it is said
that \DIT is a measure of how many ancestor classes can potentially a�ect this class".
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4. Coupling Between Object classes (CBO). CBO for a class is a count of

the number of other classes to which it is coupled, where coupling is

de�ned as \any evidence of a method of one object using methods or

instance variables of another object".

5. Response For Class (RFC). RFC = jRSj, the size of the Response Set of

a class, de�ned as the set of methods in the class together with the set

of methods called by the class's methods3.

6. Lack of COheshion in Methods (LCOM). LCOM is a count of the number

of method pairs whose similarity is zero, minus the count of method pairs

whose similarity is not zero. where similarity of a pair of methods is the

number of joint instance variables4 used by both methods.

e.g.: Consider a class C with 3 methods M1, M2, and M3. Let I1 =

fa; b; c; d; eg, I2 = fa; b; eg, and I3 = fx; y; zg, where \Ii" is the set of

instance variables used by method \Mi". Here, we have two disjoint sets:

I1 \ I2 (= fa; b; eg) and I3. We have one pair of methods who share at

least one instance variable (I1 and I2). So LCOM = 2 -1 = 1.

As pointed out previously, the C & K metrics suite is one of the most

criticized, perhaps due to its popularity.

Churcher and Shepperd[CS95a, CS95b] point out that de�nitions of some

of the basic direct counts are imprecise, which could have an impact on the de-

�ned metrics. Their main concern lies with the number of methods in a class

count, used directly in the computation of WMC and indirectly in LCOM.

Due to the various possibilities in counting the methods, the result could vary

dramatically, leading to confusion. The various possibilities result from the

decision on whether to count inherited methods as belonging to the class,

whether to count methods with the same name (but di�erent signatures),

whether operators should be considered in the count, and so on. An example

of a C++ class shows that the number of methods could vary from 12 to 37,

depending on which combination of counting rules is followed. The conclu-

sion is that \it is vitally important to precisely specify the mapping form a

language-independent set of metrics to speci�c programming languages".

In a reply to these remarks, Chidamber and Kemerer[CK95] clarify their

position by stating that \the methods that require additional design e�ort and

are de�ned in the class should be counted, and those that do not should not".

3Note the similarity to Moreau and Dominick's third and �rst metrics, respectively.
4Joint instance variables between two methods are those variables referred to by both

methods.
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A more rigorous criticism comes from Hitz and Montazeri[HM96a], who

agree with the remarks made by Churcher and Shepperd[CS95a, CS95b], but

focus on CBO and LCOM. They argue that CBO is not a sensitive enough

measure of coupling, since it considers all couples to be of equal strength.

There are, however, di�erent factors which should discriminate between cou-

ples of classes. For instance, access to instance variables should constitute

stronger coupling than pure message passing, as does message passing with a

wide parameter interface vs. one with a slim interface. They show that LCOM

exhibits an anomaly, namely that the same value from the metric is computed

for di�erent classes that intuitively appear to have di�erent cohesion levels.

Hitz and Montazeri propose a graph-theoretic formulation of the LCOM met-

ric in order to correct the anomaly and to di�erentiate among ties in cases

where LCOM = 1.

Henderson-Sellers[HS96] also studies the LCOM measure, and �nds that

while \a large value suggests poor cohesion, a zero value does not necessarily

indicate good cohesion"; thus the LCOM measure is not sensitive enough for

cases of high cohesion. A counter example is used, based on the example

presented by C & K[CK94] (refer to the example in the de�nition of LCOM).

If a new method M4, using the set of variables I4 = fx; y; z; dg, is added to

the class, the LCOM measure will be 0; this suggests a very high cohesion

in the class, while this would not intuitively be the case, with M1 and M2

representing a cohesive pair of methods, and M3 and M4 another. On another

note, he adds that RFC and CBO are not \orthogonal".

In the WMC metric, a weight for each method in a class is to be computed.

This is generally thought to be the complexity of the method; however, Chi-

damber and Kemerer did not specify how to come up with the weight, as

pointed out by Kalakota et al.[KRW93]

On the other hand, Li and Henry[LH93] conducted their own empirical

experiments, and showed that by using a combination of �ve of the six C & K

metrics,5 along with some newly de�ned metrics (see Section 3.3), it is possible

to predict the maintenance e�ort required for a software system.

In another study, Basili et al.[BBM96] show that �ve of the six C & K

metrics were useful in predicting class fault-proneness during the high and low

level design phases of the life cycle6. The metrics were found to be \statically

5CBO was omitted.
6The exception sixth metric was LCOM, which showed no signi�cant relationship with

fault-proneness.
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independent" and did not capture a great deal of redundant information7.

They conclude that the C & K metrics proved to be better predictors than

\the best set of the traditional metrics", which are only available at the latter

phases of the software life cycle.

The C & K metrics were validated by using six8 of Weyuker's[Wey88] nine

axioms, and were found to be generally compliant with most of the properties.

None of the metrics was found to comply to either of properties 7 and 9 of

Weyuker. Property 7 says that if there exist program bodies (objects according

to C & K) P and Q such that Q is formed by permuting the statements in P,

then �(P ) 6= �(Q), where � is a complexity metric; i.e. permutation a�ects

complexity. According to C & K, failure to meet this property suggests that

permutation might not be signi�cant in OO systems9. Property 9 says that

9 program bodies P and Q such that �(P ) + �(Q) < �(P + Q), or that

interaction between program bodies (objects) increases complexity. Failure to

meet this property suggests that it is probably not applicable to OO systems,

where interaction might in fact decrease complexity by rendering classes closer

to the abstractions they are supposed to portray.

3.3 Li and Henry

Li and Henry[LHKS95, LH93] present ten metrics in their system; they include

�ve of the six metrics de�ned by C & K, namely DIT, NOC, RFC, LCOM,

and WMC. In addition they de�ne �ve more metrics of their own.

In addition to coupling through inheritance, where one class derives from

another class (C & K's DIT or NOC could be used here), there are two coupling

metrics:

� Message-Passing Coupling (MPC) measures the complexity of message

passing among classes. MPC is the (static) number of send statements

de�ned in a class, where a send statement is a message sent out from

a method in a class to a method in another class. Although messages

are passed among objects, the types of messages passed are de�ned in

classes. Therefore, message passing is calculated at the class level instead

of the object level.

� Data Abstraction Coupling (DAC). A class can be viewed as an imple-

mentation of an ADT. A variable declared within a class may have a

7contrast with Henderson-Sellers remark on RFC and CBO above
8Seven of the nine properties were considered in [CK91].
9Property 7 was dropped in [CK94].

7



type of ADT which is another class de�nition, and hence a particular

type of coupling is created between the two classes. DAC for a class is

its number of instances of ADTs, or the number of its variables (data

members) having an ADT type.

The third new metric measures the class increment interface, or the number

of methods locally de�ned in a class.

� The Number Of Methods (NOM) = number of local methods.

Two size metrics are also de�ned. They are:

� The number of semicolons (SIZE1) in a class is a LOC traditional

metric.

� Number of properties (SIZE2) is the number of attributes plus the num-

ber of local methods.

To validate the metrics, the authors present the experiments they conducted

on two software systems on which the metrics were applied. In addition, the

maintenance e�ort made during a period of three years is calculated for all

classes of the two systems and a multiple regression model is used in order to

derive the metrics capabilities.

The authors �nally use the experiment results to derive the following con-

clusions:

� \There is a strong relationship between metrics and maintenance e�ort

in object-oriented systems".

� \Maintenance e�ort can be predicted from combinations of metrics col-

lected from source code".

Besides the previously cited comments on the C & K metrics used by Li and

Henry, the following remarks are noteworthy:

� In SIZE1, the authors use the number of semicolons in a class, which

is language-dependent, and also not derivable until the source code is

available.

� The DIT metric is used as a measure of complexity, where the larger

the value of DIT, the more complex the system is supposed to be. This

point criticized by Hitz and Montazeri[HM95] where it is induced that

trying to minimize DIT (in order to decrease complexity) leads to the

guideline \do not use inheritance at all", while inheritance is one the

major advantages of the OO paradigm.
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Rating Complexity value

Null 0

Very low 1-10

Low 11-20

Nominal 21-40

High 41-60

Very high 61-80

Extra high 81-100

Table 1: Operation complexity value

(from Chen and Lu[CL93])

3.4 Chen and Lu

Chen and Lu[CL93] present a new set of metrics for OO design. Most of the

metrics measure the complexity of classes.

Operation complexity (OpCom) of a class. The de�nition for opera-

tion complexity is: X
O(i)

where O(i) is operation i's complex value, and is evaluated from Table 1. 10

Summing up the O(i) in for each operation i in the class gives this metric

value.

Operation argument complexity (OAC ): De�ned as

X
P (i)

where P(i) is the value of each argument i in each operation in the class; it is

evaluated from Table 2.

Attribute complexity (AC ) metric: de�ned as
P
R(i) where R(i) is

the value of each attribute in the class, and is also evaluated from Table 2.

Summing up all R(i) in the class gives this metric value.

Operation coupling (OpCpl) metric: Measures the coupling between oper-

ations in the class and operations in other classes. It is de�ned as the sum

of:

10The authors explain that this table is similar to one derived from Boehm[Boe81], but
did not elaborate further as to which table is exactly referred to. We found that table 24-8
in [Boe81] is probably the closest to table 1. We still �nd, however, that this is a subjective
rating and relies heavily on expert judgment.
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Type Value

Boolean or integer 1

Char 1

Real 2

Array 3-4

Pointer 5

Record, Struct, or Object 6-9

File 10

Table 2: Argument/attribute value

(from Chen and Lu[CL93])

� The number of operations which access other classes.

� The number of operations which are accessed by other classes.

� The number of operations which are co-operated with other classes. A

co-operated operation is one which accesses some other class' operations

and vice versa11.

Class coupling (ClCpl) metric: Measures the coupling between a class and

other classes. It is the sum of:

� The number of accesses to other classes.

� The number of accesses by other classes.

� The number of co-operated classes. A co-operated class is one which

accesses some other class and vice versa.

The authors say that the di�erence between the latter two metrics lies in their

\di�erent viewpoints".

Cohesion (Coh) metric: Consider a class with N operations: F(1), F(2), ...,

F(N), with N sets of arguments I(1),I(2), ... ,I(N); M is the number of disjoint

sets of arguments formed by the intersection of these N sets. The cohesion

metric is de�ned as M
N
*100% In the example of Figure 1, we have a class of

four operations (methods) F (1); :::; F (4); with I(1)=fa,b,cg; I(2)=fa,b,d,eg;

I(3)=fa,b,eg; and I(4)=fa,b,c,dg; there is only one disjoint set (this is the

minimum case), so M = 1, and N = 4. The cohesion metric here = 25%.

11We deduced that this might be the intersection of the two sets of operations formed in
the previous two points.
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a b

c

d e

Figure 1: Class with high cohesion

The lower the value is, the higher the cohesion. The authors di�erentiate

their cohesion metric from LCOM of C & K[CK94] by pointing out that in

the latter, the intersection of \instance variables" is taken into account, while

\arguments" are used in the former, and \instance variables used may be

unavailable in the design phase".

Class hierarchy (CH ) metric: De�ned as the sum of the following:

� The depth of the class in the inheritance tree.

� The number of sub-classes of the class.

� The number of direct super classes of the class.

� The number of local or inherited operations available to the class.

It is claimed that the deeper a class is in the hierarchy and the more a class

has children, the more complex that class is likely to be.

Reuse (Re) metric: It measures whether a class is a reused one. A value

of 1 is given to the class if it is reused from the current or from a previous

project, and 0 otherwise.

The metrics were validated by applying them to two small projects, and

using the judgment of a number of expert designers as to the complexity

of the designs. A statistical regression model is then used in an attempt to

derive a correlation between the metrics and the experts' judgments (and hence

complexity).
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a    b    c    d    e    f     g    h    i    j    k

Figure 2: Class with low cohesion

In [HS96], Henderson-Sellers explicitly cites Table 1 and argues that \met-

rics with subjective weightings in which not only are Likert scales used, but the

mapping from that scale to a numerical scale is itself fuzzy, have no scienti�c

validity, and should be avoided if at all possible".

A very similar criticism of subjective ratings is given by Brito e Abreu

in [BeA92], where it is argued that \subjectivity makes metrics comparisons

throughout software industry an impossible mission". Also, \subjective ratings

(e.g. \Very Low", \Low", \Average", \High", \Very High") are copious in the

metrics literature".

Moreover, we have the following remarks on the above set of metrics:

One of the metrics is called "cohesion metric", which is a bit misleading,

since a lower value re
ects more cohesiveness. The metric should rather rep-

resent the \lack" of cohesion of a class.

There is some ambiguity surrounding the di�erence between the \operation

coupling" and \class coupling" metrics. The latter metric uses the number of

accesses from a class to another; but it is not speci�ed what constitutes a class

access. We deduce that the class coupling metric simply takes into account

whether a class accesses another class (through message passing), regardless of

how many messages are sent from that class to the other; thus the value of the

class coupling metric is either 0 or 1 when taken between two classes. However,

the number of messages does matter in the operation coupling metric.

There is an apparent 
aw in the cohesion metric, which seems to encourage

having a large number of arguments in each operation over having a small

number of arguments. In the example used in the de�nition, there are 4

sets of arguments, and only one disjoint set, resulting in a value of 25% (see

Figure 1). However, by looking at Figure 2, there are 11 arguments in 5

di�erent operations in the class; but there is only one disjoint set, so the

cohesion metric yields a value of 20%, which re
ects more cohesion than in

the previous case. However, a quick look at the two �gures shows that the

class in the �rst example intuitively exhibits more cohesion than the one in the

second. Moreover, when there is only one method in the class, then the metric

would yield 100%, the worst possible cohesion, while in fact the opposite is

true.
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In dealing with C & K's LCOM metric, Hitz and Montazeri[HM96a] pro-

pose a solution to the case where only one disjoint argument set is present.

They proposed a modi�cation for LCOM which would discriminate between

cases where there is only one disjoint set. The same problem also occurs here.

We propose the modi�cation of the cohesion metric so that if there is

only one disjoint set, then the metric would yield the same value (e.g. zero),

and then use the formula from Hitz and Montazeri[HM96a] for discriminating

between such cases.

Finally, the class hierarchy metric seems to discourage any sort of in-

heritance, since the complexity increases whenever the inheritance increases.

Therefore, a more careful and balanced approach should be given so that a

reasonable use of inheritance would not be punished, as would be expected in

any OO system.

3.5 Brito e Abreu

Brito e Abreu[BeA92, BeAM96] derived a set of six metrics known as the

MOOD (Metrics for Object Oriented Design) metrics. In the following, C

stands for class, M for method, A for attribute, and TC for the total number

of classes in the system being measured.

Method Hiding Factor (MHF):

MHF =

PTC

i=1

PMd(Ci)

m=1
(1�V (Mmi))PTC

i=1
Md(Ci)

where V (Mmi) =

PTC

j=1
is visible(Mmi;Cj)

TC�1

and is visible(Mmi; Cj) =

8><
>:

1 iff

(
j 6= i

Cj may call Mmi

0 otherwise

The MHF numerator is the sum of the invisibilities of all methods de�ned

(Md) in all classes. The invisibility of a method is the percentage of the total

classes from which this method is not visible. The MHF denominator is the

total number of methods de�ned in the system under consideration.

Attribute Hiding Factor (AHF):

AHF =

PTC
i=1

PAd(Ci)
m=1 (1� V (Ami))PTC
i=1Ad(Ci)
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where V (Ami) =

PTC

j=1
is visible(Ami;Cj)

TC�1
and

is visible(Ami; Cj) =

8><
>:

1 iff

(
j 6= i

Cj may call Ami

0 otherwise

The AHF numerator is the sum of the invisibilities of all attributes de�ned

(Ad) in all classes. The invisibility of an attribute is the percentage of the

total classes from which this attribute is not visible. The AHF denominator

is the total number of attributes de�ned in the system under consideration.

Method Inheritance Factor (MIF):

MIF =

PTC
i=1Mi(Ci)PTC
i=1Ma(Ci)

where Ma(Ci) =Md(Ci) +Mi(Ci)

The MIF denominator is the sum of inherited methods (Mi) in all classes

of the system under consideration. The MIF denominator is the total number

of available methods (Ma) (locally de�ned plus inherited) for all classes.

Attribute Inheritance Factor (AIF):

AIF =

PTC
i=1Ai(Ci)PTC
i=1Aa(Ci)

Where Aa(Ci) = Ad(Ci) + Ai(Ci)

The AIF numerator is the sum of inherited attributes (Ai) in all classes of

the system under consideration. The AIF denominator is the total number of

available attributes (Aa) (locally de�ned plus inherited) for all classes.

Polymorphism Factor (POF):

POF =

PTC
i=1Mo(Ci)PTC

i=1 [Mn(Ci)�DC(Ci)]

where Md(Ci) = Mn(Ci) +Mo(Ci) and Mn = new methods; Mo = overriding

methods; DC = descendants count.

The POF numerator represents the actual number of possible di�erent

polymorphic situations. Indeed, a given message sent to class Ci can be bound,

statically or dynamically, to a named method implementation. The latter can

have as many shapes (morphos) as the number of times this same method

is overridden (in Ci's descendants). The POF denominator represents the
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maximum number of possible distinct polymorphic situations for class Ci. This

would be the case where all new methods de�ned in Ci would be overridden

in all of their derived classes.

Coupling Factor (COF):

COF =

PTC
i=1 [

PTC
j=1 is client(Ci; Cj)]

TC2 � TC

where

is client(Cc; Cs) =

(
1 iff Cc =) Cs ^ Cc 6= Cs

0 otherwise

)

The COF denominator stands for the maximum possible number of cou-

plings in a system with TC classes. The client-supplier relation (represented by

Cc =) Cs) means that Cc (client class) contains at least one non-inheritance

reference to a feature (method or attribute) of class Cs (supplier class). The

COF numerator then represents the actual number of couplings not imputable

to inheritance.

The metrics were applied to eight projects representing eight variations

of the design for the same requirements document[BeAM96]. A correlation is

established between the metrics and defect density, failure density, and normal-

ized rework. The results show that most of the metrics were good predictors

of the three quality measures.

3.6 Abbott, Korson, and McGregor

Abbott et al.[AKM94] propose metrics for measuring the number and strength

of the object \interactions permitted" by an object oriented design. They

distinguish between two types of complexity applicable to class de�nitions:

Interaction level and interface size. The complexity referred to is the cognitive

complexity.

The proposed metric is said to be derivable directly from design information

and is able to predict experts' preferences of design alternatives.

Classes in OO designs exhibit various levels of complexity along 2 dimen-

sions:

1. Interaction level (IL): The degree to which an object is prone to interac-

tion with other objects by providing opportunities for such interactions.

2. Interface size (IS ): The degree to which classes provide means for infor-

mation to 
ow in and out of their encapsulation.
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Interface size measures the surface complexity of a class, while the interaction

level measures the opportunities for interaction between its surface and its

interior.

The quantum for interaction level is called a \permitted interaction", and

is an instance of two objects being permitted to interact by the design. The

quantum for interface size is called an \interface item", and is an occurrence of

a parameter or return value in a method's signature. The method itself counts

as an interface item, while data members do not. The interaction level of a

class is the sum of the interaction levels of its methods. The interaction level

of a design is the sum of the interaction levels of its classes. The interface size

of a class is the sum of the interface sizes of its methods. The interface size of

a design is the sum of the interface sizes of its classes.

Only one metric is singled out; it is termed the \permitted interaction"

metric and measures the interaction level of a design.

Three approaches are considered in deriving the permitted interactions

metric:

� The �rst assumes that each permitted interaction has equal weight, so

the number of interactions determines the complexity. The problems

with this approach are that it ignores the interface sizes of the interacting

objects and that it excessively encourages grouping data together so that

multiple data members and/or procedures count as one instead of many.

The example in Figure 3 illustrates this fact; on the lefthand side, we

have a method with 3 arguments, 3 data members, and a return value;

there are 12 possible interactions, 9 between the arguments and the data

members, and 3 between the data members and the return value. How-

ever, if the arguments and the data types are packed into one composite

data type, such as shown on the righthand side in Figure 3, then the

number of permitted interactions is reduced to 2, one between the com-

posite argument and the composite data member, and one between the

composite data member and the return value.

� The second approach takes into consideration a measure of the strength

of interaction between the objects. The strength of interaction between

an input object A and an output object B is de�ned as:

strength = (interface size of A) * (interface size of B).
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Arg. 1

Arg. 2

Arg. 3

Result

Data member 1

Data member 2

Data member 3

Result

Universal
Composite
Argument

Universal
Composite
Data member

Figure 3: Transformation to minimize the number of interactions

(from Abbott et al.[AKM94])

This approach also has its drawbacks: It encourages the use of elemen-

tary classes by other classes (in order to reduce the strength of interac-

tion), rather than classes representing cohesive groupings of data.

In the example of Figure 4, we have a method whose purpose is to

determine whether two dates occur in the same quarter of the year. On

the left, we have one argument representing a compact date object, 3

data members, and a return value. By assigning 3 as a weight to the

date object and 1 to each of the data members, the strength of interaction

between the argument and each of the data members is 3 � 1 = 3, and

that between each of the data members and the return value is 1�1 = 1,

for a total of 12 units. However, since only the month and year are needed

to determine the quarter, we can have the method take two arguments,

year and month, each having a weight of 1, thus reducing the strength

of interaction down to 9. But the �rst choice of arguments is clearly

preferred in OO systems because it represents better encapsulation.

� The third approach merges the �rst two on the basis that they \fail in

complementary ways". The interaction level is de�ned as:

interaction level = K1 * (value based on number of interactions) +
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Year

Month

Day

Result

Year

Month

Day

3

3

3

1

1

1

Year

Month

Result

Year

Month

Day

1

1

1

(1 each)

Figure 4: Transformation to minimize the strength of interactions

(from Abbott et al.[AKM94])

K2 * (value based on strength of interactions); where K1, and K2 are

tentatively set to 1.0 each.

The rationale behind this formula is that it represents a trade-o� between

two points of view, the �rst saying that only the number of interactions is

important, while the second claims that only the strength of interactions

is important.

In a similar argument, the interface size metric is given as:

interface size = K3 * (value based on number of interface items) + K4

* (value based on size of interface items); K3 and K4 are also tentatively

set to 1
8
and 1

4
, respectively.

The authors propose setting values for elementary classes/types (inte-

gers, characters ...), such as the value of 1.0; the computation of more

complex types is built starting from the elementary values that compose

it or constitute is parts.

The metrics were applied to 9 di�erent sets of 2 or 3 design alternatives

each, for a total of 20 design cases, with a number of expert designers giving

their independent preferences between the various alternatives. The metrics

and the experts' preferences agreed in 16 of the 20 cases.
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3.7 Hitz and Montazeri

Hitz and Montazeri[HM96b] discuss the concept of coupling in OO systems in

detail. Two levels of coupling are identi�ed: Object level coupling (OLC), and

class level coupling (CLC). A framework for measuring OO coupling is set up.

It emphasizes the distinction between OLC and CLC.

Class level coupling is de�ned as the coupling that results from state de-

pendencies between classes during the development life-cycle, where the state

of a class refers to the class de�nition and the program code of its methods (a

version of the class implementation). In what follows, CC denotes a dependent

client class, and SC is the server class being changed.

The following factors contribute to the strength of CLC:

� Stability of SC: If SC is considered stable, no changes are likely to occur,

so CC will not incur any dependent changes. If SC is unstable, then 2

sub-cases are considered: Only SC's implementation is subject to change,

while the interface is stable or, SC's interface is modi�ed. The second

sub-case is clearly more harmful.

� Type of access to SC: CC may either restrict its access to the interface of

SC, following its protocol, or may refer to at least one instance variable

de�ned in SC12. The latter case is considered a breach of encapsulation

and results in higher coupling values.

� Scope of access to SC within CC: this refers to where in the program

area of CC SC may potentially be referenced. The larger that program

area, the more potential changes to CC are incurred following a change

in SC.

Table 3 shows the metric values for CLC, given on an ordinal scale.

Class level coupling is given weights according to stability, access type,

and scope of access as outlined in the framework. Access to a stable server

class represents the least coupling value, while in an unstable server class

case, access to the interface is better than access to implementation. Also, a

restricted scope of access gives inferior coupling values than access to a server

class from potentially a large program area inside the client class.

In object-level coupling, the authors di�erentiate between two types of

objects: native and non-native. An object M is called native to another object

A if and only if:

12The original de�nition uses \instance variable 'of' SC", which we judged to be
ambiguous.
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SC SC stable?

native yes no

to Access to

CC? interface interface implementation

yes CC is genuine aggregate of SC 1 3 5

Local variable of type SC used

within method of CC

1 2 4

SC is superclass of CC 1 3 5

no SC is class of shared instance vari-

able of CC

1 3 5

SC is type of parameter of

method of CC

1 2 4

CC accesses global variable of SC 1 3 5

Table 3: Class Level Coupling

� M is a genuine aggregate of M, i.e. M is a sub-object of A that can only

exist as part of A or,

� M is represented by a local variable of one of A's methods, so M can

only exist during the activation period of that method or,

� M is a sub-object of A inherited from one of A's super classes.

All other objects are non-native. The state of a native object represents part

of the owner object's state; thus, sending a message to a native object does

not contribute to object level coupling, since such a message to one of the

object's own components will only a�ect its own history. On the other hand,

such a message might constitute class level coupling. \Any evidence of a

method of one object using methods or instance variables of a non-native

object constitutes OLC".

The following factors a�ect the strength of OLC between objects X and O:

� Type of access to X by O (O restricts its access to the interface, or refers

to at least one instance variable of X).

� Scope of X (X may be a parameter to one of O's methods, a non-native

part of O, or a global object).

� Complexity of interface (number of arguments).
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Access to

interface implementation

SC is class of shared instance variable of CC II V

SC is type of parameter of method of CC I IV

CC accesses global variable of SC III VI

Table 4: Object Level Coupling

Adapted from Hitz and Montazeri[HM96b]

Table 4 shows the metric values for OLC; the authors use Roman numerals as

a reminder that OLC values can't be added to CLC values.

In object-level coupling, the values are given along the access type and

scope of access, so that, for example, a case where SC is a type of parameter

of a method of CC and CC has access to the interface of SC represents less

coupling than a case where CC accesses a global variable of class SC and has

access to the implementation of SC.

The values from the two tables of metrics belong to ordinal scales and

cannot be summed; thus the two scales are incomparable. This explains why

the values in the two tables were given as Arabic and Roman numerals, re-

spectively. The interface complexity factor was not considered directly in the

metrics.

Two supplementary coupling-related attributes are also de�ned:

Change Dependency Between Classes (CDBC), which determines the num-

ber of methods of a client class CC to be considered when a change in a server

class SC occurs. This depends on the scope of usage of SC inside CC. The

degree of CDBC is given as :

A =
X

accesses i to implementation

�i + (1� k)
X

accesses i to interface

�i

where for class CC with n methods, k is a factor corresponding to the stability

of SC (0 � k � 1), and � is deduced from table 5.

CDBC(CC,SC)=min(n,A).

Locality of Data (LD), which is de�ned as the ratio of the amount of data

local to a class to the total amount of data used by that class. Such a measure

relates to the quality of abstraction embodied by a class, where classes with
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� = number of methods of CC potentially

a�ected by a change

SC is not used by CC at all 0

SC is the class of an instance

variable of CC n

Local variables of type SC are used

within j methods of CC j

SC is a superclass of CC n

SC is the type of parameter

of j methods of CC j

CC accesses a global variable

of class SC n

Table 5: Relationship types between CC and SC and their corresponding

contribution � to change dependency.

high data locality are more self-su�cient than those with low data locality.

A de�nition for C++ is given as :

LD =

Pn
i=1 jLijPn
i=1 jTij

where Mi (1 � i � n) are the methods of the class, Li is the set of local

variables accessed by Mi, and Ti is the set of all variables used in Mi.

The conclusion is that no one metric can capture complexity, but rather,

complexity measures should be looked at from several dimensions, as the pro-

posed metrics show. This fact is also portrayed in the inability to sum up the

values in the tables.

The authors did note state whether the metrics were validated or tested.

3.8 Miscellaneous Metrics

Many other metrics were de�ned for the OO paradigm. In this section, we

brie
y list some of metrics we came across in the literature.

Yap and Henderson-Sellers[YHS93] de�ne two measures related to class

reuse:

The reuse ratio (U ) = (number of superclasses)/(total number of classes).

This indicates the the level of reuse of superclasses through the creation of

new classes.
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The specialization ratio (S ) = (number of subclasses)/(number of super-

classes). It measures the degree to which a superclass was successful in rep-

resenting the abstraction required. A large value indicates a high degree of

reuse by subclassing.

Rising and Calliss[RC94] suggest a metric for information hiding at the

module level. They note that a module which hides more than one design

decision is poorer in information hiding (IH) than one hiding a single design

decision.

IH(Module)=(0j1)+sum of all extraneous entities;

A 0 is assigned if one design decision is encapsulated, and 1 otherwise. The

extraneous entities are \those not required for a single design decision".

\For each module m in a system S, Em is the set of all extraneous entities.

For each j in Em; Cj is the number of client modules referencing j. Um is the

use of each module by the system, Um =
P
fCjjj 2 Emg"

The information hiding metric for system S would be:

IH(S) =MedianfIH(m) + Umjm 2 Sg

Note: The authors did not clearly specify a method for counting extraneous

entities.

Lorenz and Kidd[LK94] de�ned many OO design metrics, but did not val-

idate nor thoroughly test them. The metrics are listed below, along with the

level at which they are taken:

Method Size: Number of message sends, number of statements, lines of

code, average method size.

Method Internals: Method complexity, strings of message sends13.

Class size: Number of public instance methods (NPM ) per class, number

of instance methods per class, average number of instance methods per class,

number of instance variables per class, average number of instance variables

per class, number of class methods per class, number of class variables per

class.

Class inheritance: Class hierarchy level, number of abstract classes

(NAC ), use of multiple inheritance.

Method inheritance: Number of methods overridden (NOV ) by a sub-

class, number of methods inherited (NIM ) by a subclass, number of

methods added in a subclass, specialization index.

Class internals: Class cohesion, global usage, average number of parame-

ters per method, use of friend functions, percentage of function-oriented code,

13Messages can be \strung" together in Smalltalk.
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average number of comment lines per method, average number of commented

methods, number of problem reports per class or contract.

Class externals: Class coupling, number of times a class is reused, num-

ber of classes/methods thrown away.

Bellin, Tyagi, and Tyler[BTT] classify object oriented metrics into three

groups (see Section 4). The proposed metrics along with the groups are:

Group A: Number of methods, number of classes, number of messages,

number of receiving classes (servers), number of sender classes (actors), number

of agent classes, number of global variables in each class, number of levels in

the class hierarchy, number of leaves in the class hierarchy tree, ratio between

depth and breadth, ratio of method/class, ratio of private/public methods,

ratio of abstract/instantiated classes, ratio of lines of code/method, ratio of

lines of code/comment.

Group B: Number of classes reused, percent of reused classes modi�ed.

Group C: Coupling, cohesion, su�ciency, completeness, primitiveness.

The proposed metrics were neither validated nor tested as to the time of

writing of the paper. However, the authors promised to apply and validate

the metrics in future work.

Sheetz, Tegarden, and Monarchi[STM91] de�ne another extensive set of

metrics which they classify in four levels (see Section 4). The metrics are :

Variable level metrics : Variable fan-in (v�), variable fan-out (vfo),

variable polymorphism (vp), variable fan-down (vfd).

Method level metrics : Method input parameters (mip),method param-

eters returned (mpr), object variables accessed (ova), parame-

ters returned to the method (prm),method parameters passed

(mpp), method fan-in (m�), method fan-out (mfo), method polymor-

phism (mp), method fan-down (mfd).

Object level metrics : Object input parameters (oip), object param-

eters returned (opr), parameters returned to the object (pro),

object parameters passed (opp), number of local variables (olv),

number of inherited variables (oiv), number of local methods

(olm), number of inherited methods (oim), object fan-in (o�), object

fan-out (ofo), object fan-down (ofd), object fan-up (ofu), object

to root depth (ord), object to leaf depth (old), object polymor-

phism (op).
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Application level metrics Number of classes (NCL), application concrete

classes (acc), application abstract classes (aac), maximum depth of the

object hierarchy (amd), maximum breadth of the object hierarchy (amb).

In addition, a number of other metrics were de�ned using formulae based

on the previous metrics, e.g. the number of input/output variables for method

i is de�ned as miovi = mipi +mpri + ovai + prmi +mppi, which is a measure

of the amount of information 
ow associated with the method.

3.9 Summary

Table 6 summarizes some of the various metrics surveyed previously. The

metrics derived at the code level were omitted. Also, only a representative

subset of the extensive sets of metrics were used.

4 Classi�cations of Object-Oriented Metrics

Several researchers classify the OO metrics along di�erent dimensions in an

attempt to organize the metrics collection. The classi�cations are mainly

aimed at easing the collection of metrics by helping the users know which

metrics are found at which level of resolution[HS94].

4.1 Henderson-Sellers

In[HS94], Henderson-Sellers considers the various perspectives of an OO sys-

tem in classifying the metrics. The perspectives are: inside a class, external at

the class level, system level (ignoring relationships), systems level relationships

(excluding inheritance), and inheritance coupling.

Inside a class: Size and complexity measures are to be found at this

level; examples are McCabe's cyclomatic complexity[McC76], Chidamber and

Kemerer's[CK94] weighted methods per class (WMC), and Li and Henry's[LH93]

number of methods and number of attributes counts ...

External at the class level: This level concerns the interface of classes;

the metrics here can be viewed as measuring the services o�ered by a class.

System level (ignoring relationships): Measures from the two previous

levels are accumulated at this level. An example is the total number of classes

in the system. Statistical computations can also be derived here, such as the

mean/standard deviation of the number of methods in a system ...
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Acronym Name Origin De�ned
aac application abstract classes Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
acc application concrete classes Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
AHF Attribute Hiding Factor Brito e Abreu[BeA92, BeAM96] 3.5 (p.13)
AIF Attribute Inheritance Factor Brito e Abreu[BeA92, BeAM96] 3.5 (p.13)
amb maximum breadth of the object hierarchy Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
amd maximum depth of the object hierarchy Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
CBO Coupling Between Object classes Chidamber and Kemerer[CK94] 3.2 (p.4)
CDBC Change Dependency Between Classes Hitz and Montazeri[HM96b] 3.7 (p.19)
CH Class hierarchy Chen and Lu[CL93] 3.4 (p.9)
CLC class level coupling Hitz and Montazeri[HM96b] 3.7 (p.19)
ClCpl Class coupling Chen and Lu[CL93] 3.4 (p.9)
COF Coupling Factor Brito e Abreu[BeA92, BeAM96] 3.5 (p.13)
Coh Cohesion Chen and Lu[CL93] 3.4 (p.9)
DAC Data Abstraction Coupling Li and Henry[LHKS95, LH93] 3.3 (p.7)
DIT Depth of Inheritance Tree Chidamber and Kemerer[CK94] 3.2 (p.4)
IC Inheritance complexity Moreau and Dominick[MD89] 3.1 (p.3)
IL Interaction level Abbott et al.[AKM94] 3.6 (p.15)
IS Interface size Abbott et al.[AKM94] 3.6 (p.15)
LCOM Lack of COheshion in Methods Chidamber and Kemerer[CK94] 3.2 (p.4)
LD Locality of Data Hitz and Montazeri[HM96b] 3.7 (p.19)
MDS Message domain size Moreau and Dominick[MD89] 3.1 (p.3)
mfd method fan-down Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
m� method fan-in Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
mfo method fan-out Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
MHF Method Hiding Factor Brito e Abreu[BeA92, BeAM96] 3.5 (p.13)
MIF Method Inheritance Factor Brito e Abreu[BeA92, BeAM96] 3.5 (p.13)
mip Method input parameters Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
mp method polymorphism Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
MPC Message-Passing Coupling Li and Henry[LHKS95, LH93] 3.3 (p.7)
MVS Message vocabulary size Moreau and Dominick[MD89] 3.1 (p.3)
NCL Number of classes Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
NOC Number of Children Chidamber and Kemerer[CK94] 3.2 (p.4)
NOM Number Of Methods Li and Henry[LHKS95, LH93] 3.3 (p.7)
NOV Number of methods overridden Lorenz and Kidd[LK94] 3.8 (p.23)
NPM Number of public instance methods Lorenz and Kidd[LK94] 3.8 (p.23)
o� object fan-in Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
ofo object fan-out Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
oim number of inherited methods Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
OLC Object level coupling Hitz and Montazeri[HM96b] 3.7 (p.19)
olv number of local variables Sheetz, Tegarden, and Monarchi[STM91] 3.8 (p.24)
OpCpl Operation coupling Chen and Lu[CL93] 3.4 (p.9)
POF Polymorphism Factor Brito e Abreu[BeA92, BeAM96] 3.5 (p.13)
RFC Response For Class Chidamber and Kemerer[CK94] 3.2 (p.4)
S specialization ratio Hitz and Montazeri[HM96b] 3.7 (p.19)
SIZE2 Number of properties Li and Henry[LHKS95, LH93] 3.3 (p.7)
U reuse ratio Hitz and Montazeri[HM96b] 3.7 (p.19)
WMC Weighted Methods per Class Chidamber and Kemerer[CK94] 3.2 (p.4)

Table 6: Metrics Surveyed
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System level relationships (excluding inheritance): Coupling is the

main measure here. The coupling between objects (CBO)[CK94], message

passing coupling (MPC), and data abstraction coupling (DAC)[LH93] are ex-

amples of metrics found at this level.

Inheritance coupling: Measures of the inheritance hierarchy of a system

and the resulting complexity are classi�ed in this level. The main inheritance-

related metrics used by Henderson-Sellers here are the depth of inheritance tree

(DIT) and the number of children (NOC), both of Chidamber and Kemerer[CK94].

4.2 Sheetz et al.

Sheetz et al.[STM91] de�ne four levels along which metrics are classi�ed. These

are: variable level, method level, object level, and application level.

They de�ne their own set of metrics and list them within the four classi�cation

levels (see Section 3.8). All the metrics measure the complexity of software.

4.3 Bellin et al.

Yet another approach to classifying metrics comes from Bellin[BTT]; three

groups of metrics are presented; these are called group A, group B, and group

C.

Group A consists of \statistical aspects of OO design captured via a static

analysis of the source code". It contains such metrics as \number of methods",

\number of classes", \number of levels in the class hierarchy tree" ...

Group B deals with code reuse, and contains the metrics \number of

classes reused", and \percent of reused classes modi�ed".

Group C contains subjective measures which involve the human factor,

such as coupling and cohesion, and deal with the quality of an abstraction in

an OO system.

4.4 Brito e Abreu and Carapuca

The �nal classi�cation framework for metrics we present in this section is

that of Brito e Abreu and Carapuca[BeAC94]. The classi�cation framework is

called TAPROOT (taxonomy precis for object-oriented metrics). The metrics

are classi�ed along two \independent vectors", category and granularity.

The authors reveal that the categories were derived after a sample of 128 refer-

ences was reviewed in order to �nd a \common denominator" in the extensive

metrics literature. The categories are: Design, size, complexity, reuse,
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Method Class System

Design MD CD SD

Size MS CS SS

Complexity MC CC SC

Reuse MR CR SR

Productivity MP CP SP

Quality MQ CQ SQ

Table 7: TAPROOT Classi�cation Framework

productivity, and quality. The second dimension (or vector), granularity,

further re�nes the categories by considering metrics in each category at the

method, class, and system levels. This is somewhat similar to the classi-

�cations given in[STM91] (and, to a certain extent, in[HS94]); however, when

the six category levels are considered, a combination of eighteen independent

levels is obtained. Table 7 shows the di�erent combinations of category and

granularity. The following examples are of metrics from the design granularity

level, as we are mainly interested in design metrics.

� Method design (MD) metrics: percentage of used instance variables,

comments density ...

� Class design (CD) metrics: lack of cohesion in methods (LCOM), depth

of inheritance, class response[CK94].

� System design (SD): Average number of methods, average number of

instance variables ...

5 A Data Model

Our contribution is to develop a data model for a database of design informa-

tion from which most of the proposed OO metrics can be computed. Figures 8

and 9 summarize the entities and relationships in the data model. Combined

with suitable tools for extracting basic design information from designs (or,

perhaps, from code), such a database would make it easier to compare metrics

and validate a large number of metrics from the same basic data. Researchers

with access to development and maintenance cost information might then be

able to compare the validity and utility of most proposed metrics. Table 10
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E1 class E2 method

E3 public method E4 private method

E5 attribute E6 public attribute

E7 private attribute E8 method arguments

E9 return value E10 global variable

E11 abstract class E12 concrete class

Table 8: Summary of Entities

R1 class sends message to class/method R2 class uses attribute of class

R3 class inherits from class R4 class inherits method

R5 class inherits attribute R6 class is a child/descendant of class

R7 class uses instance of other class R8 class is parent/ancestor to class

R9 method returns value R10 method calls method

R11 class/method uses attribute R12 method overrides method

R13 argument interacts with attribute R14 class is type of argument to method

R15 class accesses interface of class R16 class accesses implementation of class

R17 class accesses global variable of class

Table 9: Summary of Relationships

summarizes what parts of the data model are used by the metrics we survey.14

The abbreviations refer to speci�c metrics covered in our survey. The �nal

\count" entry reports how many metrics use each element of the data model.

We plan to validate the data model by extracting a design database for

each of several object-oriented systems, and computing all the desired metrics

from the data model. We expect that some metrics will be computable from

\early" design information, but some will require detailed design and even

code-level information.

6 Conclusions

As can be inferred from some proposed sets, there seems to be a rush towards

de�ning as many metrics as possible, sometimes disregarding their usefulness.

One possible reason for this is that many of the proposed metrics are easily

derivable.

Binkley and Schach[BS96] note that \a metric that is easy to compute is

14We have omitted metrics that require code-level properties.
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MVS * *

IC * * * *

MDS * *

WMC * *

DIT * *

NOC * * *

CBO * * *

RFC * * *

LCOM * * *

MPC * * *

DAC * *

NOM * *

SIZE2 * *

IL * * * * * *

IS * * * *

CLC * * * * * * * * *

OLC * * * * * * * *

CDBC * * * *

LD * * * * * *

NCL *

aac * *

acc * *

amd/amb * * * *

olv * * * *

oim * * *

o�/ofo * *

mip * *

m� * *

mfo * *

mp * * *

mfd * * *

U * * *

S * * *

NPM * *

NOV * *

MHF * * * * *

AHF * * * * *

MIF * * *

AIF * * *

POF * * * *

COF * *

OpCpl * * *

CH * * * * * *

ClCpl * *

Coh * * * *

count 40 24 2 1 7 3 3 3 2 3 1 1 12 1 4 3 1 6 4 8 1 2 3 3 1 2 2 2 2

Table 10: Data Model Elements Used by Each Metric

30



sometimes preferred over a valid metric". Counts such as the number of classes

in a system do not necessarily contribute to the complexity of a system, and

therefore are of limited use[HS96, KRW93]. Also, most of the de�ned metrics

were not validated or based on measurement theory, nor were they extensively

tested and applied to show their intuitive usefulness. Many researchers ap-

plied their de�ned metrics to small-scale experiments, and then hastily jump

to conclude that the metrics are valid and signi�cant. Henderson-Sellers[HS96]

points out that most metrics were validated by a single experiment, which

leads to the observation that \for every positive validation there is a negative

validation". Moreover, even if some metrics were proven to be valid in some

contexts, this would not mean that the metrics become applicable in other

contexts[BMB94]. Kalakota et. al [KRW93] argue that \it is di�cult to gen-

eralize any conclusions drawn from a given software project to all software

projects", and Henderson-Sellers[HS96] mentions that \local validity does not

imply global validity". As a possible remedy to the local validity problem,

Brito e Abreu[BeA92] proposes to collect and analyze metrics \throughout

time in as many di�erent projects as possible". Hitz and Montazeri[HM95]

refer to the fact that some researchers pick up the easily derivable numbers

and then try to correlate them with external product attributes in an attempt

to create metrics, and this leads to \attributes which do not necessarily have

a causal relationship with the external variables considered".

Another problem lies in the attempt to combine several di�erent metrics

into one single measure of some quality aspect. Such metrics lack sensitivity[Bie96],

and could become misleading, as one combined metric fails to capture all the

aspects of a quality abstraction.

We also note that while it has been said that OO metrics have the ad-

vantage of being applicable early in the life-cycle, which generally means the

analysis and design phase, we have noticed that many metrics sets cannot be

derived until the source code is available. For instance, listing metrics such

as \percentage of function-oriented code, average number of comment lines

per method, average number of commented methods"[LK94] as being \design

metrics" seems inappropriate and misleading; the same applies to the metrics

\ratio of lines of code/method", and \ratio of lines of code/comment"[BTT].

This last point is also re
ected in the tendency of some researchers to

derive their design metrics from source code, probably due to the ease in the

development of the tools; for instance, Stiglic et. al[SHR95] developed a tool

which derives such metrics as the C & K[CK94] set { all of which being design

metrics { out of C++ source code.
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We are of the opinion that since the focus of OO metrics is on earlier

phases of the development life cycle, at least theoretically, then the metrics

collection methods/tools should also attempt to collect the metrics data from

the earlier phases, speci�cally the design phase. The problem here is that the

OO community has not yet settled on a standard notation to be used in design

documents, so any data collection tool would have to apply only to particular

contexts.15 Also, metrics derived from source code are usually expected to

show better accuracy than those drawn from design documents; so a tradeo�

exists between getting early estimates of the quality of software products at the

expense of having accurate measures of the quality. Nevertheless, we think that

OO software metricians should derive their metrics and design their collection

tools while keeping in mind the importance of computing the metrics on the

earlier phases of the life cycle.

All this is not to say that the OO metrics community is in disarray; it is

simply at the start of its evolution. We encourage researchers to keep deriving

metrics and testing them, even if many would eventually turn out to be non

useful. It is after a long period of trials and errors that we expect a \good"

set of OO metrics to be available.
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