
Parallel Inductive Logic

in Data Mining

Yu Wang

Department of Computing and Information Science

Queen's University, Kingston, Canada

January 2000
External Technical Report

ISSN-0836-0227-
2000-436

Department of Computing and Information Science
Queen's University

Kingston, Ontario, Canada K7L 3N6

Document prepared April 5, 2000
Copyright c
2000 Yu Wang

Abstract

Data-mining is the process of automatic extraction of novel, useful and understandable patterns from very large

databases. High-performance, scalable, and parallel computing algorithms are crucial in data mining as datasets

grow inexorably in size and complexity. Inductive logic is a research area in the intersection of machine learning

and logic programming, which has been recently applied to data mining. Inductive logic studies learning from

examples, within the framework provided by clausal logic. It provides a uniform and very expressive means

of representation: All examples, background knowledge as well as the induced theory are expressed in �rst-order

logic. However, such an expressive representation is often computationally expensive. This report �rst presents the

background for parallel data mining, the BSP model, and inductive logic programming. Based on the study, this

report gives an approach to parallel inductive logic in data mining that solves the potential performance problem.

Both parallel algorithm and cost analysis are provided. This approach is applied to a number of problems and it

shows a super-linear speedup. To justify this analysis, I implemented a parallel version of a core ILP system {

Progol { in C with the support of the BSP parallel model. Three test cases are provided and a double speedup

phenomenon is observed on all these datasets and on two di�erent parallel computers.

Contents

1 Introduction 3

2 Inductive Logic Theory and The BSP Model 5

2.1 Introduction . 5
2.2 The Theory of First-order Logic . 5
2.3 Theory of Inductive Logic Programming . 6
2.4 Theory of MDIE . 7

3 Existing ILP systems and applications 9

3.1 Sequential ILP Algorithm. 11
3.1.1 A Sequential ILP Algorithm . 11
3.1.2 Cost of sequential ILP data-mining algorithms. 13

3.2 Introduction to the BSP model . 14

4 Parallel Inductive Logic in Data Mining 16

4.1 Reason, possibility and approaches of parallel ILP in data mining 16
4.2 Logical Settings Of Parallel ILP . 17
4.3 An Approach to Parallel ILP Using the BSP Model . 18
4.4 Potential problems with this approach . 19

4.4.1 Accuracy of induced theory on smaller dataset . 19
4.4.2 Dealing with Negative Examples . 20
4.4.3 Communication Overhead . 20
4.4.4 Redundant Work by Individual Processors . 21

4.5 Cost Analysis . 21

5 Parallel Progol 24

5.1 Parallel Progol Algorithm . 24
5.2 Test Cases . 25

6 Test Results 30

6.0.1 Test Result of Animal Classi�cation. 32
6.0.2 Test Result of Chess Move Learner. 35
6.0.3 Test Result of Chess Game Ending Illegal Problem . 38

6.1 Summary. 41

7 Conclusion 42

1

List of Figures

1 Sequential ILP Algorithm . 11
2 Parallel ILP Algorithm . 19
3 Parallel Progol Algorithm . 24

List of Tables

1 BSPlib Operation . 16
2 Test cases and sequential performance . 26
3 System Information . 30
4 Mean SEL, EVA, and RET Values in Sequential Algorithm 31
5 Mean SEL, EVA, and RET Values in Parallel Algorithm . 31
6 Test case 1: result of sequential algorithm . 32
7 Test case 1: results of 4-process parallel algorithm . 33
8 Test case 1: results of 6-process parallel algorithm . 33
9 Test case 1: comparison of sequential and parallel algorithm 34
10 Test case 2: results of sequential algorithm . 35
11 Test case 2: results of 4-process parallel algorithm . 36
12 Test case 2: results of 6-process parallel algorithm . 37
13 Test case 2: comparison of sequential and parallel algorithm 37
14 Test case 3: results of sequential algorithm . 38
15 Test case 3: results of 4-process parallel algorithm . 39
16 Test case 3: results of 6-process parallel algorithm . 40
17 Test case 3: comparison of sequential and parallel algorithm 41
18 Double speedup on teaspoon with 4 processors . 43
19 Double speedup on zeus with 4 processors . 43
20 Double speedup on zeus with 6 processors . 43

2

1 Introduction

Basis of this report. This report shows a parallel data-mining algorithm that can be applied to large
database mining using inductive logic programming. The central hypothesis of this report is that it is
necessary and feasible to adopt parallel algorithms in the data mining process. I show that parallelism
can be e�ciently applied to inductive logic programming (ILP). The powerful knowledge representation
and excellent integration with background knowledge of ILP has shown a great value among data-mining
algorithms.

What is data mining? The �eld of data mining is concerned with the theory and processes involved
in the representation and e�cient extraction of interesting patterns or concepts from very large databases.
Most of these concepts are implicit in the database records. Data mining is an interdisciplinary �eld merging
ideas from statistics, machine learning, databases, and high-performance computing.

What is ILP and its role in data mining. Inductive Logic Programming is a relatively new machine
learning technique adopted in the data-mining research area. Many researchers have turned to ILP only in
the last 5 to 10 years [7]. It is de�ned as the intersection of machine learning and logic programming, and
has grown to become a substantial sub-area of both of them [24]. The success of the subject lies partly
in the choice of the core representation language of logic programs. The syntax of logic programs provides
modular blocks which, when added or removed, generalize or specialize the program. ILP provides a uniform
and very expressive means of representation: All examples, background knowledge, and the induced theory
are expressed in �rst-order logic. Due to this uniform representation, the use of background knowledge �ts
very well within a logical approach towards machine learning. Theory and background knowledge are of
the same form; they are just derived from di�erent sources: theory comes from inductive learning while the
background knowledge is provided by the user of the system [6]. Previous experiences [7] showed that some
domain knowledge can be best expressed in a �rst-order logic, or a variant of �rst-order logic. The use of
such domain knowledge is crucial in certain data-mining systems, such as learning drug structure-activity
rules [33], because it is essential for achieving intelligent behavior. ILP inherits well-established theories,
algorithms and tools from computational logic. Many inductive logic programming systems bene�t from
using the results of computational logic. There is already a wide range of data-mining applications using
ILP algorithms.

Problem with inductive logic in data mining. There exist workable sequential algorithms for data
mining, e.g. neural networks [27], association rules [1], decision trees [16], and inductive logic programming [7]
that have already been applied to a wide range of real-world applications. However, exploring useful infor-
mation from a huge amount of data will require e�cient parallel algorithms running on high-performance
computing systems. The most obvious (and most compelling) argument for parallelism revolves around
database size. The databases used for data mining are typically extremely large, often containing the de-
tails of the entire history of a company's standard transactional databases. As these databases grow past
hundreds of gigabytes towards a terabyte or more, it becomes nearly impossible to process them on a single
sequential machine, for both time and space reasons: no more than a fraction of the database can be kept
in main memory at any given time, and the amount of local disk storage and bandwidth needed to keep
the sequential CPU supplied with data is enormous. Additionally, with an algorithm that requires many
complete passes over the database, which is the case in most ILP algorithms, the actual running time re-
quired to complete the algorithm becomes excessive. Because of the use of a more expressive representation,
inductive logic programming techniques are often computationally more expensive than their propositional
counterparts. This e�ciency issue becomes more severe when the dataset is very large. Furthermore, many
ILP algorithms have to go through the full dataset many times to get a successful induced concept set. Such
an approach seems impractical to solve real-world data-mining jobs. So how to make these ILP algorithms
work more e�ectively and e�ciently has become an interesting research topic.

Contribution of this report. In this report I study the use of inductive logic to generate concepts
from very big datasets in parallel. I use p processors to do the data-mining job, each on a subset of the

3

full dataset. A set of concepts is generated from disjoint subsets of the full dataset used for mining. The
distributed concept sets are exchanged and evaluated before merging the valid ones into the �nal concept
set. The �nal set of concepts is free of con
icts and same as the set of rules developed from the full dataset.
In this way the disk I/O access cost for each processor is reduced by a factor of 1=p.

The algorithm works in this way. First it divides the entire dataset and allocates each subset of data
to a processor. Then each processor executes the same sequential ILP algorithm to �nd its locally-correct
concepts. At the end of one step, all these processors exchange their discoveries and evaluate the induced
concepts generated in this step. When each processor has collected all the feedback from other processors,
it can decide if its locally-correct concepts are globally-correct. If so, it will inform all other processors to
add this valid concept to the �nal concept set and remove the redundant examples covered by this concept.
This completes one big step. This loop will continue until all the positive examples are covered by induced
concepts.

Since each processor learns concepts independently on its subset, there are some issues that I will explore
in this report:

� How to secure the accuracy of induced theories on smaller datasets;

� How to deal with negative examples;

� How to reduce communication overhead; and

� How to avoid redundant work by individual processes.

I build a parallel version of a core ILP system { Progol [22] { that shows super-linear speedup in its learning
process for a range of data mining problems.

Chapter 2 of this report presents the theory and method in inductive logic programming. It reviews several
ILP systems and their application in data mining. A particular approach in ILP { Mode-Directed Inverse
Entailment (MDIE) [22] { is examined in detail as it is the basis for the parallel version of Progol. The
Bulk Synchronous Parallelism (BSP) [8] model is discussed in the latter part of this chapter. A sequential
ILP data-mining algorithm and its cost analysis is also provided.

With the theoretical foundations of inductive logic programming in hand, Chapter 3 presents an approach
to parallel inductive logic. First a general logical setting for parallel inductive logic programming is given,
followed by a detailed discussion of the parallel ILP model. The issues and problems involved in this approach
are explored, and a cost analysis is provided.

To examine and support the parallel algorithm discussed in Chapter 3, Chapter 4 presents a parallel ILP
system { Parallel Progol. I built this system using the BSP model. It is based on the C version program of
Progol implemented by Muggleton. Several test cases are provided and a super-linear speedup phenomenon
is explained.

Finally, Chapter 5 summarizes the �ndings of this report and gives a conclusion.

4

2 Inductive Logic Theory and The BSP Model

2.1 Introduction

There are three purposes to this chapter. First, the theory of Inductive Logic Programming (ILP) is brie
y
introduced. Then a more detailed discussion of one popular ILP approach { Mode-Directed Inverse En-
tailment (MDIE) { follows. A review of some ILP systems and applications is provided as well. Second,
a sequential ILP algorithm based on the MDIE approach is presented, and its cost analysis is provided.
Finally, the Bulk Synchronous Parallelism (BSP) model is presented. These three parts form the theoretical
foundations of this report.

2.2 The Theory of First-order Logic

A �rst-order language [20] comprises variables, constant symbols, and predicate symbols with their arities.
A term in a given language is either a variable or a constant. An atom is an expression p(t1; � � � ; tn), in
which t1; � � � ; tn are terms, and p is an n-ary predicate symbol. An atom is ground if it does not contain
any variables. A literal is an atom (A) or the negation of an atom (not A). A well-formed-formula is formed
using literals and operators such as conjunction, negation, and implication, and the quanti�ers 8 and 9. A
sentence is a closed well-formed-formula (all variables quanti�ed). A clause is a disjunction of literals, with
all variables universally quanti�ed.

Horn clauses. A de�nite program clause is a clause containing one positive, and zero or more negative
literals. A de�nite goal is a clause containing only negative literals. A Horn clause is either a de�nite pro-
gram clause, or a de�nite goal. If a de�nite program clause consists of the positive literal A and the negative
literals �B1; : : : ; �Bn, then it can be written as

A B1; : : : ; Bn (1)

where A is called the head of the clause and B1; : : : ; Bn are called the body literals of the clause [7]. The
symbol �Bi is the negation of Bi.

Model theory. Part of the semantics of �rst-order logic is a de�nition of the relation between the terms
in the language, and the domain of interest. Each term refers to (or denotes) an object from this domain.
A pre-interpretation J of a �rst-order logic language L consists of the following: [7]

1. A non-empty set D, called the domain of the pre-interpretation.

2. An assignment of each constant in L to an element of D.

A variable assignment V with respect to L is a mapping from the set of variables in L to the domain D of J .
An interpretation I of a �rst-order language L consists of the following:

1. A pre-interpretation J , with some domain D, of L. I is said to be based on J.

2. An assignment of each n-ary predicate symbol p in L to a mapping Ip from Dn to T; F .

Let � be a formula, and I an interpretation. The formula � is said to be true under I if its truth value
under I is T . The interpretation I is then said to satisfy �. Let ; be a formula, and I an interpretation.
The interpretation I is said to be a model of ; if I satis�es ;. The formula ; is then said to have I as a
model. For example, let the interpretation I have D = 1; 2 as domain, P be a binary predicate interpreted
as �, and let a denote 1 and b denote 2. Then I is a model of the formula 8x P (x; x) since 1 � 1 and 2 �
2. On the other hand, I is not a model of the formula 8x9y (not) P (x; y), since there is no number n in the
domain for which 2 � n is false [7].

5

Subsumption of concepts. Computing whether one concept subsumes{is more general than{another is
a central facility in all ILP systems. Subsumption is the generality order that is used most often in ILP.
The reasons are mainly practical: Subsumption is more tractable and more e�ciently implementable than
implication [7]. A common method for subsumption computation is based on so-called �-subsumption. Let
C and D be clauses. We say C subsumes D, denoted by C � D, if there exists a substitution � such that
C� � D (i.e., every literal in C� is also a literal in D). If C � D, then there is a substitution � which maps
each Li 2 C to some Mi 2 D. Examples of subsumption are:

� C = P (x) subsumes D = P (a) _ Q(x), since C(x=a) = P (a) , and
P (a) � P (a); Q(x).

� C = P (a) _ P (a) subsumes D = P (a).

2.3 Theory of Inductive Logic Programming

What is inductive learning? Inductive learning techniques generalize speci�c observations into general
theories. These theories can be used for explanatory or predictive purposes. Descriptive induction starts
from unclassi�ed examples and induces a set of regularities these examples have in common. A typical
example in this category is a customer buying-behavior study which discovers that if customers buy sausage
and bread that there is a probability of 90 per cent that they will also buy butter. Predictive induction
learns from a set of examples that are classi�ed in two or more classes. The aim is to �nd a hypothesis that
classi�es the examples in the correct class. A typical example is animal classi�cation. Suppose a robot is
instructed to recognize di�erent kinds of animals. Given an example set which contains thousands of animal
classi�cation facts, the robot induces useful rules and using such rules it can predict unknown animals. The
term inductive logic programming (ILP) was �rst introduced by Muggleton in 1990 [20]. ILP is concerned
with the study of inductive machine learning with the knowledge representation in �rst-order logic. The goal
is to develop tools and techniques to induce hypotheses from observations (examples) and to synthesize new
knowledge from experience [21]:
ILP = Inductive Concept Learning + Logic Programming

Recent studies [6] on this subject shows that ILP is a healthy �eld but still facing a number of new challenges
that it should address.

Why ILP? Data-mining often uses knowledge representation to distinguish di�erent algorithms. Propo-
sitional or attribute-value representations use a single table to represent the dataset. Each example or
observation then corresponds to a single tuple in a single relation. For all of the attributes the example
then has one single value. On the other hand, relational learning and inductive logic programming employ
�rst-order structural representations. For instance, in the learning from interpretations setting, an example
corresponds to a set of facts. This generalizes attribute-value representations, as examples now may consist
of multiple tuples belonging to multiple tables. A typical example could be a buying behavior analysis for a
supermarket. Suppose that the possibility of a male customer buying a particular product is related to how
many children he has and if he is a smoker. An example can be expressed in �rst order logic as: buy(john,
bicycle), man(john), has-children(john,2), not(smoker(john)). In attribute-value representation we will have
to use multiple tuples in multiple tables to express such an example .

Current data-mining systems such as association rule discovery usually deal with numeric values in a
relational database, which can be viewed as a propositional or attribute-value representation. If I use a �rst-
order logic representation, I can express not only the value but also the multi-relationship among those data.
By using �rst-order logic as the knowledge representation for both hypotheses and observations, inductive
logic programming may overcome some major di�culties faced by other data-mining systems:

� the use of a limited knowledge-representation formalism

� di�culties in using substantial background knowledge in the learning process.

6

Previous experiences [7] in expert systems showed that much domain knowledge can be best expressed in a
�rst-order logic, or a variant of �rst-order logic. Propositional logic has great limitation in certain domains.
Most logic programs cannot be de�ned using only propositional logic. The use of domain knowledge is
also crucial because one of the well-established �ndings of arti�cial intelligence is that the use of domain
knowledge is essential to achieve intelligent behavior. ILP inherits well-established theories, algorithms and
tools from computational logic. Many inductive logic programming systems bene�t from using the results
of computational logic. Background knowledge helps in restricting the hypothesis search and is a key factor
for incremental and iterative learning. The concepts generated in each pass are added to the background
knowledge. This process will terminate when a prede�ned accuracy level is reached. Without background
knowledge, the hypothesis search space can grow exponentially.

Logical settings of ILP. Inductive Logic Programming is a research �eld that investigates the inductive
construction of concepts from examples and background knowledge. Deductive inference derives consequences
E from a prior theory T [21] . Thus if T says that all
ying objects are birds, E might state that a particular

ying object is a bird. Inductive inference derives a general belief T from speci�c beliefs E. After observing
one or more
ying objects T might be the conjecture that all
ying objects are birds. In both deduction and
induction, T and E must be consistent and

T j= E (2)

where j= is the symbol of logical implication. Within ILP it is usual to separate the elements into examples
(E), background knowledge (B), and hypothesis (H). These have the relationship

B ^ H j= E (3)

where B, H and E are each logic programs. E can be separated into E+ and E�.

Normal semantics. Here all examples, background theory and induced concepts are (well-formed)
logical formulae. The problem of inductive inference is as follows. Given background (prior) knowledge B
and an example set E = E+ ^ E� in which E+ is positive example set and E� is negative example set,
the objective is to �nd a hypothesis such that completeness and consistency conditions hold:

� Completeness: background knowledge and induced theory cover all the positive examples.

� Consistency: background knowledge and induced theory do not cover any negative examples.

In most ILP systems, background theory and hypotheses are restricted to being de�nite. The special
case of the de�nite semantics, where the evidence is restricted to true and false ground facts (examples), will
be called the example setting. The example setting is the main setting of ILP. It is employed by the large
majority of ILP systems [7].

Learning from positive data. Some datasets contain only positive data. How to learn from positive
data has been a great concern over recent years. When learning from only positive data, predictive accuracy
will be maximized by choosing the most general consistent hypothesis, since this will always agree with
new data. However, in applications such as grammar learning, only positive data are available, though the
grammar, which produces all strings, is not an acceptable hypothesis. Algorithms to measure generality and
positive-only compression have been developed [7].

2.4 Theory of MDIE

Introduction. Muggleton has demonstrated that a great deal of clarity and simplicity can be achieved
by approaching the problem from the direction of model theory rather than resolution proof theory. My
research and experiment on parallel ILP is largely based on a core MDIE algorithm { Progol. So I will
introduce the theory of MDIE [22] here. Let us now consider the general problem speci�cation of ILP in this

7

approach. That is, given background knowledge B and examples E �nd the simplest consistent hypothesis
H (where simplicity is measured relative to a prior distribution) such that

B ^ H j= E (4)

In general B, H and E can be arbitrary logic programs. Each clause in the simplest H should explain at
least one example, since otherwise there is a simpler H 0 which will do. Consider then the case of H and E
each being single Horn clauses. This can now be seen as a generalised form of absorption and rearranged
similarly to give

B ^ �E j= �H (5)

where �E is the negation E and �H is the negation of H . Let ? be the (potentially in�nite) conjunction of
ground literals which are true in all models of B ^ �E. Since �H must be true in every model of B ^ �E it
must contain a subset of the ground literals in ? . Therefore

B ^ �E j= ? j= �H (6)

and for all H
H j= ? (7)

A subset of the solutions for H can be found by considering the clauses which �-subsume ? .

De�nition of Mode. In general ? can have in�nite cardinality. I can use mode declarations to constrain
the search space for clauses which �-subsume ? . A mode declaration has either the form modeh(n,atom) or
modeb(n,atom) where n, the recall, is either an integer, n � 1, or * and atom is a ground atom. Terms in the
atom are either normal or place-marker. A normal term is either a constant or a function symbol followed
by a bracketed tuple of terms. A place-marker is either +type, -type or #type, where type is a constant. If
m is a mode declaration then a(m) denotes the atom of m with place-markers replaced by distinct variables.
The sign of m is positive if m is a modeh, and negative if m is a modeb. For instance the following are mode
declarations.

modeh(1,plus(+int,+int,-int))

modeb(*,append(-list,+list,+list))

modeb(1,append(+list,[+any],-list))

The recall is used to bound the number of alternative solutions for instantiating the atom.

The most-speci�c clause. Certain MDIE algorithms, e.g. Progol, search a bounded sub-lattice for each
example e relative to background knowledge B and mode declarationsM . The sub-lattice has a most general
element > which is the empty clause � , and a least general element ?i which is the most speci�c element
such that

B ^ ?i ^ e `h � (8)

where `h � denotes derivation of the empty clause.

Re�nement Operator in MDIE. When generalising an example e relative to background knowledge B,
MDIE algorithm constructs ?i and searches from general to speci�c through the sub-lattice of single-clause
hypotheses H such that � � H �?i . This sub-lattice is bounded both above and below. The search is
therefore better constrained than other general-to-speci�c searches in which the sub-lattice being searched
is not bounded below. For the purposes of searching a lattice of clauses ordered by �-subsumption I need a
proper re�nement operator.

The re�nement operator in MDIE is designed to avoid redundancy and to maintain the relationship
� � H �?i for each clause H . Since H �?i, it is the case that there exists a substitution � such that
H� �?i . Thus for each literal l in H there exists a literal l0 in ?i such that l� = l0. Clearly there is
a uniquely de�ned subset ?i (H) consisting of all l0 in ?i for which there exists l in H and l� = l0 . A
non-deterministic approach to choosing an arbitrary subset S0 of a set S involves maintaining an index k.
For each value of k between 1 and n, the cardinality of S, I decide whether to include the kth element of
S in S0 . Clearly, the set of all series of n choices corresponds to the set of all subsets of S. Also for each
subset of S, there is exactly one series of n choices. To avoid redundancy and maintain �-subsumption of ?i,
MDIE's re�nement operator maintains both k and �.

8

Sequential cover algorithm. Based on the theory introduced above, there is a generalized sequential
cover algorithm used for MDIE systems, e.g. Progol.

� Select example. Select an example to be generalized. If none exists, stop, otherwise proceed to the
next step.

� Build most-speci�c-clause. Construct the most speci�c clause that entails the example selected, and
is within language restrictions provided. This is usually a de�nite program clause with many literals,
and is called the bottom clause. This step is sometimes called the saturation step.

� Search. Find a clause more general than the bottom clause. This is done by searching for some subset
of the literals in the bottom clause that has the best score.

� Remove redundant examples. The clause with the best score is added to the current theory, and all
examples made redundant are removed. This step is sometimes called the cover removal step.

3 Existing ILP systems and applications

This section gives an overview of some core ILP systems, from which we can see that ILP is not only an
academic research topic; it has been used in a wide range of machine learning and data-mining applications.

FOIL. FOIL [33] is a system for learning intensional concept de�nitions from relational tuples. It has been
recently applied to web mining [19]. The induced concept de�nitions are represented as function-free Horn
clauses, optionally containing negated body literals. The background knowledge predicates are represented
extensionally as sets of ground tuples. FOIL employs a heuristic search strategy which prunes vast parts
of the hypothesis space. It is a top-down, non-interactive, batch single-predicate learning algorithm. As
its general search strategy, FOIL adopts a covering approach. Induction of a single clause starts with a
clause with an empty body which is specialised by repeatedly adding a body literal to the clause built so
far. It learns clauses of theory one by one. Each new clause C that the system constructs should be such
that C, together with current theory and the background knowledge implies some positive examples that
are not implied without C, while C together with the positive examples and background knowledge implies
no negative examples. It adds this clause to the current theory and removes the derived positive example
from example set. It then constructs another clause, adds it to current theory and so on, until all positive
examples can be derived.

Among the candidate literals, FOIL selects one literal to be added to the body of the hypothesis clause.
The choice is determined by an information gain heuristic. FOIL's greedy search strategy makes it very
e�cient, but also prone to exclude the intended concept de�nitions from the search space. Some re�nements
of the hill-climbing search alleviate its short-sightedness, such as including a certain class of literals with
zero information gain into the hypothesis clause, and a simple backtracking mechanism.

GOLEM. GOLEM [33] is a \classic" among empirical ILP systems. It has been applied successfully to
real-world problems such as protein structure prediction and �nite element mesh design. GOLEM copes
e�ciently with large datasets. It achieves this e�ciency because it avoids searching a large hypothesis space
for consistent hypotheses like, for instance, FOIL, but rather constructs a unique clause covering a set of
positive examples relative to the available background knowledge. The principle is based on the relative least
general generalisations (rlggs) [7]. GOLEM embeds the construction of rlggs in a covering approach. For
the induction of a single clause, it randomly selects several pairs of positive examples and computes their
rlggs. Among these rlggs, GOLEM chooses the one which covers the largest number of positive examples
and is consistent with the negative examples. This clause is further generalised. GOLEM randomly selects
a set of positive examples and constructs the rlggs of each of these examples and the clause obtained in
the �rst construction step. Again, the rlgg with the greatest coverage is selected and generalised by the
same process. The generalisation process is repeated until the coverage of the best clause stops increasing.
GOLEM conducts a postprocessing step, which reduces induced clauses by removing irrelevant literals. In
the general case, the rlgg may contain in�nitely many literals. Therefore, GOLEM imposes some restrictions

9

on the background knowledge and hypothesis language which ensure that the length of rlggs grows at worst
polynomially with the number of positive examples. The background knowledge of GOLEM is required to
consist of ground facts. For the hypothesis language, the determinacy restriction applies, that is, for given
values of the head variables of a clause, the values of the arguments of the body literals are determined
uniquely. The complexity of GOLEM's hypothesis language is further controlled by two parameters, i and
j, which limit the number and depth of body variables in a hypothesis clause.

LINUS. LINUS [33] is an ILP learner which incorporates existing attribute-value learning systems. The
idea is to transform a restricted class of ILP problems into propositional form and solve the transformed
learning problem with an attribute-value learning algorithm. The propositional learning result is then
re-transformed into the �rst-order language. On the one hand, this approach enhances the propositional
learners with the use of background knowledge and the more expressive hypothesis language. On the other
hand, it enables the application of successful propositional learners in a �rst-order framework. As various
propositional learners can be integrated and accessed via LINUS, LINUS also quali�es as an ILP toolkit
o�ering several learning algorithms with their speci�c strengths. LINUS can be run in two modes. Running
in class mode, it corresponds to an enhanced attribute-value learner. In relation mode, LINUS behaves as
an ILP system. Here, I focus on the relation mode only. The basic principle of the transformation from
�rst-order into propositional form is that all body literals which may possibly appear in a hypothesis clause
(in the �rst-order formalism) are determined, thereby taking into account variable types. Each of these
body literals corresponds to a boolean attribute in the propositional formalism. For each given example, its
argument values are substituted for the variables of the body literal. Since all variables in the body literals
are required to occur also as head variables in a hypothesis clause, the substitution yields a ground fact. If
it is a true fact, the corresponding propositional attribute value of the example is true, and false otherwise.
The learning results generated by the propositional learning algorithms are retransformed in the obvious
way. The induced hypotheses are compressed in a postprocessing step.

The papers [33] and [5] summarize practical applications of ILP:

Learning drug structure-activity rules. The research work carried out by the Oxford machine learning
group has shown that ILP can construct rules which predict the activity of untried drugs, given examples
of drugs whose medicinal activity is already known. These rules were found to be more accurate than
statistical correlations. More importantly, because the examples are expressed in logic, it is possible to
describe arbitrary properties of, and relations between, atoms and groups. The logical nature of the rules
also makes them easy to understand and can provide key insights, allowing considerable reductions in the
numbers of compounds that need to be tested.

Learning rules for predicting mutagenesis. The problem here is to predict the mutagenicity of a set
of 230 aromatic and heteroaromatic nitro compounds. The prediction of mutagenesis is important as it is
relevant to the understanding and prediction of carcinogenesis. Not all compounds can be empirically tested
for mutagenesis, e.g. antibiotics. The compounds here are more heterogeneous structurally than any of those
in other ILP datasets concerning chemical structure activity. The data here comes from ILP experiments
conducted with Progol. Of the 230 compounds, 138 have positive levels of log mutagenicity. These are
labelled active and constitute the positive examples: the remaining 92 compounds are labelled inactive and
constitute the negative examples. Of course, algorithms that are capable of full regression can attempt to
predict the log mutagenicity values directly.

Learning rules for predicting protein secondary structure. Predicting the three-dimensional shape
of proteins from their amino acid sequence is widely believed to be one of the hardest unsolved problems
in molecular biology. It is also of considerable interest to pharmaceutical companies since a protein's shape
generally determines its function as an enzyme.

10

repeat
if there is still a positive e in E not covered by H and B

select an example e in E

search for a good concept H that covers e
add H to background knowledge B
retract redundant examples that covered by H

end if
end repeat

Figure 1: Sequential ILP Algorithm

Inductive Learning of Chess Rules Using Progol. Computer chess programs can be thought of as
having two parts, a move generator and an algorithm for evaluating the strength of generated moves. The
move generator e�ectively gives the computer information concerning the rules of chess.

The structured method used here is slightly larger, involving the splitting of the problem into some 40
sub-problems, creating a structure some 15 levels deep. With structured induction, clauses learned in an
earlier part of the process are appended to the background knowledge to enable the learning of subsequent
clauses.

First-Order Learning for Web Mining. Two real-world learning problems that involve mining informa-
tion from the web with �rst-order learning using FOIL have been demonstrated [19]. The experiment shows
that, in some cases, �rst-order learning algorithms learn de�nitions that have higher accuracy than statistical
text classi�ers. When learning de�nitions of web page relations, they demonstrate that �rst-order learning
algorithms can learn accurate, non-trivial de�nitions that necessarily involves a relational representation.

Other ILP applications mentioned in [33] are:

� Learning rules for �nite element mesh design.

� Learning diagnostic rules for qualitative models of satellite power supplies.

� Learning qualitative models of the U-tube system.

� Learning qualitative models for functional genomics.

3.1 Sequential ILP Algorithm.

In this section, I analyze a general MDIE ILP algorithm and provide a cost analysis of this algorithm. Section
3 discusses how to parallelize this sequential algorithm and analyze its cost. In Section 4, I will discuss how
to implement a parallel Progol system based on the parallel approach introduced in Section 3, and provide
some test cases as examples to support the cost analysis.

3.1.1 A Sequential ILP Algorithm

In order to give a parallel approach to ILP data mining, �rst I need to know the general steps involved in a
sequential ILP data-mining algorithm. As shown in Section 2.4, a mode-directed approach can provide a much
simpler and convenient way in inductive concept learning. So I provide a general ILP data-mining procedure
based on mode-directed inverse entailment(MDIE). The whole sequential ILP data-mining procedure consists
of a loop structure: In each cycle, some concepts are learnt and some positive examples that are covered by
the new induced concepts are retracted from the dataset. The loop will come to an end when all positive
examples are covered by the �nal induced concept set and no positive examples are left in the dataset. Figure
2.1 gives a general sequential ILP approach.

11

Several issues in the above algorithm need to be addressed.

How to select an example? The example selection procedure can be random. The example selection
can also be based on the sequence order in the dataset: ILP picks up one positive example after another in
the order in which they are located in the dataset. A more sophisticated approach is to pick up an example
according to its score. The score of an example is determined by its properties, i.e., an example gets a
high score when its occurrence in the whole dataset is more frequent than other examples. In this way,
ILP can possibly induce the most important concepts �rst. When one concept is generalized and it covers
more positive examples in the dataset, the dataset shrinks more quickly after each loop, thus improving
the performance of the whole learning procedure. Though this approach seems plausible in a sequential
algorithm, it can be potentially problematic in parallel approach. In parallel learning, the last approach will
increase the chance that two or more processors select the same example and thus waste time inducing the
same concept.

How to generalize concepts from examples? It is the most important task of the whole job that
distinguishes di�erent ILP systems. An induced concept set is too strong if it wrongly covers some negative
examples and thus makes it inconsistent. On the other hand, a concept set is too weak if it cannot cover all
the positive examples and thus makes it incomplete. A concept set is overly general if it is complete with
respect to positive example set E+ but not consistent with respect to negative concept set E�. A concept
set is overly speci�c if it is consistent with respect to E� but not complete with respect to E+. An ILP
system is meant to search in the hypothesis space and �nd a concept set that is neither too strong nor too
weak.

The two basic techniques in the search for a correct concept set are specialization and generalization. If
the current concept set together with the background knowledge contradicts the negative examples, it needs
to be weakened. That is, I need to �nd a more speci�c theory, such that the new theory and the background
knowledge are consistent with respect to negative examples. This is called specialization. On the other hand,
if the current theory together with the background knowledge does not cover all positive examples, I need to
strengthen the theory: I need to �nd a more general theory such that all positive examples can be covered.
This is called generalization. Note that a theory may be too strong and too weak at the same time, so both
specialization and generalization are needed.

To achieve the above goal, I introduce two approaches here.

� Top-Down. Start with a theory � such that � [B is overly general, and specialize it.

� Bottom-Up. Starts with a theory � such that � [B is overly speci�c, and generalize it.

In MDIE, a most-speci�c clause is formed at the �rst phase when generating a hypothesis from an example.
Then it searches the hypothesis space from general to this most speci�c clause to �nd a good concept.

What does good mean? During the search in the hypothesis space, an ILP system will generate and
evaluate some candidate concepts. I need to determine which concept is better than other candidates. In
practice, a score can be assigned to each candidate concept. The candidate concept with the highest score
will be the right one. Then there comes a problem: How is the score decided? One way to decide the
score is to calculate it from a few parameters using a function f(y; n; c) which gives each induced candidate
hypothesis H a score based on:

� y: the number of positive examples covered by H

� n: the number of negative examples wrongly covered by H

� c: the conciseness of H , which is generally measured by the number of literals in H

For example, f could be:

f(y; n; c) = y + c � n (9)

12

The candidate with the highest score is added to the �nal set of induced theory. When generating a
candidate H 0 from the example e, the ILP algorithm generally searches in the hypothesis space to �nd the
candidates. In order to give a score f(y; n; c) to each candidate H 0, the ILP algorithm has to look through
the entire dataset.

3.1.2 Cost of sequential ILP data-mining algorithms.

The ILP data-mining algorithm described above has the property that its global structure is a loop, extracting
more concepts through each iteration. Suppose this loop executes ks times. I can describe the sequential
complexity of this algorithm with a formula:

costs = ks [STEP(nm) + ACCESS (nm)] (10)

where STEP gives the cost of a single iteration of the loop, and ACCESS is the cost of accessing the dataset
in one step; n is the number of objects in the dataset and m is the size of each example. To give a more
speci�ed cost model for sequential ILP algorithm, there is another formula:

costs = ks [SEL(nm) + "(GEN (nm) + EVA(nm))

+RET (nm)]

where SEL gives the cost of selecting one example from the dataset; GEN gives cost of generating one
candidate hypothesis from the selected example; and EVA gives the cost of evaluation of candidate hypothesis
and giving it a score. Usually this step involves accessing the dataset once. RET gives the cost of retracting
redundant positive examples already covered by the newly induced concept. " gives the number of candidate
hypothesis generated in each step. Please notice that EVA and RET involve data access so they will dominate
costs for large datasets.

The cost of SEL varies in di�erent implementations, from only one data access in random or sequential
selection to entire dataset access in some more sophisticated algorithms. I assume sequential or random
selection is adopted in the ILP algorithm. Also the cost of GEN varies in di�erent ILP inductive learning
algorithms. In MDIE it involves �rst building the most speci�c clause and then searching from hypothesis
space to construct each candidate hypothesis. It is the most signi�cant computational cost in one step.

The value of " depends on the hypothesis search space and search algorithm. Most ILP algorithms will
search in the hypothesis space from general to speci�c or vice versa to get satis�ed concepts. To reduce the
search space some algorithms adopt language bias such as MODE declaration in MDIE. Also some heuristic
search algorithms will help to reduce the value of ". Since this value determines the number of passes through
the entire dataset in each step, it is critical to the performance of ILP data-mining system.

The EVA cost usually involves one pass through the entire dataset to give each candidate hypothesis
a score. In the same way, the cost of RET also involves one pass through the entire dataset to remove
redundant examples.

If after each loop � (0 � � � 1) examples remain not covered by the newly-induced concept, I can give a
more accurate formula:

costs = ks [SEL(nm � �
i) + "(GEN (nm) + EVA(nm � �i))

+ RET (nm � �i)]

where after each big step a fraction of (1� �) examples are removed from the dataset and the work in next
step is reduced by a factor of �.

13

3.2 Introduction to the BSP model

Introduction. I have discussed the sequential ILP algorithm above. Now I come to the point of how to
make it work in parallel, and how to speed up its learning process. At this point, a parallel computing model
is needed. Bulk Synchronous Parallelism (BSP) [31] provides a model for the parallel system. I can perform
cost analysis based on BSP cost equations without having to implement di�erent kinds of systems [8]. In
traditional message-passing systems, a programmer has to ensure, explicitly, that no con
ict will occur when
one data item is being accessed by two or more processes. Though some systems can provide deadlock
control, concurrency control or remote data access control, these mechanisms introduce cost overhead. It is
hard to establish a cost model with the great variety of the memory access patterns and network architecture.

A parallel complexity measure that is correct to within a constant factor is needed. Such a measure
must take into account costs associated with the memory hierarchy and accurately re
ect the costs of
communication, whether explicitly, as in message-passing programs, or implicitly, as in shared-memory
programs.

Bulk Synchronous Parallelism (BSP) is a parallel programming model that divides computation and
communication into separate phases. Such phases are called supersteps. A superstep consists of a set of
independent local computations, followed by a global communication phase and a barrier synchronisation.
Writing programs with the BSP model enables their costs to be accurately determined from a few sim-
ple architectural parameters. Contrary to general belief, the structure imposed by BSP does not reduce
performance, while bringing considerable bene�ts from an application-building perspective.

BSP programming. Supersteps are an important concept in BSP. A BSP program is simply one which
proceeds in phases, with the necessary global communications taking place between the phases. This ap-
proach to parallel programming can be applied to both distributed systems and shared-memory multipro-
cessors. BSP provides a consistent, and very general, framework within which to develop portable software
for scalable computing.

A BSP computation consists of a sequence of supersteps, where each superstep is a sequence of steps
carried out on local data, followed by a barrier synchronisation at which point any non-local data accesses take
e�ect. Requests for non-local data, or to update non-local data locations, can be made during a superstep
but are not guaranteed to have completed until the synchronisation at superstep end. Such requests are
non-blocking; they do not hold up computation.

The programmer's view of the computer is that it has a large and universal accessible memory. To achieve
scalability it will be necessary to organise the calculation in such a way as to obviate the bad e�ects of large
latencies in the communication network.

By separating the computation on local data from the business of transferring shared data, which is
handled by lower level software, I ensure that the same computational code will be able to run on di�erent
hardware architectures from networked workstations to genuinely shared-memory systems.

The superstep structure of BSP programs lends itself to optimization of the data transfers. All transfers
in a superstep between a given pair of processors can be consolidated to form larger messages that can be
sent with lower (latency) overheads and so as to avoid network contention. The lower level communications
software can also exploit the most e�cient communication mechanisms available on the actual hardware.
Since this software is application-independent, the cost of achieving the e�ciency can be spread over many
applications.

BSP cost model. I need to identify the key parameters of a BSP parallel system that determine its
performance [8]. Obviously the number of processors and computational speed of each are key parameters.
If I de�ne a step to be the basic unit of calculation, then I can denote the speed as s steps/sec.

I can also see that the capacity and speed of the communications network is a vital element. For ease
of comparison between systems, I will measure the performance of the communications network in units of
the computing speed. The cost of carrying out a barrier synchronisation of the processors, for example,
can be measured in terms of the number of steps that could have been performed in the time taken to
synchronise. This lets us contrast a system with fast synchronisation, in which relatively few steps can have
been executed during the time it takes to synchronise, with one which has much worse performance relative

14

to its computational power. In general I can expect better overall performance from a system with low values
of this parameter.

Similarly when I estimate the communications throughput of the network linking the processors, I look
at the cost in steps for each word of data transmitted. This gives the ratio of the computing power to the
communication power of the system. The lower this �gure is, the better the balance between compute power
and communications power, and the easier it is to get scalable performance.

I therefore arrive at the following four parameters [31], which extensive research has shown to be su�cient:

� p = number of processors

� s = processor speed (number of steps per second)

� l = the cost, in steps, of achieving barrier synchronisation (depends on network latency)

� g = the cost, in steps per word, of delivering message data

Note that all are based on the bulk properties of the system. The values are determined by actual
measurement using suitable benchmarks that mimic average computation and communication loads.

The speed s is measured as the actual rate at which useful calculation is done; it is not the peak
performance �gure quoted in the manufacturer's data sheet.

The value of g is calculated from the average cost of transferring each word of messages of all sizes
in the presence of other tra�c on the network. It is not based on the manufacturer's claimed bisection
bandwidth. It is not measured from single point-to-point transfers but measures the sustainable speed that
will be experienced by real application code. The g value can be approximated by calculating (total number
of local operations by all processors per second)/(number of words delivered by the communications system
per second) The value g enables you to estimate the time taken to exchange data between processors. If the
maximum number of words arriving at any one processor during a single such exchange is h, then I estimate
that up to gh steps can have been executed during the exchange.

Another advantage of the simple structure of BSP programs is that the modeling of their performance is
much easier than for message passing systems, for example. In place of the random pair-wise synchronisation
that characterises message passing, the superstep structure in BSP programs makes it relatively easy to derive
cost models (i.e. formulae that give estimates for the total number of steps needed to carry out a parallel
calculation, including allowance for the communications involved).

Cost models can be used to determine the appropriate algorithmic approach to parallelisation. They
enable us to compare the performance of di�erent approaches without writing the code and manually mea-
suring the performance. And they provide predictors for the degree of scaling in performance that is to be
expected on any given architecture for a given problem size.

Cost models have proved to be very useful guides in the development of high quality parallel software.

Oxford BSPlib. Like many other communications libraries, BSPlib adopts a Single Program Multiple
Data (SPMD) programming model. The task of writing an SPMD program will typically involve mapping
a problem that manipulates a data structure of size N into p instances of a program that each manipulate
an N/p sized block of the original domain. The role of BSPlib is to provide the infrastructure required
for the user to take care of the data distribution, and any implied communication necessary to manipulate
parts of the data structure that are on a remote process. An alternative role for BSPlib is to provide an
architecture-independent target for higher-level libraries or programming tools that automatically distribute
the problem domain among the processes. I use BSPlib to develop the parallel ILP system and do the cost
analysis.

Table 2.1 is a list of BSPlib operations:

Summary. In this section I introduced basic knowledge of ILP and MDIE. A sequential ILP algorithm
was discussed, and it cost analysis was provided. To implement a parallel ILP algorithm, the BSP model is
introduced. In the next section I will discuss a parallel ILP algorithm using the BSP model and based on
the sequential algorithm introduced in this chapter.

15

bsp-begin Start of SPMD code
bsp-end End of SPMD code
bsp-init Simulate dynamic processes
bsp-abort One process stops all
bsp-nprocs Number of processes
bsp-pid Find my process identi�er
bsp-time Local time
bsp-sync Barrier synchronization
bsp-push-reg Make area globally visible
bsp-pop-reg Remove global visibility
bsp-put Copy to remote memory
bsp-get Copy from remote memory
bsp-set-tagsize Choose tag size
bsp-send Send to remote queue
bsp-qsize Number of messages in queue
bsp-get-tag Getting the tag of a message
bsp-move Move from queue
bsp-hpput Unbu�ered communication

Table 1: BSPlib Operation

4 Parallel Inductive Logic in Data Mining

The general task of inductive logic programming is to search a prede�ned subspace of �rst-order logic for
hypotheses, together with background knowledge, that explain examples. However, due to the expressiveness
of knowledge representation such a search is usually computationally expensive. Most ILP systems have to
pass over the entire example set many times to �nd a successful induced theory H among other candidate
induced concepts, which in turn increases the computation cost tremendously. When such ILP systems are
to be applied to real-world data-mining tasks, the expensiveness of algorithm seems to be a big obstacle.
Thus, how to speed up the learning process of ILP algorithm has become a practical and critical issue. In
this section, I present and discuss a parallel approach that shows a linear or super-linear speed up on some
applications for traditional sequential ILP algorithms. Important issues in this approach are discussed in
detail. A cost analysis of the parallel ILP algorithm is provided as well.

4.1 Reason, possibility and approaches of parallel ILP in data mining

As I mentioned above, there are some reasons why parallelism in ILP data-mining is needed. The �rst
and most obvious reason concerns the data size. The databases used for data mining are typically extremely
large. As these databases grow past hundreds of gigabytes towards a terabyte or more, it becomes nearly
impossible to process them on a single sequential machine running a single sequential algorithm. Another
reason for the need of parallelism is the expensiveness of ILP systems. This expensiveness comes from two
aspects:

� The powerful and expressive knowledge representation in ILP requires more computation power than
propositional data-mining.

� Searching the entire dataset many times to �nd a successful hypothesis H among candidate concepts
increases the disk access greatly. Therefore, disk (I/O) access is one of the most serious bottlenecks
for sequential ILP systems.

Parallel ILP data-mining requires dividing the task, so that processors can make useful progress towards
a solution as fast as possible. From the sequential ILP algorithm I can see that the disk access is one of the

16

most signi�cant bottleneck. Therefore, how to divide the access to the dataset and minimize communication
between processors are important to the total performance.

In general, there are three di�erent approaches [29] to parallelizing data mining. They are:

� Independent Search. Each processor has access to the whole dataset, but each heads o� into a di�erent
part of the search space, starting from a randomly chosen initial position.

� Parallelize a sequential data-mining algorithm. There are two forms within this approach. One ap-
proach is that the set of concepts is partitioned across processors, and each processor examines the
entire dataset to determine which of its local concepts is globally-correct. The other approach is to
partition the dataset by columns, and each processor computes those partial concepts that hold for
the columns it can see. Regular exchanges of information of concepts are required in both approaches
to determine which partial concepts are globally-correct.

� Replicate a sequential data-mining algorithm. Each processor works on a partition of the dataset and
executes the sequential algorithm. Because the information it sees is only partial, it builds entire con-
cepts that are locally correct, but may not be globally correct. Such concepts are called as approximate
concepts. Processors exchange these approximate concepts to check if they are globally-correct. As
they do so, each learns about the parts of the dataset it cannot see.

Independent search is simple and works well for minimization problems. However, it does not divide the
dataset, so it cannot reduce the disk access. Therefore, it is not suitable for problems with huge dataset.
Parallelized approaches try to reduce both the amount of memory each processor uses to hold concepts and
the fraction of the dataset that each processor must access. But its �ne-grained parallelism requires too
much extra communication.

The replicated approach is often the best way for parallelizing ILP data-mining applications. It has two
signi�cant advantages: First, it necessarily partitions the dataset and so spreads the disk access. Second,
the size of induced concepts that must be exchanged between phases is small, so communication is cheap.
Previous work in using the BSP cost model to optimize parallel neural network training [27] shows that the
replicated approach gives the best performance improvement among all these three approaches introduced
above. I adopt this approach in the parallel ILP algorithm for its simplicity and possibility of a double

speedup. I will discuss double speedup in the following sections.
The following shows the possibility of adopting parallelism in ILP data mining.

� Due to the nature of data mining, there are lots of similarities and redundancies within the large
dataset. Therefore, it is plausible to induce correct theories from a small subset of the full data.

� In most ILP systems, the whole concept-learning process consists of a loop structure. After each loop,
a successful hypothesis is found and added to the �nal induced theory set. The learning process stops
when all the positive examples have been explained by the induced concepts. The size of the induced
hypothesis during each phase is small compared to the dataset. So it is plausible to let p processes
induce concepts from a subset. At the end of each phase, these p processes exchange the locally-induced
concepts and determine the valid (globally-correct) concepts after evaluation.

4.2 Logical Settings Of Parallel ILP

In this section I discuss the logical setting of the division of the ILP task into subtasks that can be handled
concurrently by multiple processes executing a common sequential ILP algorithm. I try to explore a parallel
approach to obtain an algorithm with a speedup proportional to the number of processors over the best
available sequential algorithm.

A central issue in designing a computer system to support parallelism is how to break up a given task
into subtasks, each of which will be executing in parallel with the others. In general, ILP starts with an
initial background knowledge B and some examples E. The aim is to induce a hypothesis H that, together
with background knowledge B, explains the examples E.

17

A partition T1; � � � ; Tn of an ILP-task T = (B;E) is a set of ILP tasks. Ti = (B;Ei) such that Ei � E

for all i, and that ([ni=1Ei) = E . The partition T1; � � � ; Tn of an ILP-Task T is valid if and only if the
union [ni=1Hi of partial hypothesis Hi obtained by applying a common sequential ILP algorithm A to task
Ti is equivalent to the solution hypothesis H obtained by applying algorithm A to task T . Completeness
and consistency of parallel ILP can be expressed as follows:

Completeness:

B [(

n[
i=1

Hi) j= E+ $

8>><
>>:

B [H1 j= E+

1

B [H2 j= E+

2

� � �
B [Hn j= E+

n

Consistency:

B [(

n[
i=1

Hi) [E� j6= � $

8>><
>>:

B [H1 [E
�

1 j6= �
B [H2 [E

�

2 j6= �
� � �
B [Hn [E

�

n j6= �

I will explore and explain in an intuitive way why in the parallel approach the completeness and consis-
tency hold.

4.3 An Approach to Parallel ILP Using the BSP Model

Based on the sequential algorithm I discussed in Section 2, I give a parallel ILP algorithm based on the
replicated approach discussed above. There are two signi�cant reasons for using the replicated approach.
First, it partitions the entire dataset and so spreads the data access cost across processors. Second, the data
that must be exchanged between phases is small, so communication is cheap. The size of a concept generated
by each processor in one step is around 102 characters in the test cases. If the value of g is 4.1
ops/32 bit
word and there are 4 processors, then the communication cost per total exchange equals 1600
ops. It is
quite small compared to the local computation cost or data access cost which are hundreds of times bigger.
Therefore, though the replicated approach is not particularly novel, it is perhaps the best way to increase
performance in ILP data-mining tasks.

I divide the full dataset into p subsets and allocate each subset to one processor. Each processor executes
the same (or similar) sequential ILP data-mining algorithm introduced above on its local subset of data.
At certain synchronization points, all these processors exchange their local induced concepts and evaluate
them. Only globally-correct concepts will be left, and added to the �nal concept set. Figure 3.1 gives the
parallel algorithm.

In this approach, each processor works on its subset to �nd a locally-correct concepts set Hi in each step.
The measure f(y; n; c) in each processor is based on its own subset of data. In order to know whether this
locally-correct concept set is also globally-correct and to �nd the successful H in the set, it is necessary to
�nd a way of learning the general knowledge of the whole dataset. To do so, all p processors perform a total
exchange after all the processors reach the synchronization point when they have found their locally-correct
concept H 0

is. After the total exchange, each processor gets all the Hi induced by peer processors. Each
processor gives every Hi(i = 1; 2; ::p) a score f(p; n; c) based on its local knowledge from the subset of the
full data. Then there will be a second total exchange: the evaluation result of H 0

is will be exchanged among
p processors. In this way each processor learns the whole dataset and can give a global score to its local
candidate concept Hi. With the third phase of total exchange the valid H 0

is are added to each processor's
�nal concept set and redundant examples are retracted.

The whole computation in the approach consists of a sequence of supersteps, where each superstep is a
sequential ILP computation carried out on local data, followed by a barrier synchronization at which point
all induced concepts in this step are exchanged and evaluated. The cost of such a phase is described by an
expression of the form:

Cost = MAX
processes

wi + MAX
processes

hi g (11)

18

divide dataset into p subsets
repeat
for all processors i

if there is still an e in Ei

select e in Ei

form a set of good concepts Hi that covers e
total exchange Hi(i = 1; 2::p)
evaluate Hi(j = 1; 2 : : : ; p)
total exchange evaluation result of Hi

�nd the successful Hi with globally good score
total exchange which are the valid Hi

add all valid Hi into B
retract redundant examples that covered by Hi

end if
end for

end repeat

Figure 2: Parallel ILP Algorithm

where wi is the number of instructions executed by processor i. The value of hi is the size of the concepts
exchanged between processors. This cost model is derived from BSP, which I introduced in Section 2. The
system parameters of s; l; g can be obtained from the Oxford BSPlib. Notice that both terms are in the same
units: time. This avoids the need to decide how to weight the cost of communication relative to computation,
and makes it possible to compare algorithms with di�erent mixes of computation and communication.

4.4 Potential problems with this approach

4.4.1 Accuracy of induced theory on smaller dataset

Since I use p processors to do the data mining job on a subset of the full dataset, a set of concepts will
be generated from disjoint subsets of the full dataset used for mining. Given p disjoint subsets of the full
dataset there will be p sets of concepts generated by each processor. Each subset of data resides on a distinct
processor. The distributed concept sets must be totally exchanged and evaluated before merging the valid
ones into the �nal concept set. The �nal set of concepts should be free from con
icts and same as the set of
rules developed from the full dataset.

There is a question as to how to ensure that the individual concepts generated by each processor which
are locally-correct are also globally-correct. If each processor spends a lot of time only to �nd unwanted
concepts, there will be no performance improvement from parallelism.

Any concept acceptable on the full dataset will be acceptable on at least one disjoint subset of the full
data [7]. This suggests that a concept set created by merging sets of acceptable concepts contain concepts
that would be found on the full dataset. Earlier work [7] has found that the merged set of concepts contained
the same concepts as found by learning on the full dataset. If there are enough representative examples for
each class in each of p disjoint partitions, the concepts found in the parallel version will have high accuracy.

In the approach to parallel data-mining an important question is how large p can be before communication
costs begin to slow the concept generation process signi�cantly. But the more important question is how to
determine a p for which the accuracy of the resultant concept set is acceptable. There is a tradeo� between
accuracy and speed. The use of more processors promises that each can learn faster on a smaller subset of
data at the usual cost of communication overhead. However, there is a second accuracy cost that will be paid

19

when at some point p becomes too large and it is therefore hard to maintain in each subset the representative
examples of the full data set. Previous work [27] done by Owen Rogers in parallel neural network mining
shows that correct concepts can be generated from a small subset of the entire data but have taken much
less processing to discover. When the subset size reaches some size bound, however, the concepts generated
becomes less accurate and hence do not help. That means in the parallel algorithm I can divide the dataset
into smaller subsets and at the same time keep the induced concepts accurate enough to show a signi�cant
performance increase, provided the size of each subset is greater than that size boundary.

4.4.2 Dealing with Negative Examples

There is always a problem with dealing with negative examples, that is, how to make sure one concept
induced by one processor is consistent with all other subsets? If one concept which is locally consistent can
be easily rejected by other processors, there will be a severe cost e�ciency issue with this approach. In fact,
the problem may be not as serious as it appears to be. There are several reasons:

� Negative examples in real-world applications are usually rare among the entire dataset. Hence it is
reasonable to assume that the chances that one locally consistent concept is also globally consistent
are high. Even though there are some cases that some locally consistent concepts are rejected by other
processors, the total negative cost is not too high and can be tolerated compared to the speedup gained.

� Since the number of negative examples is small compared to positive examples, I can keep a duplicate
copy of the entire negative example set on each processor. In this way all locally-consistent concepts
are also globally-consistent at the cost of some redundancy. This is the approach I adopted in the
test cases. There are some negative examples in test case 2 -the chess move learner. Since the size
of negative examples is not too big compared to positive ones (about 10 per cent), I duplicate all the
negative examples across the processors. Though there is redundancy in the local subset of data, the
overall performance increase is still obvious and a double speedup is observed.

� There are some e�ective learning algorithms that can learn from only positive data. There is no
consistent issue when learning from positive data, which is the case in test cases 1 and 3.

4.4.3 Communication Overhead

There is a concern that at certain stages the number of processors becomes too large and the communication
cost is too big. However, the communication cost is not a big problem in the parallel approach.

� First, the size of the data to be exchanged between processors is small. Since only the induced
concepts are exchanged and the size of an induced concept { usually a logical clause { is quite small,
the communication cost of exchanging such small size concepts is not a big concern in the approach.

� Second, I have to maintain a reasonable amount of data in each subset to ensure that there are enough
representative examples. This, in turn, keeps p from growing too big.

� Third, since each processor performs the same sequential algorithm and the size of each subset is
similar, it is reasonable to predict that the time spent on local computation on each of the p processors
is comparable. Therefore the synchronization model need not be a big performance concern here in
this approach.

From the analysis above I can draw a conclusion that the communication overhead is small compared to
the local computation cost saved. This conclusion is supported by the test cases. In the test cases, the size
of induced concepts is around 100 characters. The value of g is 4.1
ops/32 bit Word. The value of l is
118
ops. There are three total communications within one big step, and there are 4 processors working in
parallel. So I get the communication cost in one big step: 3 *(4*100*4.1 + 118) = 5274
ops. The CPU
speed is 10.1 M
ops. Then the cost of communication in one big step is around 0.0005 second. The cost of
local computation and disk access cost in one step is greater than 1 second in the test cases. It is easy to
get the conclusion that the communication overhead in the parallel ILP algorithm is not a big issue.

20

4.4.4 Redundant Work by Individual Processors

There is a debate over how to ensure that di�erent processors do their part of the job as there will not
be too much time wasted doing redundant work. Such a situation is likely to happen when the full dataset
contains similar and/or redundant examples. Since one subset might contain the same or similar examples
in another subset, there is a chance that the two processors on these two subsets select the same example
in one particular step and do a redundant induction. If there are many redundant examples in the subsets,
such redundancy might become a serious problem, a�ecting overall performance. I found by experiment that
this problem is not as serious as it seems. The reasons are:

� First, if the selection process chooses an example randomly or by sequence order, the chances of two
or more processors selecting the same example are small in a big and randomly-distributed dataset.

� Second, when one processor induces a valid (globally-correct) hypothesis from one example, this hypoth-
esis will be updated into all processors induced theory set and all examples covered by this hypothesis
will be retracted from each processor's example subset. Such a mechanism will eliminate the chance
of redundant work done by di�erent processors in di�erent steps.

� Third, even if there are still some cases that two or more processors select the same example in the
same step, it is not a great factor in the overall performance. In the test cases, such redundancy occurs
in some big steps. But there is still obvious performance improvement in parallel approach.

In the experiment I found such chances are small even though the datasets contained many redundant
and similar examples.

4.5 Cost Analysis and Argument

for a Double Speedup

The parallel approach mentioned above is structured in a number of phases, each of which involves a local
computation, followed by an exchange of data between processors. In this approach it is straightforward
to tell when computation will dominate memory access, and the memory access cost is predictable. The
cost model presented above is likely to produce accurate estimates of running times on existing parallel
computers. Because the cost model depends only on high level properties of algorithms, it can be applied to
an algorithm in the abstract.

The basic structure of the parallel algorithm is:

� Partition data into p subsets, one per processor.

� Repeat

Execute the sequential ILP algorithm on each subset.

Exchange information about what each processor learned with the others.

So the cost has the following general form:

costr = kr[STEP (nm=p) +ACCESS (nm=p) + COMM (p; r)] (12)

where kr is the number of iterations required by the parallel algorithm, r is the size of the data about can-
didate concepts generated by each processor, COMM is the cost of total exchange and evaluation between
the processors of these candidate concepts.

21

It is reasonable to assume that:

STEP(nm=p) = STEP (nm)=p (13)

ACCESS (nm=p) = ACCESS (nm)=p (14)

First, if I assume that ks and kr are of comparable size, I get

costr � costs=p + krCOMM (p; r) (15)

We expect an almost linear speedup. To make the above formula more speci�c according to parallel ILP
algorithm, I get

costr = kr[SEL(nm=p)) + "(GEN (nm=p) + EVA(nm=p))

+ 3(rpg + l) + p � EVA(nm=p)) +RET (nm=p)]

where SEL gives the cost of selecting one example from the dataset; GEN gives cost of generating one can-
didate hypothesis from the selected example; EVA gives the cost of evaluation of candidate hypothesis and
giving it a score; and RET gives the cost of retracting redundant positive examples already covered by the
newly induced concept. " gives the number of candidate hypothesis generated in each step. The symbol
rpg + l is the cost of a total exchange of candidate concepts between processors; since there are three
total exchange in the parallel algorithm, the overall communication cost should be 3(rpg + l). Since each
processor will get and evaluate p candidate concepts generated from p processors, the cost of evaluation EVA

should be multiplied by a factor of p.

It is reasonable to assume:
EVA(nm=p) = EVA(nm)=p (16)

RET (nm=p) = RET (nm)=p (17)

since the value of GEN(nm) is usually much smaller than the value of EVA(nm) when the dataset is big, I
get

costr � costs=p + kr(3rpg + l) (18)

If ks and kr are of comparable size, I get a p�fold speedup except for a communication overhead.

In this approach, each processor induces the concepts from its own subset of data independently. So it is
likely that the concepts induced by di�erent processors are di�erent. Frequent exchange of these concepts
will improve the rate to which concepts are induced. One processor will learn concepts induced by other
processors during the total exchange phase. Therefore we might actually expect that kr � ks. This
phenomenon is called double speedup. The interesting phenomenon of double speedup occurs in the test
examples. Each processor learns, in a condensed way, what every other processor has learned from its data,
whenever communication phases take place. This information has the e�ect of accelerating its own learning
and convergence. The overall e�ect is that kr is much smaller than ks would have been, and this in turn leads
to a double speedup. If each subset maintains the characteristics of the entire dataset, there is much chance
that the locally-correct concepts will be also globally-correct. If the algorithm selects an example randomly,
the chances that two or more processors working on the same example are small. All these arguments suggest
a much quicker learning process, which is observed in the test cases.

Suppose that the �rst phase of the sequential algorithm requires work (computation) w, but that the work
in the subsequent phases can be reduce by a multiplicative factor �. Then the sequential algorithm has a
computation cost of the form

(1 + �+ �2 + �3 + �4 + � � �)w (19)

22

The parallel algorithm, say, using four processors takes less time overall. The �rst parallel phase takes time
w, but the second phase takes only �4w, and so on. This reduction is a function of w, which in turn is a
function of the size of the dataset. Then the parallel algorithm has a computation cost of the form

(1 + �4 + �8 + �12 + � � �)w (20)

If � = 0:9, then costr=costs � 0:39; if � = 0:1, then costr=costs � 0:90. This analysis is optimistic in
that I assume the reduction is independently additive and the communication overhead is not included in
this calculation. However, it provides an explanation why double speedup occurs in the experiments.

Summary. In this section I proposed a parallel ILP algorithm, which is based on the sequential algorithm
introduced in Section 2. The related issues in this parallel approach are discussed in detail, which are:

� Accuracy of induced theory on smaller dataset.

� Dealing with negative examples.

� Communication overhead.

� Redundant work by individual processes.

A cost analysis is provided using the BSP cost model. A possibility of double speedup phenomenon is
discussed. A parallel ILP system based on this parallel approach will be discussed in next chapter. Some
test cases will be provided, and the cost analysis will be given.

23

forall processor i
start:if Ei = empty return B

let e be the �rst example in Ei

construct the most speci�c clause ? for e
construct hypothesis Hi from ?
propagate Hi to all other processes
evaluate Hj (j = 1; 2; � � � ; p) in Ei

propagate evaluation results to all processors
decide if Hi is valid
propagate validation result of Hi to all other processors
let B = B

S
Hi

S
� � �
S

Hn

let E0 = (e : e 2 E andB j= e)
let E = E � E0

goto start

Figure 3: Parallel Progol Algorithm

5 Parallel Progol

To make the arguments in Section 2 more concrete, I developed some programs to show how parallel ILP
works and give a performance analysis. Since Progol is a core MDIE ILP system and has drawn much
research interests in recent years, I decided to parallelize the Progol system. The source code of Progol in
C is freely available from the Oxford University machine learning group web site. I implement a parallel
version of CProgol { PCProgol { that induces concepts in parallel on several processors with the support of
Oxford BSPlib. To show how PCProgol works, I developed three test cases in this chapter. They all show
a super-linear speed up relative to the number of processors.

5.1 Parallel Progol Algorithm

According to the general parallel ILP approach discussed in Section 3, I divide the example set into several
subsets, each of which is saved to a �le. All the same background knowledge and mode declarations are
included in each �le. Multiple processes work in parallel to generalize the examples. Each process works on
a partition of the dataset and executes the sequential CProgol program. By doing so, the search space is
reduced by 1=p while the induced hypotheses remains the same.

The concept induced in one process is correct locally. But I have to make sure that it is also globally-
correct. Since the information each process sees is partial, a mechanism must be provided to let each process
have the knowledge of the entire dataset in some sense.

Figure 4.1 is the algorithm of PCProgol. It provide a way to check if a locally-correct concept is also
globally-correct. For process i, B is the background knowledge, Ei is its subset of examples.

How to divide the dataset. In my approach, I divide the entire positive example set into p subsets and
allocate one subset to each processor. In many cases, the size of positive examples is much bigger than the
size of background knowledge and negative examples.

I have to �nd a way to deal with negative examples. To make sure the locally consistent concepts are also
globally consistent, I keep a copy of the negative example set on each processor.

How to evaluate H. When inducing concepts on one processor, PCProgol uses several parameters to
give the induced concept H a score relative to the local subset. An H with the highest score will be the

24

locally-correct concept induced in this step. The score f of a candidate concept s is de�ned as follows:

f = Y � (N + C + R) (21)

where

� Y = the number of positive examples correctly deducible from s

� N = the number of negative examples incorrectly deducible from s

� C = the length of concept s

� R = the number of further atoms to complete the induced concept

R is calculated by inspecting the output variables in the clause and determining whether they have been
de�ned.

So f is a measure of how well a concept s explains all the positive examples, with preference to the
shorter ones. The evaluation process will go through the entire dataset once to give a candidate s a score
f . In the worst case, it will consider all the clauses in order and the algorithm will look through the entire
dataset many times to �nd a correct concept.

When all the processors have found their locally-correct concept Hi, they come to a synchronization point.
At this point, each processor sends its locally-correct conceptHi to all other processors. After total exchange,
each processor has a copy of all the concepts induced by all the processors during this step. Each processor
evaluates these concepts and gives a score f to each Hi relative to its subset of data. Then there is a second
round of total exchange { exchange of the score f . When one processor has collected all the scores from
other processor for its Hi, it can give its Hi a global score and then decide if it is valid or not. So the total
exchange of information provides a way for each processor to evaluate its locally-correct concepts against the
whole dataset. Once the validation is made by all processors, there comes the third phase of total exchange.
During this communication phase, each processor tells other processors whether its Hi is globally valid. If so,
all processors will update their background knowledge with this Hi and delete redundant examples already
covered by it. More than one globally-correct concept is usually induced in one big step.

5.2 Test Cases

Experiment platform. BSP can support both shared-memory and distributed-memory computing en-
vironments. In my experiment I built and ran PCProgol on two di�erent machines. One is a 4-processor
shared-memory SUN machine. The platform is :

� Name: teaspoon.cs.queensu.ca

� Model: SUN Enterprise Server 3000.

� Processors: four Sparc processors, each one operating at 50 MHz and has a Sparc
oating point
processor.

The other is a 6-processor shared-memory SUN machine. The platform is :

� Name: zeus.caslab.queensu.ca

� Model: SUN Enterprise Server 3500.

� Processors: six UltraSparcII processors, each one operating at 336 MHz and has a Sparc
oating point
processor.

Though this program is developed and tested on SMP machines, this parallel approach can be transparently
adapted for distributed-memory computing environments with the support of BSP.

25

Example Number ks kr kr
(4-process) (6-process)

Animal Classi�er 4000 9 2 2

Chess Move Learner 4000 23 4 3

Game Ending Problem 2000 12 4 4

Table 2: Test cases and sequential performance

There are three example sets provided in this section to test parallel Progol. They are shown in Table 2.
The �rst test case is an animal classi�er. In this case animal classi�cation information is given as positive
examples. The background knowledge is provided to describe the properties of one particular animal. The
program tries to form some general rules to classify an animal according to its properties. There are 4000
examples in this test case which contains some redundancy and similar examples.

The second test case is a chess move learner program. It learns legal chess moves. The moves of the chess
pieces
Pieces = (King, Queen, Bishop, Knight and Rook) are learned from examples. Each example is represented
by a triple from the domain
Piece * (Original-Rank * Original-File) * (Destination-Rank * Destination-File)

There are 4000 examples in this test case.

The third test case is a chess game-ending problem. It tries to form a rule to decide whether a chess
ending with White King, White Rook and Black King is illegal when White is to move. Example positions
are de�ned as
illegal(WKRank, WKFile, WRRank, WRFile, BKRank, BKFile)

There are 2000 examples in this test case.

The source �le Types describes the categories of objectives in the world under consideration. Modes

describes the relationship between objects of given types, and the form these atoms can take within a clause.
The Examples section contains all the positive and negative examples.

26

Example 1: Animal Classi�er

Types

Type provides information about the type of the object.
animal(dog). animal(dolphin).

class(mammal). class(�sh).

covering(scales). covering(feathers).

habitat(land). habitat(water).

� � �

Modes

For the head of any general rule de�ning class I give the following head mode declarations

:- modeh(1,class(+animal,#class))?

which means class may have 2 arguments of type animal and class. A + sign indicates that the argument is an

input variable. A # sign denotes a constant.For atoms in the body of a general rule, body mode declarations are

given as follows:

:- modeb(1,has-gills(+animal))?

:- modeb(1,hascovering(+animal,#covering))?

:- modeb(1,haslegs(+animal,#nat))?

:- modeb(1,homeothermic(+animal))?

Examples

I give some examples of what animal belongs to what class.

class(eagle,bird). class(bat,mammal).

class(dog,mammal). class(bat,mammal).

class(eagle,bird). class(ostrich,bird).

Background knowledge

hascovering(dog,hair). hascovering(dolphin,none).

27

Example 2: Chess Move Learner

Types

piece(king). piece(queen).

� � �

Modes

:- modeh(1,move(#piece,pos(+�le,+rank),pos(+�le,+rank)))?

:- modeb(1,rdi�(+rank,+rank,-nat))?

:- modeb(1,fdi�(+�le,+�le,-nat))?

Examples

There are some negative examples in this case. : � is for negative examples.
move(king,pos(b,7),pos(c,6)).

move(bishop,pos(g,3),pos(e,1)).

move(queen,pos(e,6),pos(h,3)).

:- move(pawn,pos(g,3),pos(c,5)).

:- move(king,pos(h,2),pos(e,2)).

:- move(king,pos(e,2),pos(a,5)).

� � �
Background knowledge

The only background predicate used is symmetric di�erence, i.e.
di�(X,Y) = absolute di�erence between X and Y

Symmetric di�erence is de�ned separately on Rank and File.
rdi�(Rank1,Rank2,Di�) :-

rank(Rank1), rank(Rank2), Di�1 is Rank1-Rank2, abs(Di�1,Di�).

fdi�(File1,File2,Di�) :-

�le(File1), �le(File2), project(File1,Rank1), project(File2,Rank2), Di�1 is Rank1-Rank2, abs(Di�1,Di�).

abs(X,X) :- X � 0.

abs(X,Y) :- X < 0, Y is �X.

28

Example 3: Game Ending Problem

Types

rf(X) :- nat(X), 0=<X, X=<7.

Modes

:- modeh(1,illegal(+rf,+rf,+rf,+rf,+rf,+rf))?

:- modeb(1,adj(+rf,+rf))?

Examples

illegal(5,5,4,6,4,1). illegal(5,6,7,5,7,5).

illegal(3,2,4,6,6,6). illegal(2,1,6,1,2,0).

illegal(3,0,2,3,4,0). illegal(6,2,5,1,6,1).

� � �

29

6 Test Results

For each test case I did the following experiments:

� run sequential algorithm on teaspoon

� run sequential algorithm on zeus

� run parallel algorithm on teaspoon with 4 processes

� run parallel algorithm on zeus with 4 processes

� run parallel algorithm on zeus with 6 processes

I collected the corresponding data, which are shown in the tables of this chapter. From this data I calculated
the double speedup phenomenon observed in these 3 test cases, i.e., p � costr < costs where costr is the
cost of one process in parallel version, and costs is the cost of sequential version.

According to the formulae 3.8{3.11 derived from Section 3, the cost of selecting an example, generating a
hypothesis from the most speci�c clause ?, evaluating a candidate concept and retracing redundant examples
in one subset should be 1=p of the sequential algorithm. Table 4 shows SEL(), EVA(), RET() values in
the sequential algorithm. The �rst column shows the test case number and parameter name; the second
and third columns show the values on teaspoon and zeus. Since zeus is a faster machine than teaspoon, the
values on zeus are smaller. Table 5 shows SEL(), EVA(), RET() values in the parallel algorithm. The �rst
column shows the test case number and parameter name; the second and third column show the values on
teaspoon and zeus with 4 processes; the last column shows the values on zeus with 6 processes. Variances
were typically within 20 per cent. Please refer to Table 4.5 for detailed information. The test results shown
in Table 4 and Table 5 do not totally match the above analysis in my experiment. I suppose this is due
to the workload of the machine that is for public use, and the disk access time is a�ected by the hardware
architecture. These values depend on size of dataset and machine speed. So they vary little among each big
step. I repeat the experiments on the same machines four times during di�erent time of the day to collect
data. The result shown in Table 4 and Table 5 is the average value. The value of GEN() varies in di�erent
test cases depending on how a candidate concept is generated from ?. When the dataset is big, the cost of
GEN() is small compared to the disk access cost EVA(). The value of "(GEN (nm=p) + EVA(nm=p)) is the
most signi�cant local computation cost in each big step.

Though the cost analysis given in these examples is in terms of execution time, it is easily adapted to the
number of instruction cycles with the system parameters provided by BSPlib. Then the cost analysis can be
applied universally and independent of particular machine architecture.

BSP system parameters on teaspoon and zeus are shown in Table 3. With the system parameters in hand,
I can give the optimistic communication cost. The size of data r in one total communication is around 100
words. There are three total communications in one big step. The value of g on teaspoon is 4.1
ops/word,
p is 4, s is 10.1 M
ops, and l is 118
ops. So 3 � (rpg + l) = 3*(100*4*4.1 + 118)
ops = 5274
ops =
0.0005274 s. The value of g on zeus is 3.17
ops/word, p is 4, s is 44.5 M
ops, and l is 697.4
ops. So
3 � (rpg + l) = 3*(100*4*3.17 + 697.4)
ops = 5896
ops = 0.00013 s.

Parameter teaspoon zeus zeus

Number of processes 4 4 6

BSP parameter s 10.1 M
ops 44.5 M
ops

BSP parameter l 118
ops 499
ops

BSP parameter g 4.1
ops/32bit word 3.17
ops/32bit word

Table 3: System Information

30

Value teaspoon zeus

Test Case 1: SEL(nm) 0.04 s 0.01 s
Test Case 1: EVA(nm) 0.60 s 0.13 s
Test Case 1: RET(nm) 0.60 s 0.13 s

Test Case 2: SEL(nm) 0.04 s 0.01 s
Test Case 2: EVA(nm) 1.51 s 0.13 s
Test Case 2: RET(nm) 1.51 s 0.13 s

Test Case 3: SEL(nm) 0.04 s 0.01 s
Test Case 3: EVA(nm) 0.60 s 0.07 s
Test Case 3: RET(nm) 0.60 s 0.07 s

Table 4: Mean SEL, EVA, and RET Values in Sequential Algorithm

Value teaspoon zeus zeus

Processes 4 4 6

Test case 1 :SEL(nm/p) 0.02 s 0.01 s 0.01 s
Test case 1 :EVA(nm/p) 0.30 s 0.06 s 0.04 s
Test case 1 :RET(nm/p) 0.30 s 0.06 s 0.04 s

Test case 2 :SEL(nm/p) 0.02 s 0.01 s 0.01 s
Test case 2 :EVA(nm/p) 1.20 s 0.12s 0.08s
Test case 2 :RET(nm/p) 1.20 s 0.12 s 0.08 s

Test case 3 :SEL(nm/p) 0.02 s 0.01 s 0.01 s
Test case 3 :EVA(nm/p) 0.40 s 0.08 s 0.05 s
Test case 3 :RET(nm/p) 0.40 s 0.08 s 0.05 s

Table 5: Mean SEL, EVA, and RET Values in Parallel Algorithm

31

6.0.1 Test Result of Animal Classi�cation.

Table 6 shows the test results in sequential algorithm. The concepts induced in each big step are shown.
The value of GEN(nm)+EVA(nm) shows the cost to generate and evaluate one candidate concept, which is
the most signi�cant computational cost. The values shown in the table are average values. The range and
number of data nodes I collected are also shown. The value of " shows the number of candidate concepts
generated in each step. The cost of each big step should be roughly equal to " (GEN (nm)+EVA(nm)). The
sequential algorithm takes 9 steps to generate all the rules.

Parameters Value on teaspoon Value on zeus

Big Step 1 class(A,�sh) :- has-gills(A), hascovering(A,none).

GEN(nm)+EVA(nm) 0.50s (0.48-0.52s, 31 nodes) 0.20s (0.16-0.24s, 31 nodes)
" 31 31
examples retracted 863 863
subtotal 15.35s s 6.44 s

Big Step 2 class(A,reptile) :- habitat(A,land), habitat(A,water).

GEN(nm)+EVA(nm) 0.72s (0.63-0.85s, 99 nodes) 0.13s (0.09-0.15s, 99 nodes)
" 99 99
examples retracted 78 78
subtotal 72.84 s 13.12 s

Big Step 3 class(A,mammal) :- habitat(A,caves).

GEN(nm)+EVA(nm) 0.94s (0.62-0.95s, 163 nodes) 0.13s (0.09-0.15s, 163 nodes).
" 163 163
examples retracted 78 78
subtotal 160.22 s 21.16 s

Big Step 4 class(A,reptile) :- hascovering(A,scales), habitat(A,land).

GEN(nm)+EVA(nm) 0.74s (0.63-0.93s, 57 nodes) 0.13s (0.09-0.15s, 57 nodes)
" 57 57
examples retracted 156 156
subtotal 43.81 s 7.36 s

� � � � � �
Big Step 7 class(A,bird) :- hascovering(A,feathers), habitat(A,land).

GEN(nm)+EVA(nm) 0.54s (0.42-0.64s, 163 nodes) 0.13s (0.09-0.15s, 163 nodes)
" 163 163
examples retracted 549 549
subtotal 89.04 s 15.34 s

Big Step 8 class(A,bird) :- hascovering(A,feathers).

GEN(nm)+EVA(nm) 0.46s (0.38-0.56s, 99 nodes) 0.08s (0.06-0.10s, 99 nodes)
" 99 99
examples retracted 156 156
subtotal 47.02 s 8.35 s

Big Step 9 class(A,mammal) :- hascovering(A,hair).

GEN(nm)+EVA(nm) 0.52s (0.41-0.78s, 163 nodes) 0.10s (0.06-0.12s, 163 nodes)
" 163 163
examples retracted 156 156
subtotal 87.38 s 15.62 s

Total cost 604.45 s 107.75 s

Table 6: Test case 1: result of sequential algorithm

In the parallel approach with 4 processors, the 4000 examples are divided into 4 subsets. Four processors
induce the concept set on their subset of data in parallel. The number of big steps is reduced to 2. The test

32

results on both machines is shown in Table 7. The concepts induced by di�erent processors in one big step
are shown in the table. The value of " (GEN (nm=p) + EVA(nm=p)) shows the cost of local computation
on the processor which takes the longest time in one big step. The value of 3(rpg + l) shows the measured
communication cost. In the parallel approach with 6 processors, the 4000 examples are divided into 6 subsets.
The number of big steps is also 2. The test results is shown in Table 8.

Parameters Value on teaspoon Value on zeus

Big Step 1: concept induced

process 1 class(A,mammal) :- hascovering(A,hair).
process 2 class(A,�sh) :- has-gills(A), hascovering(A,none) .
process 3 class(A,reptile) :- haslegs(A,4), habitat(A,water).
process 4 class(A,bird) :- hascovering(A,f eathers).

" (GEN(nm/p)+EVA(nm/p)) 163*0.43s = 72.23 s 163*0.06s = 9.98 s
3(rpg + l) 0.21 s 0.02 s
examples retracted 3765 3765
subtotal 75.69 s 10.32 s

Big Step 2: concept induced

processes 1-4 class(A,reptile) :- not(has-gills(A)),
hascovering(A,scales).

" (GEN(nm/p)+EVA(nm/p)) 57*0.41s = 23.65 57*0.04s = 2.39s
3(rpg + l) 0.2017 s 0.01 s
examples retracted 235 235
subtotal 26.44 s 2.71 s

Total parallel algorithm cost 105.86 s 13.05 s

Table 7: Test case 1: results of 4-process parallel algorithm

Big Step 1: concept induced

process 1 class(A,mammal) :- hascovering(A,hair).
process 2 class(A,�sh) :- has-gills(A), hascovering(A,none) .
process 3 class(A,reptile) :- haslegs(A,4), habitat(A,water).
process 4 class(A,bird) :- hascovering(A,feathers).
process 5 class(A,reptile) :- hascovering(A,scales), habitat(A,land).
process 6 class(A,�sh) :- has-gills(A), hascovering(A,none).

" (GEN(nm/p)

+ EVA(nm/p)) 163*0.05s = 9.68 s
3(rpg + l) 0.03 s
examples retracted 3765
subtotal 10.34 s

Big Step 2: concept induced

processes 1-6 class(A,reptile) :- not(has-gills(A)), hascovering(A,scales).

" (GEN(nm/p)

+ EVA(nm/p)) 57*0.04s = 2.40s
3(rpg + l) 0.02 s
examples retracted 235
subtotal 2.91 s

Total parallel
algorithm cost 13.25 s

Table 8: Test case 1: results of 6-process parallel algorithm

33

In the parallel algorithm with four processors, each processor induces a di�erent concept in the �rst step.
So at the end of the �rst big step, each process has learnt four valid concepts. In the second big step four
processes induce only one concept. In parallel algorithm with six processors, there are �ve concepts induced
in the �rst step. In the second big step six processes induce only one concept. Though there is redundancy,
the overall performance is still greatly improved. Table 9 shows the results of test case one. The costs of
sequential algorithm and parallel algorithm with four and six processors on both machines are compared.
The row costr shows the average cost of one processor in parallel algorithm. The row costs shows the average
cost in sequential algorithm. A double speedup phenomenon is observed in this test case on both machines
with di�erent processor number, which is shown as p � costr < costs.

Parameters teaspoon(4-process) zeus(4-process) zeus(6-process)

Number of examples 4000 4000 4000
kr 2 2 2
ks 9 9 9
costr 105.86 s 13.05 s 13.25 s
costs 604.65 s 107.75 s 107.75 s
costr � p 423.44 s 52.5 s 79.50 s

Table 9: Test case 1: comparison of sequential and parallel algorithm

34

6.0.2 Test Result of Chess Move Learner.

Table 10 shows the test results for the sequential algorithm. The concepts induced in each big step are
shown. The value of GEN(nm)+EVA(nm) shows the cost to generate and evaluate one candidate concept.
The values shown in the table are average values. The range and number of data nodes I collected are also
shown. The value of " shows the number of candidate concepts generated in each step. The cost of each
big step should be roughly equal to " (GEN (nm) + EVA(nm)). The sequential algorithm takes 23 steps to
generate all the rules.

Parameters Value on teaspoon Value on zeus

Big Step 1 move(bishop,pos(A,B),pos(C,D)) :- rdi�(B,D,2), fdi�(A,C,2).

GEN(nm)+EVA(nm) 1.57s (0.90-1.81s, 22 nodes) 0.13s (0.09-0.15s, 22 nodes)
" 22 22
examples retracted 159 159
subtotal 37.75 s 2.86 s

Big Step 2 move(queen,pos(A,B),pos(C,D)) :- rdi�(B,D,7), fdi�(A,C,7).

GEN(nm)+EVA(nm) 1.51s (1.16-1.96s, 22 nodes) 0.12s (0.09-0.15s, 22 nodes)
" 22 22
examples retracted 14 14
subtotal 35.99 s 2.66 s

Big Step 3 move(bishop,pos(A,B),pos(C,D)) :- rdi�(B,D,1), fdi�(A,C,1).

GEN(nm)+EVA(nm) 1.49s (1.25-2.03s, 22 nodes) 0.12s (0.09-0.15s, 22 nodes)
" 22 22
examples retracted 214 214
subtotal 35.52 s 2.59 s

Big Step 4 move(rook,pos(A,B),pos(C,B)) :- fdi�(A,C,5).

GEN(nm)+EVA(nm) 1.59s (1.31-1.87s, 34 nodes) 0.12s (0.09-0.15s, 34 nodes)
" 34 34
examples retracted 72 72
subtotal 59.12 s 4.04 s

Big Step 5 move(queen,pos(A,B),pos(A,C)).

GEN(nm)+EVA(nm) 1.63s (1.43-1.96s, 34 nodes) 0.12s (0.09-0.15s, 34 nodes)
" 34 34
examples retracted 502 502
subtotal 62.12 s 4.23 s

Big Step 6 move(rook,pos(A,B),pos(A,C)).

GEN(nm)+EVA(nm) 1.57s (1.34-2.21s, 34 nodes) 0.12s (0.08-0.14s, 34 nodes)
" 34 34
examples retracted 556 556
subtotal 57.84 s 4.00 s

� � � � � �
Big Step 23 move(bishop,pos(A,B),pos(C,D)) :- rdi�(B,D,6), fdi�(A,C,6).

GEN(nm)+EVA(nm) 0.52s (0.41-0.78s, 22 nodes) 0.10s (0.06-0.12s, 22 nodes)
" 22 22
examples retracted 14 14
subtotal 29.85 s 2.29 s

Total cost 1062.95 s 77.93 s

Table 10: Test case 2: results of sequential algorithm

In the parallel approach with 4 processors, the 4000 examples are divided into 4 subsets. Four processors
induce the concept set on their subset of data in parallel. The number of big steps is reduced to 4. The test

35

results on both machines is shown in Table 11. The concepts induced by di�erent processors in one big step
are shown in the table. The value of " (GEN (nm=p) + EVA(nm=p)) shows the cost of local computation
on the processor which takes the longest time in one big step. The value of 3(rpg + l) shows the measured
communication cost. In the parallel approach with 6 processors, the 4000 examples are divided into 6 subsets.
The number of big steps is further reduced to 3. The test results is shown in Table 12.

Parameters Value on teaspoon Value on zeus

Big Step 1: concept induced

process 1 move(king,pos(A,B),pos(C,D)) :- rdi�(B,D,1), fdi�(A,C,1).
process 2 Invalid
process 3 move(bishop,pos(A,B),pos(C,D)) :- rdi�(B,D,E), fdi�(A,C,E).
process 4 move(rook,pos(A,B),pos(C,B)).

" (GEN(nm/p)+EVA(nm/p)) 51*0.56 s = 29.37 s 51*0.12s = 6.27 s
3(rpg + l) 0.0998 s 0.01 s
examples retracted 848 848
subtotal 32.60 s 6.58 s

Big Step 2: concept induced

process 1 move(queen,pos(A,B),pos(C,D)) :- rdi�(B,D,E), fdi�(A,C,E).
process 2 move(queen,pos(A,B),pos(C,B)).
process 3 move(knight,pos(A,B),pos(C,D)) :- rdi�(B,D,1), fdi�(A,C,2).
process 4 Invalid

" (GEN(nm/p)+EVA(nm/p)) 49*1.50s = 73.98 22*0.12s = 2.62s
3(rpg + l) 0.0406 s 0.03 s
examples retracted 1720 1720
subtotal 77.67 s 2.76 s

Big Step 3: concept induced

process 1 move(queen,pos(A,B),pos(A,C)).
process 2 move(knight,pos(A,B),pos(C,D)) :- rdi�(B,D,2), fdi�(A,C,1).
process 3 move(king,pos(A,B),pos(A,C)) :- rdi�(B,C,1).
process 4 move(rook,pos(A,B),pos(A,C)).

" (GEN(nm/p)+EVA(nm/p)) 34*1.68s = 56.42 s 29*0.11s = 3.22 s
3(rpg + l) 0.2706 s 0.03 s
examples retracted 1344 1344
subtotal 59.54 s 3.29 s

Big Step 4: concept induced

processes 1-4 move(king,pos(A,B),pos(C,B)) :- fdi�(A,C,1).

" (GEN(nm/p)+EVA(nm/p)) 34*1.65s = 56.42 s 28*0.08s = 2.33s
3(rpg + l) 0.404 s 0.03 s
examples retracted 88 88
subtotal 58.35s s 2.38 s

Total parallel algorithm cost 237.84 s 15.02 s

Table 11: Test case 2: results of 4-process parallel algorithm

This test case shows the scalability of the parallel algorithm. The parallel algorithm with six processors
induces concepts in a quicker way than with four processors. So the total cost of the parallel algorithm with
six processors is less than the cost with four processors. Table 13 shows the results of test case two. The costs
of sequential algorithm and parallel algorithm with four and six processors on both machines are compared.
Though there is redundancy, i.e. the concepts induced in last big step are th same, the overall performance
is still greatly improved. The row costr shows the average cost of one processor in parallel algorithm. The
row costs shows the average cost in sequential algorithm. A double speedup phenomenon is observed in this
test case on both machines with di�erent processor number, which is shown as 6�cost6 < 4�cost4 < costs.

36

Big Step 1: concept induced

process 1 move(king,pos(A,B),pos(C,D)) :- rdi�(B,D,1), fdi�(A,C,1).
process 2 move(queen,pos(A,B),pos(C,D)) :- rdi�(B,D,E), fdi�(A,C,E).
process 3 move(bishop,pos(A,B),pos(C,D)) :- rdi�(B,D,E), fdi�(A,C,E).
process 4 move(rook,pos(A,B),pos(C,B)).
process 5 move(king,pos(A,B),pos(C,D)) :- rdi�(B,D,1), fdi�(A,C,1).
process 6 move(king,pos(A,B),pos(C,B)) :- fdi�(A,C,1).

" (GEN(nm/p)

+ EVA(nm/p)) 51*0.07s = 3.73 s
3(rpg + l) 0.04 s
examples retracted 2180
subtotal 4.08 s

Big Step 2: concept induced

process 1 move(queen,pos(A,B),pos(A,C)).
process 2 move(queen,pos(A,B),pos(C,B)).
process 3 move(knight,pos(A,B),pos(C,D)) :- rdi�(B,D,1), fdi�(A,C,2).
process 4 move(rook,pos(A,B),pos(A,C)).
process 5 move(queen,pos(A,B),pos(A,C)).
process 6 move(knight,pos(A,B),pos(C,D)) :- rdi�(B,D,2), fdi�(A,C,1).

" (GEN(nm/p)

+ EVA(nm/p)) 22*0.067s = 1.51s
3(rpg + l) 0.04 s
examples retracted 1720
subtotal 1.67 s

Big Step 3: concept induced

processes 1-6 move(king,pos(A,B),pos(A,C)) :- rdi�(B,C,1).

" (GEN(nm/p)

+ EVA(nm/p)) 29*0.047s = 1.36 s
3(rpg + l) 0.05 s
examples retracted 88
subtotal 1.99 s

Total parallel
algorithm cost 7.74 s

Table 12: Test case 2: results of 6-process parallel algorithm

Parameters teaspoon (4-process) zeus (4-process) zeus (6-process)

Number of examples 4000 4000 4000
kr 4 4 3
ks 23 23 23
costr 237.84 s 15.02 7.74 s
costs 1062.95 s 77.93 s 77.93 s
costr � p 951.36 s 60.08 s 46.44 s

Table 13: Test case 2: comparison of sequential and parallel algorithm

37

6.0.3 Test Result of Chess Game Ending Illegal Problem

Table 14 shows the test results for the sequential algorithm. The concepts induced in each big step are
shown. The value of GEN(nm)+EVA(nm) shows the cost to generate and evaluate one candidate concept.
The values shown in the table are average values. The range and number of data nodes I collected are also
shown. The value of " shows the number of candidate concepts generated in each step. The cost of each
big step should be roughly equal to " (GEN (nm) + EVA(nm)). The sequential algorithm takes 12 steps to
generate all the rules.

Parameters Value on teaspoon Value on zeus

Big Step 1 illegal(A,A,B,C,B,D) :- adj(A,B), adj(A,C).

GEN(nm)+EVA(nm) 0.70s (0.50-1.89s, 248 nodes) 0.08s (0.06-0.15s, 248 nodes)
" 248 248
examples retracted 16 16
subtotal 178.01 s 20.79 s

Big Step 2 illegal(A,B,C,D,C,A) :- adj(D,A), adj(B,C).

GEN(nm)+EVA(nm) 0.50s (0.43-0.85s, 633 nodes) 0.07s (0.05-0.15s, 633 nodes)
" 633 633
examples retracted 20 20
subtotal 336.95 s 42.33 s

Big Step 3 illegal(A,B,C,D,E,D) :- adj(A,B), adj(A,C).

GEN(nm)+EVA(nm) 0.57s (0.39-0.95s, 212 nodes) 0.07s (0.05-0.15s, 212 nodes).
" 212 212
examples retracted 120 120
subtotal 121.62 s 15.05 s

Big Step 4 illegal(A,B,C,D,E,F) :- adj(A,E), adj(B,F).

GEN(nm)+EVA(nm) 0.69s (0.63-0.93s, 248 nodes) 0.08s (0.06-0.15s, 248 nodes)
" 248 248
examples retracted 680 680
subtotal 171.47 s 19.89 s

� � � � � �
Big Step 12 illegal(A,B,C,D,E,D).

GEN(nm)+EVA(nm) 0.37s (0.20-0.78s, 165 nodes) 0.04s (0.02-0.06s, 165 nodes)
" 165 165
examples retracted 96 96
subtotal 61.14 s 7.31 s

Total cost 1239.88 s 150.58 s

Table 14: Test case 3: results of sequential algorithm

In the parallel approach with 4 processors, the 2000 examples are divided into 4 subsets. Four processors
induce the concept set on their subset of data in parallel. The number of big steps is reduced to 4. The
test results on both machines is shown in Table 15. In the parallel approach with 6 processors, the 2000
examples are divided into 6 subsets. The number of big steps is also. The test results is shown in Table 16.
As in test case 1 and 2, di�erent processors induce some redundant concepts. But the overall performance
is improved.

Table 17 shows the results of test case three. The costs of sequential algorithm and parallel algorithm
with four and six processors on both machines are compared. The row costr shows the average cost of one
processor in parallel algorithm. The row costs shows the average cost in sequential algorithm. A double
speedup phenomenon is observed in this test case on both machines with four processors. However, the
parallel algorithm with six processors does not show such a phenomenon, though costr with six processors is

38

Parameters Value on teaspoon Value on zeus

Big Step 1: concept induced

process 1 illegal(A,B,C,D,E,F) :- adj(E,A), adj(B,F).
process 2 Invalid
process 3 illegal(A,B,C,D,C,E).
process 4 illegal(A,B,C,D,C,E) :- adj(C,E).

" (GEN(nm/p)+EVA(nm/p)) 121*0.44 s = 53.49 s 51*0.12s = 7.54 s
3(rpg + l) 0.093 s 0.04 s
examples retracted 1305 1305
subtotal 56.13 s 6.58 s

Big Step 2: concept induced

process 1 illegal(A,B,C,D,D,D) :- adj(A,C).
process 2 illegal(A,B,C,C,D,C) :- adj(A,D), adj(C,D).
process 3 illegal(A,B,C,D,E,D) :- adj(A,C), adj(D,E).
process 4 illegal(A,B,C,D,E,D) :- adj(A,C), adj(D,E).

" (GEN(nm/p)+EVA(nm/p)) 267*0.26s = 70.56 267*0.03s = 8.31s
3(rpg + l) 0.262 s 0.02 s
examples retracted 153 153
subtotal 73.95 s 8.71 s

Big Step 3: concept induced

process 1 illegal(A,B,A,B,C,D).
process 2 illegal(A,B,C,D,E,D) :- adj(D,E).
process 3 illegal(A,B,C,D,E,D) :- adj(D,E).
process 4 illegal(A,B,C,D,E,D) :- adj(D,E).

" (GEN(nm/p)+EVA(nm/p)) 357*0.25s = 91.81 s 357*0.03s = 11.04 s
3(rpg + l) 0.216 s 0.03 s
examples retracted 195 195
subtotal 92.52 s 11.35 s

Big Step 4: concept induced

process 1 illegal(A,B,C,D,E,D).
process 2 illegal(A,B,C,D,E,D) :- adj(A,C).
process 3 illegal(A,B,C,D,E,D).
process 4 illegal(A,B,C,D,E,D).

" (GEN(nm/p)+EVA(nm/p)) 268*0.24s = 65.28 s 268*0.03s = 7.82s
3(rpg + l) 0.20 s 0.04 s
examples retracted 348 88
subtotal 68.89 s 8.02 s

Total parallel algorithm cost 293.07 s 36.14 s

Table 15: Test case 3: results of 4-process parallel algorithm

39

Big Step 1: concept induced

process 1 Invalid
processes 2-4 illegal(A,B,C,D,C,E).
process 5 illegal(A,B,C,D,E,D) :- adj(D,C), adj(C,E).
process 6 illegal(A,B,C,D,E,D) :- adj(D,C).

" (GEN(nm/p)+EVA(nm/p)) 267*0.03s = 8.78 s
3(rpg + l) 0.03 s
examples retracted 680
subtotal 9.27 s

Big Step 2: concept induced

process 1 illegal(A,B,C,D,E,D) :- adj(A,C), adj(E,D).
process 2 illegal(A,B,C,D,E,D) :- adj(B,D).
process 3 illegal(A,B,C,D,E,D) :- adj(A,C), adj(D,E).
process 4 illegal(A,B,C,D,E,B) :- adj(A,E).
process 5 illegal(A,B,C,A,D,E) :- adj(A,D), adj(B,E).
process 6 illegal(A,B,C,D,E,B) :- adj(A,E).

" (GEN(nm/p)+EVA(nm/p)) 248*0.03s = 6.24s
3(rpg + l) 0.01 s
examples retracted 720
subtotal 6.66 s

Big Step 3: concept induced

processes 1,3,4 illegal(A,B,C,D,D,E) :- adj(A,D), adj(B,E).
process 2 illegal(A,B,C,D,E,D).
process 5 illegal(A,B,C,D,E,D) :- adj(A,C).
process 6 illegal(A,B,C,D,E,D) :- adj(E,D).

" (GEN(nm/p)+EVA(nm/p)) 215*0.02s = 4.23 s
3(rpg + l) 0.01 s
examples retracted 340
subtotal 4.55 s

Big Step 4: concept induced

process 1 illegal(A,B,A,B,C,D).
process 2 illegal(A,B,A,B,C,D) :- adj(B,D).
process 3-6 illegal(A,B,A,B,C,D).

" (GEN(nm/p)+EVA(nm/p)) 462*0.017s = 7.66 s
3(rpg + l) 0.009 s
examples retracted 260
subtotal 7.97 s

Total parallel algorithm cost 28.44 s

Table 16: Test case 3: results of 6-process parallel algorithm

40

less than costr with four processors. This is partly due to the example set which, in this test case, does not
show enough scalability. So processors waste time doing redundant work when processors becomes large.

Parameters teaspoon (4-process) zeus (4-process) zeus (6-process)

Number of examples 2000 2000 2000
kr 4 4 4
ks 23 23 23
costr 293.07 s 36.14 28.44 s
costs 1239.88 s 150.58 s 150.58 s
costr � p 1172.28 s 144.56 s 170.64 s

Table 17: Test case 3: comparison of sequential and parallel algorithm

6.1 Summary.

Super-linear speedup is observed in all these test cases. I might expect the parallel implementation using
p processors to take time costs=p if I ignore the communication overhead. But here in the experiment it
executes even faster due to the information exchange between processors and reduction of subsequent work.
There is a big performance improvement with a small p. Though I did the experiments on a p-processor
SMP machine, I believe that the parallel ILP algorithm is scalable given that each subset of data is still
big enough to induce correct concepts. And the double speedup phenomenon will be observed with a larger
processor set.

41

7 Conclusion

In this report I studied the use of inductive logic to generate concepts from very big datasets in parallel.
I use p processors to do the data-mining job, each on a subset of the full dataset. A set of concepts are
generated from disjoint subsets of the full dataset used for mining. The distributed concept sets are total
exchanged and evaluated before merging the valid ones into the �nal concept set. The �nal set of concepts
is free of con
icts and has accuracy equivalent to a set of rules developed from the full dataset. The disk
I/O access cost for each processor will be reasonably reduced by 1=p.

Since each processor learns concepts independently on its subset, there are some issues that I have discussed
in this report:

� How to secure the accuracy of induced theory on smaller datasets;

� How to deal with negative examples;

� How to reduce communication overhead; and

� How to avoid redundant work by individual processes.

I presented a parallel ILP data-mining algorithm using the BSP model and gave its cost analysis. I imple-
mented a parallel version of a core ILP system { Progol { using C with the support of Oxford BSPlib. I
developed several di�erent test cases to show typical speedup. With all the test results, a double speedup
phenomenon was observed which greatly improved the performance of ILP data-mining algorithm.

From the analysis of the parallel ILP data mining algorithm and the test results of parallel Progol, I
can draw the conclusion that the bene�ts of the performance of parallel computing for ILP data mining is
obvious. Though the cost measures in the implementation is not complete accurate and the parallel version
of Progol has its limitation, they are expressive enough to show that even modestly parallel implementations
of ILP algorithm can achieve signi�cant performance gains. The following is what I discovered in my study:

First, inductive logic programming employs �rst-order structural representations, which generalizes attribute-
value representations, as examples now may consist of multiple tuples belonging to multiple tables. These
representations can succinctly represent a much larger class of concepts than propositional representations
and have demonstrated a decided advantages in some problem domains [19]. By using �rst-order logic as
the knowledge representation for both hypotheses and observations, inductive logic programming may over-
come some major di�culties faced by other data-mining systems. ILP inheritates well-established theories,
algorithms and tools from computational logic. Background knowledge helps in restricting the hypo search
and is a key factor for incremental and iterative learning.

Second, the BSP model provides a simple way to implement a parallel ILP data-mining system and gives
a relative accurate cost model based on counting computations, data access, and communication. Based on
BSP model, I have con�dence to give a relative accurate cost analysis to the test results.

Third, replicated implementation is shown to be a simple, yet powerful, approach to parallel ILP system
design. Independent search is simple and works well for minimization problems. However, it does not divide
the dataset, so it cannot reduce the disk access. Therefore, it is not suitable for problems with huge dataset.
The �ne-grained parallelism in parallelized approaches requires more communication, so I do not use this
approach in out parallel ILP data-mining algorithm. The replicated approach is often the best way for
parallelizing ILP data-mining applications. Previous work in [27] shows that the replicated approach gives
the best performance improvement among all these three approaches introduced above. It gives a way for
the algorithm to exploit collective knowledge quickly. The parallel algorithm exchanges information after
each phase. The knowledge gained by one processor in a step will be exchanged with all other processors
during the end of that step. In this way, once the algorithm has found a concept that can explain part of
the data, it does not need to examine that part again. So there is less work for the next phase. A double
speedup phenomenon is observed in this parallel algorithm, as shown is Table 18, 19, 20.

42

Double Speedup 1

Example Sequential cost Processors Parallel cost Parallel cost*4

Animal 604.65s 4 105.86s 423.44s

Chess Move 1062.95s 4 237.84s 951.36s

Game Ending 1239.88s 4 293.07s 1172.28s

Table 18: Double speedup on teaspoon with 4 processors

Double Speedup 2

Example Sequential cost Processors Parallel cost Parallel cost*4

Animal 105.86 s 4 13.05 s 52.50 s

Chess Move 77.93 s 4 15.02 s 60.08 s

Game Ending 150.58 s 4 36.14 s 144.56 s

Table 19: Double speedup on zeus with 4 processors

Double Speedup 3

Example Sequential cost Processors Parallel cost Parallel cost*4

Animal 105.86s 6 13.25 s 79.50 s

Chess Move 77.93 s 6 7.74 s 44.64 s

Game Ending 150.58 s 6 28.44 s 170.64 s

Table 20: Double speedup on zeus with 6 processors

Finally, though my test results are obtained from 4 and 6 processor SMP machines, it is reasonable to
assume the scalability of this parallel approach to modest number of processes. Since the communication
overhead is small, the parallel ILP algorithm will work well with more processors provided that each subset
of data on one processor is big enough to induce accurate concepts.

43

References

[1] R. Agrawal and J. Shafer. Parallel mining of association rules: Design, implementation and experience.
Technical Report RJ10004, IBM Research Report, February 1996.

[2] M. Besch and H.W. Pohl. How to simulate arti�cial neural networks on large scale parallel computers
exploiting data parallelism and object orientation. Technical Report TR-94022, GMD FIRST Real
World Computing Laboratory, November 1994.

[3] M. Besch and H.W. Pohl. Flexible data parallel training of neural networks using MIMD computers.
In Third Euromicro Workshop on Parallel and Distributed Processing, January 1995.

[4] P.S. Bradley, U.M. Fayyad, and O.L. Mangasarian. Mathematical programming for data mining: For-
mulations and challenges. INFORMS Journal of Computing, 11:217{238, 1999.

[5] I. Bratko and S. Muggleton. Applications of inductive logic programming. Communications of the

ACM, 38(11):65{70, 1995.

[6] S.H.N. Cheung. Data mining: From statistics to inductive logic programming. Technical report, De-
partment of Computer Science, Erasmus University of Rotterdam, November 1996.

[7] S.H.N. Cheung. Foundations of Inductive Logic Programming. Springer, 1997.

[8] J.M.D. Hill D.B. Skillicorn. Questions and answers about BSP. Scienti�c Programming, 6(3):249{274,
November Fall, 1997.

[9] P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using the inductive logic
programming system Progol. Machine Learning, 30:241{271, 1998.

[10] P. Frasconi, M. Gori, and G. Soda. Daphne: Data parallelism neural network simulator. International
Journal of Modern Physics C, 1992.

[11] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proceedings of the 13th

International Conference on Machine Learning, pages 148{156, 1996.

[12] V. Gaede and O. G�unther. Survey on multidimensional access methods. Technical Report ISS-16,
Institut f�ur Wirtschaftsinformatik, Humboldt Universit�at zu Berlin, August 1995. www.wiwi.hu-

berlin.de/�gaede/survey.rev.ps.Z.

[13] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley,
1989.

[14] G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins University Press, 3rd edition,
1996.

[15] G. Gonnet. Unstructured data bases or very e�cient text searching. In ACM Principles of Database

Systems, pages 117{124, Atlanta, Georgia, 1983.

[16] A. Guttman. R-Trees: A dynamic index structure for spatial searching. In Proceedings of ACM SIGMOD

International Conference on Management of Data, pages 47{57, June 1984.

[17] E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. In ACM-

SIGMOD Internation Conference on Management of Data, May 1997.

[18] M.V. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scalable and e�cient parallel classi�cation
algorithm for mining large datasets. In Proceedings of IPPS/SPDP'98, pages 573{580, 1998.

[19] K. Nigan M. Craven, S. Slattery. First-order learning for web mining. In proceedings of the 10th European
Conference on Machine Learning, 1998.

44

[20] S. Muggleton. Inductive logic programming. New Generation Computing, 8(4):295{318, 1991.

[21] S. Muggleton. Inductive logic programming: theory and method. Journal of Logic Programming, 19:20,
1994.

[22] S. Muggleton. Inverse entailment and Progol. New Generation Computing Systems, 13:245{286, 1995.

[23] S. Muggleton. Inductive logic programming: issues, results and the LLL challenge. Arti�cial Intelligence,
114(1{2):283{296, December 1999.

[24] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic
Programming, 19,20:629{679, 1994.

[25] D.A. Pomerleau, G.L. Gusciora, D.L. Touretzky, and H.T. Kung. Neural network simulation at Warp
speed: How we got 17 million connections per second. In IEEE International Conference on Neural

Networks, July 1988.

[26] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann, 1993.

[27] R.O. Rogers and D.B. Skillicorn. Using the BSP cost model to optimize parallel neural network training.
Future Generation Computer Systems, 14:409{424, 1998.

[28] J. Schafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classi�er for data mining. In
Proceedings of VLDB22, Mumbai, India, 1996.

[29] D.B. Skillicorn. Strategies for parallel data mining. IEEE Concurrency, 7(4):26{35, October 1999.

[30] H. Toivonen. Discovery of frequent patterns in large data collections. Technical Report A-1996-5,
Department of Computer Science, University of Helsinki, 1996.

[31] L.G. Valiant. Oxford Parallel - BSP Model. World Wide Web, 1997. http:// oldwww. com-

lab.ox.ac.uk/oucl/oxpara/bsp/bspmodel.htm .

[32] N.B. �Serbed�zija. Simulating arti�cial neural networks on parallel architectures. Computer, 29, No.3:56{
63, 1996.

[33] I. Weber. ILP systems on the ilp-net systems repository. Technical report, Department of Computer
Science, University of Stuttgart, Germany, 1996.

[34] M. Whitbrock and M. Zagha. An implementation of backpropagation learning on GF11, a large SIMD
parallel computer. Parallel Computing, 14:329{346, 1990.

45

PCProgol Implementation

Oxford BSPlib is the platform used to implement the parallel version of CProgol. I made the necessary
modi�cations to CProgol 4.4 to make it work in parallel.

At the beginning of the main() function, I call bsp
�
begin(int process

�
number) to start p processes. The

number of processor can be modi�ed as a parameter. Each process needs to be allocated to a processor. If
more than one process is allocated to one processor the performance will be greatly a�ected due to the bar-
rier synchronization. Each process will get its process ID by bsp

�
pid(). In this way I can tell which process

is inducing concepts. At the end of the program bsp
�
end() is called to terminate the program. Function

c
�
doall() will perform all the induction procedures describe in the parallel algorithm.

The main function starts:

main() f
// BSP Begin, X = number of processes = number of processors

bsp
�
begin(X);

// get my process ID

pid = bsp
�
pid();

// Analyze command line parameters

checkargs(argc,argv,envp);

// Initialise built-in predicates

l
�
init();

// Begin induction process

c
�
doall(�leroot

�
in,�leroot

�
out);

// close all �les

c
�
close();

return(1l);

// BSP End

bsp
�
end();

g

In CProgol, the big loop structure is implemented in the procedure c
�
sat(). I modi�ed the big loop

structure in c
�
sat() to make it work in parallel on several processors. c

�
sat() is the core procedure which

does top-down search, asserts result if compressive and does theory reduction. The whole structure in the
PCProgol will be made clear once I introduce the function of c

�
sat().

c
�
sat() �rst declares local variables. Some of these variables are used for BSP communication. A function

cputime() is called to record computation and communication cost.

PREDICATE

c
�
sat(cclause,nex)

//DECLARE LOCAL VARIABLES

//Start recording computation time

start = cputime();

Once all the local variables are allocated, bsp
�
push

�
reg() is called to register necessary variable for

communication. A synchronization function bsp
�
sync() is then called to make it happen.

/*register variables for BSP communication*/

bsp
�
push

�
reg(concept,sizeof(char)*MAXMESS*X);

/*synchronization point*/

bsp
�
sync();

ct
�
sat() and cl

�
symreduce() are then called for generating the most speci�c clause for the example

selected.

46

//generate the most speci�c clause

if (hypothesis = ct
�
sat(cclause,atoio,otoa,&head))

cl
�
symreduce(&hypothesis,atoio,head);

outlook=r
�
outlook(hypothesis,head,otoa,atoio);

vdomains=r
�
vdomains(otoa,atoio);

if(verbose>=2)
fprintf(tty

�
�le� >�le,'Most speci�c clause is:');

cl
�
print(hypothesis);

Function r
�
search() will search in the hypothesis space to �nd a locally-correct hypothesis. If a successful

hypothesis is found, then bsp
�
put() is called to send this hypothesis to all other processes. It is followed by

a synchronization function call.

// search for locally-correct concept

r
�
search(&hypothesis,atoio,otoa,outlook,vdomains,fnex);

if(hypothesis&& !L
�
EMPTYQ(hypothesis))

cl
�
un
atten(&hypothesis);

if(verbose>=1)
fprintf(tty

�
�le� >�le,'Result of search is:');

cl
�
print(hypothesis);

result=TRUE;

else

fprintf(tty
�
�le� >�le,'[No compression]');

result=FALSE;

// propagate hypothesis to other processes

for (i = 0;i<X;i++)

bsp
�
put(i,hypothesis,receive,0,sizeof(char)*MAXMESS);

bsp
�
sync();

The size of data in the �rst round of total exchange is a character string. Its size is de�ned by the macro
MAXMESS to be 40 characters in PCProgol. After the global synchronization, each process gets all the
hypotheses generated in this step. Then it will perform the evaluation. It will get the number of positive
examples covered and the number of negative examples wrongly covered by one hypothesis relative to its
local example set.

Once each processes get all the p and n values for all the hypothesis, the score f will be calculated for
that hypothesis. There will be a second-round total exchange. This time only the integer value of f are
exchanged.

// use BSP model to get other processes' hypotheses and evaluate them

for (int i=0; i<x,i++)

if (pid ! = i)

ITEM c1,call=d
�
gcpush(c1=i

�
copy(re

�
hyp[i]));

LIST *end=cl
�
push(re

�
hyp[i]);

PREDICATE negq=(PSYM(HOF((LIST)I
�
GET(re

�
hyp[i]))));

p[i]=(int)cl
�
pcoverage(call,L

�
GET(*end));

if (r
�
posonly())

n[i] = (int) cl
�
dcoverage(call,fnex);

else

47

n[i] = (int) cl
�
ncoverage(negq,call,L

�
GET(*end));

f[i] = get
�
score(p[i],n[i])4;

for(i = 0;i<X;i++)

if(pid ! = i)

for(j=0;j<X;j++) bsp put(i,&f[i],&rec
�
f[j],0,sizeof(int));

bsp
�
sync();

According to f value from each processes, one process can decide if the hypothesis generated in this step
is valid or not. And then during the third round communication the boolean value of validate will be total
exchanged.

// Test if the hypothesis is valid or not.

Validate = validate
�
test(f[pid]);

// propagate validation result to other processes

for (i=0;i<4;i++)

if(pid!=i)

bsp
�
put(i,&validate,go,pid*sizeof(int),sizeof(int));

bsp
�
sync();

After the third round communication, all the valid hypothesis induced in this step will be updated to
background knowledge and all the redundant examples will be retracted from each subsets.

for (i=0;i<X,i++)

if (pos&&cover) c
�
updbsamp(psym,cclause[i]);

cl
�
assert(cclause1,FALSE,TRUE,TRUE,FALSE,(ITEM)NULL);

i
�
delete(cclause1);

d
�
treduce(psym);

The total communication cost is small because the size of data to be exchanged is small.

48

