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Abstract

Protein-structure elucidation is currently slow and expensive by physical means and current pre-
diction algorithms either lack accuracy or scope. A data-driven dynamic-programming algorithm
for predicting protein structures is presented. Observed conformations of short amino-acid chains
in the Protein Data Bank are reduced to canonical conformations using singular value decom-
position to remove components considered to be noise, and semidiscrete decomposition to form
clusters. These canonical conformations are then used to generate conformations for longer
sequences using dynamic programming.

The algorithm is able to extrapolate beyond the base data to provide conformations for short
sequences of previously unseen amino acids. The algorithm is also able to predict significant
portions of large proteins, includng complex secondary structural elements such as turns, bends
and random coils. The entire structure of a small protein is predicted and presented as a 3-
dimensional model.
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Chapter 1

Introduction

1.1 Motivation

Proteins are complex macromolecules that are fundamental to every living organism. The
physical shape of a protein, that is its conformation, is primarily what determines its func-
tion. The conformation of a protein is believed to be determined by the amino acid sequence
encoded for it in DNA. Since proteins constitute the building blocks of life, understanding
protein structure permits a deeper understanding of living systems. Elucidating protein
conformation is therefore a compelling priority of modern science.

1.1.1 Protein structure

Protein structure is complex. A hierarchy of four interacting levels of structure has been
used to describe the structures that proteins form. The primary structure is a linear strand
of amino acids that form the backbone of the protein, and are believed to determine almost
all of its structure. The secondary structure is the arrangement of sections of the primary
sequence into structural elements, such as α-helices, β-sheets, turns, etc. The tertiary struc-
ture is the 3-dimensional arrangement of the secondary structural units. The quaternary
structure is the combination of two or more tertiary protein units. See Figure 1.1 for an
example of the structure of an actual protein.

There are 20 different amino acids each with a similar base and a unique chemical side-
chain. See Figure 1.2 for a list of the 20 amino acids. The side-chain gives each residue
unique physical and chemical properties. See Figure 1.3 for an illustration of an amino acid.

Amino acids polymerize by bonding together at their similar base structures to form a
chain. The presence of side-chains means that adjacent amino acids can only be in certain
relative orientations. These orientations are further constrained by longer-range effects. By
using a common reference point, torsion angles between two amino acids can be calculated.
Torsion angles represent the degree of physical rotation of two residues relative to each
other. Two important angles are the φ and ψ angles. See Figure 1.4 for an illustration.

The torsion angles between amino acids are influenced by both short-range and long-
range effects. One dominant influence is the physicochemical properties of the residues
being joined together [24, 14]. Other relevant influences are: the effects of amino acids
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Figure 1.1: A 3-dimensional representation of the protein hemoglobin, obtained from the
Protein Data Bank [3].

Amino Acid Symbol Symbol
Alanine ALA A
Cysteine CYS C

Aspartic Acid ASP D
Glutamic Acid GLU E
Phenylalanine PHE F

Glycine GLY G
Histidine HIS H
Isoleucine ILE I

Lysine LYS K
Leucine LEU L

Methionine MET M
Asparagine ASN N

Proline PRO P
Glutamine GLN Q
Arginine ARG R
Serine SER S

Threonine THR T
Valine VAL V

Tryptophan TRP W
Tyrosine TYR Y

Figure 1.2: A list of all the amino acids and their respective 3-letter and 1-letter abbrevia-
tions.
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Figure 1.4: An illustration of two amino acid residues joined together to demonstrate the φ
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nearby [27, 20], and the presence of amino acids that are far away along the backbone, but
physically close because of tertiary structure [9, 15]. The interaction of short-range and
long-range effects makes the problem of predicting structure extremely difficult.

1.1.2 Determining protein structure

Currently, protein structure is determined by physical methods. These methods are complex,
expensive and slow relative to the number of possible proteins. There are millions of known
protein sequences [30] but only thousands of known structures [3].

Prediction of protein structure using a conventional computational approach is intractable.
Levinthal [18] pointed out that a protein that consists of a mere 100 amino acids has more
than 1048 possible conformations, from which finding the correct one could take millions of
years.

Despite the inherent complexity of finding protein structure, it is considered a world-
wide priority. For instance, the world’s fastest supercomputer, BlueGene, is dedicated to this
cause [12]. Numerous structural prediction methods have been developed, drawing on many
areas of computer, information, chemical, biological and statistical sciences [22]. Because
of the vast search space, most methods employ abstraction or search space reduction. Most
prediction methods also involve many assumptions. No method available today definitively
solves the problem of protein structure determination. In fact, none approach the realm of
a practical solution.

1.2 State of the art

Discovering protein structure is a world-wide initiative, the results of which can benefit
numerous areas of modern science. However, current structural determination methods are
too slow and expensive to find structures for all known proteins. The search space of protein
conformation is too immense for computation from first principles, and current prediction
methods lack the ability to produce real-world solutions. Any insight into determining
protein structure is a worthwhile endeavor.

1.3 Objective

A reductive strategy for conformation prediction is to determine the structure of short chains
of amino acids, and then use these to predict possible conformations for longer and longer
chains, using a dynamic programming methodology. The problem with this strategy is that
there are many observed conformations for short amino acid chains, and so many different
ways in which two chains can be combined to form longer chains. The problem remains
computationally intractable.

We show that the very large number of observed conformations of short amino acid
chains are plausibly due to noise associated with the techniques used to determine confor-
mations. We apply singular value decomposition to denoise observed conformations from
the Protein Data Bank. We then use semidiscrete decomposition to cluster these conforma-
tion automatically into canonical conformations. Dynamic programming can then be used
on this much smaller set of conformations to predict the conformations of longer and longer
chains.
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1.4 Organization of Report

The required knowledge to understand the methodology and results of this study is provided
in Chapter 2. Current structural determination and prediction methods are covered to
provide information in the current state of the art. Databases of protein structural data are
explained and data-mining techniques that are utilized to prepare data for the algorithm
are also detailed. Chapter 3 outlines the methodology employed in the study from data
preparation to the construction of a dynamic programming algorithm. Results obtained for
each step of the methodology are provided in Chapter 4 and finally conclusions are presented
in Chapter 5.
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Chapter 2

Background

This chapter provides background into the current state of the art in several fields. An
overview of the two most utilized methods of protein structure determination are given
to help understand their inherent limitations and problems. Sources of protein structural
data will be discussed to explain why new formats are required for data-mining applica-
tions. The best conformation prediction algorithms will be discussed to give an overview of
how this problem is currently addressed. Finally, data-mining techniques known as matrix
decompositions and dynamic programming, which are used in this study, will be explained.

2.1 Structure determination methods

X-Ray Crystallography (XC) and Nuclear Magnetic Resonance (NMR) are the two primary
methods of determining a proteins 3-dimensional structure. Currently, XC accounts for 85%
of all known structures and NMR for 13% [3].

2.1.1 X-Ray Crystallography

X-Ray Crystallography [6] is a technique where the atomic structure of a crystal is obtained
by sending x-rays through it and observing the resulting diffraction pattern. When XC is
used to determine the structure of inorganic compounds, it is a relatively simple process.
However, when applied to organic compounds, the procedure becomes orders of magnitudes
more difficult.

XC requires that compounds be crystallized to find their structure. For organic macro-
molecules like proteins, this first step can be a painstaking process. There is no definitive
guide to crystallizing any protein and it is considered somewhat of a ‘black art’. XC in-
troduces a bias to datasets of protein structures, as some classes of protein are easier to
crystallize than others.

XC is also not a black-box method; it is not as simple as putting a crystallized protein in
one end and obtaining a structure out the other. XC provides an electron density map of the
crystal being analyzed. Computer and human interaction is required to refine the density
map into descriptions of specific atoms and their coordinates. Errors may be introduced
during this step.

6



The results of XC are also limited by the resolution of the process. A resolution of
2.5Å(Angstroms) is typical for protein structures. The uncertainty of the position of an
atom in the structure is approximately 1

5 of the resolution. A temperature factor is also
supplied for each atom obtained with XC. It records the amount of thermal motion observed
in the electron density map, which translates into uncertainty of that atom’s position.

2.1.2 Nuclear Magnetic Resonance

Solution Nuclear Magnetic Resonance uses the magnetic property of atomic nuclei to de-
termine molecular information. It has been applied to determine organic structures and
is employed in many areas of bioscience. NMR’s most commonly known application is
Magnetic Resonance Imaging, or MRI.

NMR does not require a protein to be crystallized. However, since NMR is only reliable
for proteins under a certain mass, a bias is introduced. NMR is also not a black-box method;
it produces a series of possible models which can be refined to provide a final model.

There is an inherent error rate of a structure obtained with NMR due to the methodology.
For most protein structures the error is less than 2Åper atom.

2.2 The Protein Data Bank

The Protein Data Bank (PDB) [3] is the world-wide repository for known protein structures.
The PDB has grown rapidly since its beginnings in 1972 and is currently growing by more
than 5,000 entries per year. Figure 2.1 demonstrates the rate of growth of the PDB. Despite
the numerous contributions, the PDB still only represents a tiny fraction of known proteins.
The gap between proteins that are known to exist and proteins with determined structure
is actually widening [30].

While any determined protein structure can be submitted to the PDB, there are rigorous
quality standards that must be met for any model to be accepted. This insures that the
information in the PDB is reliable and verifiable.

The PDB format was designed to be flexible and robust in an attempt to incorporate
all possible knowledge accumulated for each protein. This does have the effect that, for any
specific study, the native PDB is non-optimal. Problems with the native PDB format from
the point of view of this study are:

• Each PDB entry is kept as an individual file.

• Structures are represented as 3-dimensional atomic coordinates.

• Extraneous information is present, i.e. remarks about crystallization techniques.

2.3 The Ramachandran plot

Ramachandran [21] devised an area plot of the two main angles of residue-to-residue bonding
in a protein chain. It is commonly referred to as a Ramachandran plot and graphs the φ,
ψ torsion angles between pairs of amino acids. The plot was originally conceived to predict
conformations of individual amino acids by examining the physicochemical constraints that
limit their possibilities. The restrictions on φ, ψ angle pairs estimated by Ramachandran

7
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Figure 2.1: Number of structures contained in the Protein Data Bank versus time [3].

have since been experimentally verified and are remarkably accurate [11]. Figure 2.2 shows
an example Ramachandran plot, from Kleywegt and Jones [16], for the amino acid GLY.

The Ramachandran plot is now commonly used as a quick method of viewing a torsion
angle space in specific contexts. For example, instead of a plot for all possible conformations
of the amino acid ALA, a modern Ramachandran plot will show all possible conformations
of ALA in a particular protein. These types of plot can be generated in real time from the
PDB website [3].

Areas on the Ramachandran plot represent possible secondary structures for that residue
pair. Figure 2.2 provides labels for some common structures. Secondary structures are not
necessarily apparent from just viewing a Ramachandran plot, however. This would require
a set of plots that represent a sequence of amino acids. For example, one point that lies
within the α-helix region may actually be part of a more complicated turn which happens
to pass through that conformational space.

2.4 Structure prediction algorithms

2.4.1 Secondary structure prediction

Ab initio secondary structure prediction algorithms date back 30 years to when the first
databases of protein structure were created. It was theorized that protein conformation
could be defined using this limited search space by simplifying complex protein structure to
basic secondary structural elements. Commonly, prediction algorithms map an input of a
sequence of amino acids into members of a 3-state representation from the set {α-helix, β-
sheet, coil} or more recently to members of an 8-state representation from the set {α-helix,
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β-sheet, 3-helix, π-helix, turn, bend, strand, random}). Properties of the protein can then
be gleaned by comparing the arrangement of the predicted secondary structures against
known structural motifs.

The Chou-Fasman [4] and GOR [8] algorithms are the earliest attempts and are the pre-
cursors to modern prediction algorithms. Chou-Fasman used a simple table of propensities
for a particular amino acid to be found in secondary structural states. The propensities
themselves were originally calculated using a database of 29 proteins, which represented all
the available structures at the time. GOR, using a similar heuristic of structural propen-
sity, expanded on the Chou-Fasman algorithm by introducing a sliding window which took
into account the effects of amino acids at longer range. These algorithms demonstrated the
validity of this mode of reasoning by achieving around 55% accuracy in 3-state prediction.
Though simplistic, both algorithms could predict states at greater than random rates. How-
ever, it was obvious that more complicated techniques would have to be devised to reach
useful levels of prediction accuracy.

A few selected, modern secondary structure-prediction algorithms are described below.
They are generally considered the best in their field [5, 22].

PSIPRED

Created in 1999, PSIPRED [13] utilizes a simple model of two feed-forward neural networks
to predict secondary structure. PSIPRED uses results from PSI-BLAST [1], a popular
bioinformatics program that statistically matches amino acid sequences. When an input
sequence is entered into PSIPRED, it performs a PSI-BLAST search on that sequence
to obtain any similar sequences from the PDB. It then averages the resulting secondary
structures using a neural network to provide a prediction for the original input. The system
is remarkably simple and is able to achieve consistent accuracy rates of 76%, similar to more
complicated techniques.

Predator

The Predator algorithm was originally developed by Frishman and Argos in 1996 [7], and
has since been improved upon [22]. It boasts a 75% accuracy rate for 3-state secondary-
structure prediction. Predator was designed to combine a local nearest-neighbour approach
with the effects of long-range interactions. Hydrogen-bonding propensities calculated from
a non-redundant derivative of PDB are the critical component of Predator.

Predator uses seven statistical measures per residue of the input sequence to determine
secondary structure. Three measures are related to long-range hydrogen-bonding propen-
sities. Another three are based on secondary structural propensities acquired from protein
structure data. The seventh incorporates an amino acid window of length four to provide
a probability of a turn. A decision tree is then used to combine the seven measures and
predict the structure.

SSPro

SSPro was originally developed in 1999 as a 3-state prediction algorithm [2] and was later
improved in 2002 to produce 8-state predictions (and renamed SSPro8) [19]. SSPro employs
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a neural network to learn secondary structural states for amino-acid sequences from previ-
ously acquired data. The network consists of 11 bidirectional recurrent neural networks that
transfer information between the input and the output sequence. It functions with a sliding
window on the input sequence. Essentially this means that the output being produced from
SSPro is fed back into the system to influence later results.

SSPro is trained on a derivative of the PDB which has sequence and structure homo-
logues removed. This is done to keep the neural network from becoming over-trained on
particular sequences. For example, the dataset used for the original SSPro contained only
1180 structures. SSPro and SSPro8 both have accuracy in the 80% range on independent
test sets.

Secondary-structure prediction algorithms have advanced significantly since the original
implementations. The results obtained by any of these methods are moderately useful in
terms of providing better understanding of protein structure and possibly function. However,
the usefulness of predictions supplied by these processes are severely restricted due to the
inherently limited conformation space to which they map. For example, much information
is lost by the abstraction that an α-helix is a single state. All of the above methods also use
limited derivatives of the PDB, for reasons which may be valid related to the methodology
of the approach, but nonetheless place artificial limits on the data available.

2.4.2 Comparative modeling

Comparative modeling is a class of structural-assembly algorithms that rely on determining
substructures or simple structural alphabets from which proteins can be formed. This is in
contrast to the ab initio approach.

SwissModel

SwissModel [23] is a complex 3-dimensional protein-modelling application developed by the
Swiss Institute of Bioinformatics. SwissModel takes a sequence of amino acids as input
and attempts to assemble a 3-dimensional representation by finding homologous structures
within the PDB. The algorithm breaks the input sequence into segments of at least 20
amino acids long and performs a BLAST search in the PDB to find similar sequences [1].
3-dimensional structure(s) for each subsequence returned from BLAST are then taken from
the PDB data. The algorithm attempts to combinatorially join all structures together based
on their conformations. The final stage then filters structures by physical plausibility.

SwissModel can generate very accurate 3-dimensional representations of protein struc-
ture. The major limitation of this approach is that proteins with large areas of structural
homology must already exist in the PDB. SwissModel does not perform any generalization,
abstraction or extrapolation.

Comparative modeling is effective in generating accurate and complete (that is, 3-
dimensional) conformations. The results from a comparative modeling approach are more
useful than results obtained from secondary-structure prediction (secondary structure is
below 3-dimensional conformation in the protein structure hierarchy). Many comparative
modeling techniques exist. However, they all suffer from the same limitation. Large struc-
tural homologues must already exist in a database. This narrows the generality of a compar-
ative modeling approach; only conformations of proteins similar to those already discovered
can be predicted.
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2.5 Matrix decompositions

Matrix decompositions are relatively simple procedures which can yield powerful insights
into structure within data. They are employed in the field of data mining as unsupervised
methods of classification, pattern recognition and structural analysis [25]. They are termed
decompositions since they involve separating an input dataset into several components,
each of which contains information on aspects of the original data. Two well-known matrix
decompositions used in this study are described below.

2.5.1 Singular Value Decomposition

The singular value decomposition (SVD) of a matrix A is:

A = USV T (2.1)

where T indicates the transpose. If A is an n × m matrix; U is an n × m matrix, S is a
diagonal matrix of m×m with non-increasing values (the singular values σ1,...,σm) and V
is a m×m matrix.

SVD has the property of rotating the original space of the matrix A so that variance
is maximized in the earliest dimensions. The greatest variance from the data is maximized
and represented in the first column of U , the greatest remaining variance is maximized in
the second column of U and so on. The magnitude of the singular values contained in S
can be used as a measure of how much variation is contained in each respective column [25].
Specifically, let f be the contribution of a singular value; then:

fk = σ2
k/

r∑

i=1

σ2
i (2.2)

This property of SVD has two applications in this study. First, as the greatest amount
of variance has been captured in the earliest dimensions, these dimensions can be considered
to contain the minimal set of components which still accurately describe the data. Values in
the later dimensions contain components which are not useful in describing the dataset or
are very weakly related to the main structure of the dataset. By examining the contribution
of each singular value, a value of k can be found as a dimension at which to truncate the
decomposed matrices. By truncating the decomposed matrices at k and then re-multiplying
them (as in Equation 2.3), a matrix of similar shape (i.e. n×m) to A is found but with the
effects of the weak components removed. Essentially a ‘noise’-reduced version of A results.

A′ = UkSkV T
k (2.3)

Second, SVD can also be used as a clustering technique. When k < 4, using the same
definition of k as above, the columns of US can be directly plotted for a visual, geometrical
analysis. Essentially, the Euclidean distance of two points in this new space can be used
to determine the similarity between them; points which are proximal are similar. Should
different classes of objects exist within the data, clusters of points will emerge.

SVD has been used as an image compression technique, as a noise filter and is often used
in web-search engine algorithms [25]. It has more recently been employed in the field of
bioinformatics to analyze gene-expression microarrays [28] and in protein folding dynamics
simulations [26].

12



2.5.2 SemiDiscrete Decomposition

The SemiDiscrete Decomposition (SDD) of dimension j of an n×m matrix A is expressed:

Aj = XjDjYj (2.4)

where the entries of the X, D ε {−1, 0,+1}, X is n×j, D is a diagonal j×j matrix and Y is
j×m. SDD is an iterative algorithm which attempts to find j clusters within the data. SDD
is a bump-hunting technique, finding the most significant area or ‘bump’ within a matrix.
SDD then removes the bump and then repeats this process j times, if possible. SDD creates
a matrix, X, whose rows represent the original rows of matrix A but are ternary classified
({−1, 0,+1}) per column. The classes −1 and +1 are in some sense opposites, while 0 is a
neutral (i.e. not related to class −1 or +1) class for a particular level [25].

This classification can be interpreted as a j-deep hierarchy of classes with 3j−1 different
possible class labels. For example, consider the following X matrix:




+1 +1 +1
+1 −1 −1
−1 +1 0
...




which produces the class hierarchy in Figure 2.3:

(-1) (0) (+1)

(-1,+1)

(-1,+1,0)

(+1,+1)

(+1,+1,-1) (+1,+1,+1)

Figure 2.3: A possible class hierarchy that could be generated from SDD.

For many datasets SDD and SVD will agree on the clusters to be found in the data. This
is important because the clusters are obtained from SDD much faster than from SVD. Even
though SVD reduces the dimensionality of the original data, it still requires a k-dimensional
distance calculation per n points to determine clusters. SDD returns a classification tree
directly.

SDD is used as a memory efficient replacement for SVD in the field of image process-
ing [31]. SDD is often used in areas similar to those of SVD.

2.6 Dynamic programming

Dynamic programming is a methodology employed to reduce the time required to find
solutions to complex problems. Problems which exhibit the properties of overlapping sub-
problems and optimal substructure can be solved using this method. When solutions to
large problems can be created by combining solutions to smaller problems, then the overall
complexity depends on the method of attack. If the problem is attacked ‘top-down’ then
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the solution of each subproblem generates a large number of smaller and simpler subprob-
lems to be solved; and each is solved independently. However, the same subproblems are
solved repeatedly because they occur as subproblems in many different contexts. Solving
the problem ‘bottom-up’ is clearly more effective: each small subproblem is solved initially
and their solutions remembered; these small solutions are then used to generate solutions
to many larger subproblems; and the process continues until top-level problems have been
solved. This process finds optimal solutions to top-level problems if these depend on optimal
solutions to their subproblems.

Protein-structure prediction has overlapping subproblems; this has been demonstrated
by comparative modeling approaches. An input sequence of a protein can be broken down
into subsequences for which substructures can be generated and later recombined into a final
structure. We don’t know if proteins exhibit optimal substructure because, so far, there is
no optimal solution to the protein folding problem.

Currently protein structure prediction is an expensive, time-consuming process that
produces inaccurate results. Large databases of protein structure exist, but are not in useful
formats for particular types of study. Current state of the art protein-structure prediction
algorithms show that it is possible to predict structure through amino acid sequence analysis
as well as assembling conformational elements into larger structures. However, both of these
methods are limited.

Well-known data-mining techniques can be applied to information from the PDB. They
have the potential to remove error, noise or unrelated variation from the data. They also
have the potential to find conformational elements related to amino acid sequences which
can then subsequently be used in a dynamic-programming algorithm to create predictions
for large structures.
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Chapter 3

Methodology

This chapter outlines the methods used to create a data-driven, dynamic-programming
protein-structure prediction algorithm. First the PDB is re-structured to allow informa-
tion to be extracted from it. We then show that the range of conformations exhibited by
occurrences of particular short amino acid sequences reflect a small number of possibilities
distorted by noise, rather than a wide range of possibilities. Sets of torsion angles are pro-
cessed using SVD and automatically clustered using SDD. The resulting data from these
steps is used in a dynamic-programming algorithm to build protein structures in a bottom-up
fashion. Figure 3.1 provides an illustration of the methodology involved to acquire data for
the algorithm. Figure 3.2 provides an illustration of protein-structure prediction algorithm.

3.1 Reformatting the PDB

For matrices of torsion angles to be easily extracted from the PDB, a new format is re-
quired. Each individual PDB file from the main file server located at “ftp.rcsb.org/pub/
pdb/data/structures/all/pdb/” was downloaded. This process finished on October 18, 2004.

Each file was unzipped and entered into a bioinformatics program DANG [29]. DANG
accepts any PDB file as input and returns each amino acid in the protein’s sequence with
its respective torsion and rotamer angles. The output of DANG was parsed for each PDB
file and appended to a text file, where one line is one PDB entry, in the following format:

(pdbid)amino1 : φ1 : ψ1 : χ1
1; χ

2
1;χ

3
1; χ

4
1; χ

5
1, amino2 : φ2 : ψ2 : χ1

2;χ
2
2; χ

3
2; ... (3.1)

The χ values represent rotamer angles which are not used in this study but were included
for future studies.

Any PDB file which DANG was unable to process, or was not a protein, was excluded.
A total of 25,288 protein files were parsed and entered into the new dataset.

3.2 Statistical analysis of extracted data

An application was developed to take a sequence of amino acids from the new data set as
input and return every instance of that sequence, along with the related torsion angles, in
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Sequences

SVD

Processed

Sequences

SDD

Clusters

Figure 3.1: A diagram of the methodology employed.

comma delimited format. The output corresponds to an n×m matrix where n is the number
of occurrences of that sequence in the data and m is the number of torsion angles. Each of
the n rows is one structure and each pair of columns are the φ and ψ angles between a pair
of amino acids. For example, a sequence of amino acids:

A−B − C −D (3.2)

would produce the matrix,



φ1
AB ψ1

AB φ1
BC ψ1

BC φ1
CD ψ1

CD

φ2
AB ψ2

AB φ2
BC ψ2

BC φ2
CD ψ2

CD

...
φn

AB ψn
AB φn

BC ψn
BC φn

CD ψn
CD




As an example of an actual instance, 3 rows of the matrix for sequence CYS-THR-ALA,
which corresponds to 3 occurrences of that sequence in the data, are shown below:




−70.2 149.7 −107.7 −3.6
156.2 119.4 −142.2 141.4
−107.3 140.2 −93.8 −6.7

...




Even this small selection of torsion angles demonstrates the different values, and therefore
conformations, that a short amino acid sequence can take.

Sufficient data on protein subsequences is required for a data-driven protein structure-
prediction algorithm. The length of a sequence (the number of amino acids in a sequence, e.g.
CYS-THR-ALA = length 4) is roughly inversely proportional to the number of occurrences
it will have in the PDB. A simple assumption is that each amino acid added to a sequence
will reduce the rate of occurrence by a factor of 20 (since there are 20 amino acids). For
example, if A-B-C has 100 occurrences then A-B-C-D will probably have 5 occurrences. A
brief, preliminary analysis of the rate of occurrences for sequences of length 5 showed the
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Figure 3.2: A diagram of the algorithm developed to predict protein structure.

frequency to be less than 20 for some combinations of amino acids. This was considered just
below the threshold of a useful amount of data. Sequences of length 3 and length 4 were
chosen as the basis of our process to maximize the availability of data.

Every possible combination of length 3 and length 4 amino acid sequences were extracted
from the data set and saved. There are 203 = 8000 combinations of length three and
204 = 160, 000 combinations of length four.

3.3 Aside: Translating torsion angles

All torsion angles are translated to ensure more appropriate clustering results before any of
the matrix decompositions are performed. A known problem in clustering torsion angles is
that the values wrap around; -180o is identical to 180o. Any numerical clustering technique
will treat these values as very far apart. To counteract this effect, it is possible to shift
the values of the torsion angles so that the wrap-around effect is minimized. The φ angle
is translated −30o and the ψ angle is translated +30o for each entry. An illustration of
the effect is shown in Figure 3.3; the entire plot is shifted to place the angle discontinuities
in areas of low density. While this does not completely eliminate the problem it reduces
its effect. When torsion angles are subsequently analyzed after some procedure, they are
shifted back +30o in the φ angle and −30o in the ψ angle.
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(a) (b)

Figure 3.3: (a) Ramachandran plot of 519,024 torsion angles independent of residue type.
Areas of high density that correspond to common secondary structural elements can be seen
to wrap around the plot. (b) The same Ramachandran plot translated by −30o in the φ
angle an +30o in the ψ angle, which minimizes the wrap-around effect.

3.4 Exploring conformational variation with SVD

The native SVD function supplied by MatLab 6.5r13 was used to calculate the decomposition
of every individual length 3 and length 4 matrix. A random sample of sequences were chosen
for analysis to obtain a representative result set for both length 3 and length 4.

The U matrix (resulting from the decomposition, see Equation 2.1), was inspected ge-
ometrically by plotting the first three columns. (If the magnitude of the singular values
related to the U matrix drops significantly after the second value, only the first two columns
were plotted.)

Clusters of points were then observed visually. An approximate 3-dimensional volume
was created to represent an observed cluster by selecting points near its edge (see Fig-
ure 3.4.a). Since the U matrix produced for an input matrix A has the row order preserved
(e.g. row x of U represents row x of A), the rows of the selected points map directly to
the original input values (see Figure 3.4.b). The original entries in A were then used to
generate an approximate area on a Ramachandran plot for each torsion angle pair in the
sequence that A represents (see Figure 3.4.c). The series of Ramachandran plots obtained in
this fashion were then analyzed to observe resulting structures. Since this requires extensive
human interaction to complete, this step was not automated but used in an exploratory way
to determine the effects of matrix decompositions on this data. Clearly this methodology is
time intensive and does not scale.
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Figure 3.4: A diagram showing how an SVD cluster analysis is performed.

3.5 Obtaining canonical torsion angles with SVD

The torsion-angle data provided in the PDB contains sources of error. An inherent level of
error results from the structural determination methods used to acquire PDB data. Exper-
imental error due to the human interaction component of determination methods may also
be introduced (see Section 2.1). Other sources can influence torsion angle data for specific
sets, for example, long range structural interactions or effects of other residues further down
the protein backbone. Sources of variation may obscure conformational structure by intro-
ducing irrelevant variation. It may be possible to remove some of these effects and produce
clearer sets of torsion angles for specific amino-acid sequences.

The singular values contained in diagonal of the S matrix were examined. A quick
visual analysis was performed by plotting the singular values on a scree plot to see if and
where the magnitude of the singular values dropped significantly. A value, k, could then
be determined at which to truncate the decomposed matrices. Dimensions equal to and
less than k should contain a reduced set of components which still accurately describe the
original data. The truncated, decomposed matrices were re-multiplied to obtain a matrix
Ak of similar shape to A (See Equation 2.3). Ramachandran plots were then generated
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from Ak and compared to Ramachandran plots generated from A to examine the effect of
decomposition and truncation.

It was determined from the results that SVD was removing variation unrelated to main
structure and providing a set of canonical torsion angles. The SVD truncation process was
subsequently automated for the entire set of 168,000 extracted sequences. Thee truncation
value k was chosen independently for each sequence by examining the contribution of each
singular value using Equation 2.2. A threshold value was determined experimentally from
the manual examination above; k was chosen so that fk < 0.05.

3.6 Obtaining structures with SDD

The results from Section 3.4 indicated that structural possibilities can be obtained using
matrix decompositions. The step in Section 3.5 produced clearer versions of the original
data. Generalized conformational possibilities for every possible combination of amino acids
are required as the basis of a protein assembly algorithm. The conformations determined
by a decomposition can potentially be found by hand for a specific sequence, but doing so
for all 168,000 sets is not feasible. A method to quickly and easily automate this process
was required. Subsequently, SDDPACK by Kolda and O’Leary [17] was used in MatLab
v6.5r13 to perform the decomposition of every resulting Ak matrix from Section 3.5.

The clustering results of SDD and SVD were compared to determine their similarity.
The first three columns of the resulting U matrix obtained from SVD were used to create
a 3-dimensional plot for geometrical interpretation. Cluster labels from SDD were used to
plot the points of the 3-dimensional graph as particular colours and shapes. This allows a
quick visual analysis to determine the degree to which the clustering methods agree; if the
SDD colours and shapes are grouped in the SVD clusters, then they produce similar results.
Only a small, randomly selected fraction of all sequences were examined in this fashion to
obtain a generalized conclusion. The results indicated that SDD and SVD obtained similar
clustering effects.

The first three columns of the X matrix (resulting from the decomposition, see Equa-
tion 2.4) were used to determine a class hierarchy. Since the X matrix produced for an input
matrix A has the row order preserved (e.g. row x of X represents row x of A), a direct map-
ping of the SDD cluster labels to the original structures in A is possible (see Figure 3.5.a).
Using the ternary class labels of the 1st column of X, every entry in A was entered into one
cluster labeled (−1), (0) or (+1). Using the labels of the 1st and 2nd columns of X, every
entry in A was entered into one cluster labeled (−1,−1), (−1, 0), (−1, +1), ..., (+1, +1).
Using the labels of the 1st, 2nd and 3rd columns of X, every entry in A was entered into
one cluster labeled (−1,−1,−1), ..., (+1,+1, +1). Since this is a hierarchical method, every
member of a child class will also belong to its respective parent. Figure 3.5.b demonstrates
this concept visually using only 2 columns for simplicity.

For each SDD cluster label a subset of the original matrix A is produced. For example,
assume an SDD was performed on a matrix A which represented the amino acid sequence
A−B − C −D, for each cluster the following would be obtained:
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X A

(-1) (0) (+1)-1       -1      +1

-1       -1        0

-1        0      +1

-1        0      +1

a

b
c

d

{a,b,c,d}

(-1,-1) (-1,0) (-1,+1)

{a,b} {c,d}

{b}

(-1,-1,-1) (-1,-1,0) (-1,-1,+1)

{a}

a) b)

Figure 3.5: A visual representation of using SDD cluster labels to create a class hierarchy.
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Figure 3.6: A hypothetical set of clusters obtained from a SDD decomposition on a sequence
A-B-C where each different shade on the plot corresponds to an individual cluster. The
ellipse has a centroid at the mean values for a cluster while the area of the ellipse represents
the range of conformational possibilities provided by the respective standard deviations.
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Listing 3.1 Pseudo-code for the filter applied to a hierarchy obtained using SDD as a
clusterer.

if j < 5
disregard this cluster and its children

if standard deviation > 20o for any φ or ψ
apply filter to cluster’s children

else
this cluster is a valid structure




φ1
AB ψ1

AB φ1
BC ψ1

BC φ1
CD ψ1

CD

φ2
AB ψ2

AB φ2
BC ψ2

BC φ2
CD ψ2

CD

...

φj
AB ψj

AB φj
BC ψj

BC φn
CD ψj

CD




where j represents the number of entries in A which were found to belong to that cluster
and 0 ≤ j ≤ n (see Section 3.2 for the original description of A). Independently, for each
cluster, the resulting values were aggregated together by calculating the mean and standard
deviation of each column. This corresponds to obtaining one general structural possibility
that each cluster may represent. The mean of each φ, ψ pair corresponds to a point on
a Ramachandran plot and the respective standard deviations define an area around that
point. Figure 3.6 provides an illustration of this concept. The filter shown in Listing 3.1
was then applied to the hierarchy, starting from the top clusters.

Clusters will be eliminated because of the threshold on j in the filter. The purpose of
the SDD clustering step is to find generalized structural possibilities; any cluster smaller
than the threshold on j would represent a rare conformation in the PDB data.

The threshold value for the standard deviation was chosen to obtain valid structures.
SDD could potentially group outliers together in some clusters, e.g. structures which are
not similar to any other cluster or each other. This would correspond to points from vary-
ing locations on a set of Ramachandran plots and therefore high standard deviations. The
threshold value for the standard deviation was also chosen to use the best structures avail-
able. Since SDD provides a class hierarchy, each child provides a more refined separation of
structures than its parent. More accurate clusters are obtained by moving down the class
hierarchy to values with lower standard deviation. For example, a parent may have children
that represent subtly different conformations.

Each valid cluster left after application of the filter was saved to a data file. The output
file for sequence A-B-C (and similarly for sequences of length 4), where one row represents
one cluster, has the following format:

φAB , ψAB , stdφAB , stdψAB , φBC , ψBC , stdφBC , stdψBC , j,
j

n
, clusterid (3.3)
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3.7 Using dynamic programming to predict protein struc-
ture

The protein-structure prediction algorithm was developed using a dynamic-programming
approach. It will be referred to as SVD/SDD Protein Assembly Algorithm, or SPAA, for
ease of reference. SPAA accepts a string of amino acids as input and returns a set of
predictions for that sequence in the form of torsion angles. A detailed explanation of how
SPAA works can be found in the pseudo-code version in Section 3.7.2.

SPAA functions by splitting the input sequence into its respective subsequences of length
3 and 4 and then using the clusters obtained in the previous steps to build the structure in
a bottom-up fashion. For example, if the input sequence is A-B-C-D-E-F-G-H, SPAA will
split it into {A-B-C, B-C-D, C-D-E, D-E-F, E-F-G, F-G-H, A-B-C-D, B-C-D-E, C-D-E-F,
D-E-F-G, E-F-G-H }.

SPAA begins building from the subsequences of length 4. Following the previous exam-
ple, this would be {A-B-C-D, B-C-D-E, C-D-E-F, D-E-F-G, E-F-G-H }. SPAA iteratively
attempts to extend each structure it has obtained with the appropriate clusters using se-
quences of length 4 first (see Combining Clusters: Section 3.7.1 for a detailed explanation
of this process). If none of those clusters have conformations that agree for the overlapping
amino acids, it will then attempt to use clusters from sequences of length 3. For example,
starting with subsequence C-D-E-F, SPAA will try to extend it with A-B-C-D to make A-B-
C-D-E-F and E-F-G-H to make C-D-E-F-G-H. If no matching structures in the overlapped
region can be found, SPAA will try to extend C-D-E-F with B-C-D to make B-C-D-E-F
and with E-F-G to make C-D-E-F-G. Any valid structures obtained are entered back into
a set for SPAA to extend again on the next iteration.

Clusters for sequences of length 4 are used first as they contain greater context than
sequences of length 3; they contain conformations related to a more specific sequence of
amino acids. The clusters for length 3 contain less contextually relevant conformations and
will create weaker predictions. This is a design choice resulting from lack of data. If enough
sequences of length 5 had been available, SPAA would have utilized those first instead.

SPAA uses every subsequence of length 4 as the base structures. This design choice was
made because early prototypes of SPAA were unable to generate entire structures for large
sequences, failing at arbitrary points within an input sequence. Because of the low frequency
of some conformations in the data, an early version was unable to return useful predictions.
It was decided that by ‘growing’ every piece of the protein independently, almost complete
structures could be generated leaving gaps only at weak spots. This design choice means
that SPAA may return pieces of a protein rather than a whole structure.

3.7.1 Combining clusters

It is possible to assemble larger structures from the data produced in Section 3.6. Sequences
can be joined together by overlapping similar amino acids. For example, A−B−C−D and
C −D − E − F can be overlapped on C −D. If clusters for the common pair have similar
torsion angles, then larger structures that represent A−B − C −D − E − F can be built.
Figure 3.7 illustrates this concept and a formal description of the procedure is found below.

Let γ represent a cluster as defined in Equation 3.3 and Γz represent the domain of
clusters for sequence z, so that γ ε Γ. Let φ, ψ, stdφ, stdψ represent similar variables as
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Figure 3.7: Hypothetical clusters obtained for the B-C bond of sequence A-B-C and B-C-D
shown on a Ramachandran plot. The light areas represent clusters for one sequence and the
dark areas for the other. Structures can be joined together where the light and dark areas
overlap.

defined in Equation 3.3. Then γz
XY represents the torsion angle pair corresponding to the

X − Y bond of a cluster for amino acid sequence z. Then define;

γw
XY ≡ γz

XY (3.4)

iff
stdφw

XY < |φw
XY − φz

XY | or stdφz
XY < |φw

XY − φz
XY | (3.5)

and
stdψw

XY < |ψw
XY − ψz

XY | or stdψz
XY < |ψw

XY − ψz
XY | (3.6)

Let a be any arbitrary sequence of amino acids A−B−C−D and let b be any arbitrary
sequence of amino acids C − D − E − F . Two sequences can be combined where any
γa

CD ≡ γb
CD with the resulting longer sequence A−B − C −D − E − F taking the form:

φa
AB , ψa

AB , φa
BC , ψa

BC ,
φa

CD + φb
CD

2
,
ψa

CD + ψb
CD

2
, φb

DE , ψb
DE , φb

EF , ψb
EF (3.7)

3.7.2 Pseudo-code for SPAA

Listing 3.7.2 contains a pseudo-code version of the SPAA algorithm. The version of SPAA
used in this study was implemented in Java 1.42 08.

3.7.3 Potential problems with SPAA

Based on the methodology used to acquire data for SPAA, the algorithm has potential points
of failure.
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Listing 3.2 Pseudo-code for SPAA
SPAA(string Sequence)

Sub_Sequence3[] = split Sequence into all possible sub-sequences of length 3

Sub_Sequence4[] = split Sequence into all possible sub-sequences of length 4

//Load every cluster for each sub-sequence, it is assumed BaseStructures

//retains the name of the sequence for each cluster for reference later

BaseStructures3 = loadClusters( Sub_Sequence3 )

BaseStructures4 = loadClusters( Sub_Sequence4 )

//Start the prediction using the sequences of length 4 as the basis

Predictions.addAll( BaseStructures4 )

do until (all Predictions.flag == true)

CurrentPrediction = Predictions.removeNextWithNoFlag

wasExtended = false

//Get the clusters for the next relevent four amino acids in the input sequence

Extension[] = BaseStructures.get( CurrentPrediction.getNext4 )

GOTO ExtendR

Extension[] = BaseStructures.get( CurrentPrediction.getPrev4 )

GOTO ExtendL

//If no sequence of length 4 could extend the prediction, try length 3

if !wasExtended

Extension[] = BaseStructures.get( CurrentPrediction.getNext3 )

GOTO ExtendR

Extension[] = BaseStructures.get( CurrentPrediction.getPrev3 )

GOTO ExtendL

end if

//If no length 4 OR length 3 could extend the prediction, and this

//prediction is 10 or more amino acids long flag the prediction as

//finished and save it

if !wasExtended and CurrentPrediction.length > 10

CurrentPrediction.flag = true;

Predictions.add( CurrentPrediction )

end if

loop

output(Predictions)

end

ExtendL:, ExtendR:

for j:=1 to size of Extension

//Use the Combining Clusters method to see if a structure can be extended

if endBond( CurrentPrediction ) == firstBond( Extension[j] ) //If ExtendR

if endBond( Extension[j] ) == firstBond( CurrentPrediction ) //If ExtendL

//Extend the current prediction with the base structure

NewPrediction = join( CurrentPrediction, Extension[j] )

Predictions.add( NewPrediction )

wasExtended = true

end if

end for

return
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Weak areas in the data

Any data-driven algorithm must rely on the available data. The probability of error will
increase drastically for any area in which the amount of data is below average. This is true
for the SPAA algorithm; input that contains sequences of amino acids with less than average
frequency within the PDB will be difficult to predict. There are amino acid sequences of
length 4 for which there are no examples in the PDB. Any input sequence into SPAA
containing one of these sets cannot be predicted. For input sequences with less than average
frequency, the ability of SPAA to correctly suggest structures will diminish and SPAA may
fail to return any prediction. This weakness is a problem with the amount of data available
and can be corrected by acquiring more protein structures.

An amount of confidence in the accuracy of SPAA’s predictions can therefore be related
to the amount of available data for an input sequence. More specifically, it is linked to the
sequences of length 4 into which an input sequence is split, since the algorithm uses these
as its base and to extend structures first. Sequences of length 4 that have less than half the
mean value of occurrences for all sequences of length 4 are considered weak. Sequences with
occurrences greater than this amount are considered normal. As the percentage of weak
vs. normal sequences increases for an input sequence, the confidence in SPAA’s prediction
decreases.

Non-standard conformations

Areas of potential failure are introduced by the way in which data is processed by the SPAA
algorithm. Canonical bond angles provided by SVD will be translated from the original
values. Conformations which are very non-standard may be eliminated from the possible
range of torsion angles that SPAA can suggest. See Figure 3.8 for an illustration of this
effect. This is partly an effect of the SVD truncation process, the consequences of which are
not clear. The PDB web source itself makes note of irregular torsion angle entries, indicating
only that there are potential errors [3]. As the source of the information used in the study
is unclear as to nature of these errors, no definitive conclusion can be drawn about how well
SPAA will function in a scenario like this. However, it is clear that SPAA will be unable to
predict these types of torsion angles. SPAA will appear to have failed from the viewpoint
of validating results against the PDB.

Some conformations which result from amino acid sequences larger than the window
size of 4 amino acids may also be eliminated. Rare structures which result from long-range
interactions or long amino acid sequences could potentially be removed since the context
of the clusters is limited. From the viewpoint of the methodology they will appear as
non-standard conformations.

Small and/or weak clusters

Due to weak distributions of particular conformations for individual sequences and the
clustering step employed to process data, points of failure are introduced. Clustering, by
definition, attempts to group similar objects together. However, when there are relatively
few objects available they may not be recognized as a cluster, which in this study means the
data will be discarded. The methods in Section 3.6 also involve discarding clusters which
are deemed insignificant or unreliable due to high standard deviations. This removal of data
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Cluster

Filtered point

Figure 3.8: An hypothetical illustration depicting a close up of an area on a Ramachandran
plot with a cluster obtained for SPAA in grey, occurrences the cluster represents and a stray
occurrence which was filtered.

means that any structures which rely on these torsion angles will no longer be accurately
predicted. This loss is necessary to achieve the generality of the algorithm, however, and
cannot be avoided. See Figure 3.9 for an illustration of this effect.

phi

p
s
i

Cluster

Filtered cluster

Figure 3.9: An hypothetical illustration depicting a close up of an area on a Ramachan-
dran plot with a cluster obtained for SPAA in grey, occurrences the cluster represents and
occurrences which represent another potential cluster which was eliminated.

In recognition of these sources of potential error the standard format for displaying
structural conformations of proteins has been amended. Figure 3.10 demonstrates changes
that have been made to accommodate SPAA structural predictions. This format is used in
the results and in several Appendices for quick information display.
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1   ABCDEFGHIJ ABCDEFGHIJ

            hHHh gGG g  tTTt         

   oOOOo WWW WWNC?? ooo 

Amino Acid sequence

G 3/10 helix

g extension of 3/10 helix

H alpha-helix

h extension of alpha-helix

I pi-helix

B  isolated beta-bridge

E extended strand

e extension of beta-strand

S  bend

T turn O Predicted correctly,  RMSD<10

o Predicted correctly,  RMSD90<10

W Not predicted, due to weak data

N Not predicted, non standard conformation

C Not predicted, small and/or weak cluster

? Not predicted, unknown reason

Secondary Structure

Appended Details

Results of SPAA

Figure 3.10: The standard sequence/structure chart employed by the PDB website [3] and
others is extended by adding designations to points of failure or problems of the SPAA
algorithm.

3.8 Comparing actual and predicted conformations

An application was written that can return sets of torsion angles representing the structure
for any arbitrary sequence of amino acids from the PDB data file created in Section 3.1.
It can also accept as input a set of torsion angles to check against the values it finds and
determine their similarity. The root mean square distance (RMSD) is used to measure
the difference between two sets of torsion angles. Equation 3.8 shows how the RMSD is
calculated. Structures with low RMSD between actual and predicted values are considered
to be similar and therefore constitute a successful prediction for that protein sequence.

Calculating the RMSD in this way will tend to underestimate the validity of the pre-
diction should there be some predicted torsion angle pairs that are very distant from the
actual angles. Thus an option to minimize this effect by ignoring the largest 10% of dis-
tances between individual torsion angle pairs. For example, for a protein sequence of 200
amino acids, up to 20 torsion angle pairs with bad predictions can be ignored. This will
be referred to as RMSD90 for ease of reference. The RMSD can then be compared to the
RMSD90 to further determine the validity of a prediction. If RMSD is high and RMSD90
is high, then the prediction is invalid. If RMSD is high and RMSD90 is significantly lower,
then the prediction is good. If the both RMSD and RMSD90 are low then the prediction is
very good.

RMSD =

√√√√ 1
2N

N∑

i=1

((φi
predicted − φi

actual)2 + (ψi
predicted − ψi

actual)2) (3.8)

Root mean square distance should not be confused with root mean square deviation, a
commonly used method to judge similarity between atomic coordinates of PDB entries.

28



3.8.1 Multiple predictions for short sequences

SPAA can potentially produce multiple predictions for an arbitrary input, particularly for
short sequences. Sequences of approximately 10 amino acids long which exist in the PDB will
be selected as test input. The output of SPAA will be compared against actual structures
to verify that at least one of SPAA’s predictions exists in the PDB. This will demonstrate
SPAA’s ability to predict potential and/or novel structures through dynamic extrapolation
from the base data.

3.8.2 Predicting pieces of proteins

Sequences of entire proteins will be selected as input into SPAA to determine its ability to
assemble complex structures. SPAA is known to have limitations and cannot be expected
to produce an entire structure for large proteins (e.g. greater than 50 amino acids). It
has the feature that it returns the largest substructures it was able to assemble. These
substructures will be displayed using a Sequence/Structure Chart (see Figure 3.10). SPAA’s
ability to generate complex conformations (e.g. beyond α-helices and β-sheets determined
by conventional methods) can then be easily explored, along with the areas of failure.

Sequences of proteins used in building the dataset will be used as input to SPAA. This
will determine SPAA’s ability to build structures about which it already has information.
Sequences of proteins that have been added to the PDB after the data set was created will
be used as test input for SPAA. This will determine SPAA’s ability to predict structures
about which it has no information.

3.8.3 Prediction of an entire protein

An attempt to predict the entire structure for a small protein with SPAA will be made.
This will demonstrate the potential of the algorithm to produce entire, real-world examples
of protein structure. Proteins of lengths less than 50 amino acids will be considered given
SPAA’s limitations.

The methodology outlined in this chapter is illustrated in Figure 3.1. Every sequence
of length 3 and 4 is extracted from the newly formatted version of the PDB. SVD is then
applied to selected sequences to produce canonical bond angles from which SDD is used
to cluster conformational possibilities. The resulting clusters are then used in a dynamic-
programming algorithm to accept amino acid sequences as input and provide predictions in
the form of torsion angles.
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Chapter 4

Results

This chapter provides detailed results obtained for each step outlined in the Chapter 3.
An analysis of the extracted PDB data is presented to provide an understanding of the
nature of the information used in this study. Results showing the usefulness of SVD as a
denoising technique are demonstrated, as well as its ability to cluster structural elements of
amino-acid sequences. The effects of SDD’s clustering ability are parallel to SVD’s, so SDD
is employed as an unsupervised, automated protein-structure clustering mechanism. The
results of several different input sequences of amino acids into SPAA are shown, as well as
the prediction of an entire protein structure.

All run times that are provided were obtained using a Pentium-IV 2.6GHz with 2.0GB
of RAM running Windows 2003 Server.

4.1 Statistical analysis of extracted data

From the newly created version of the PDB a total of 13,425,234 sequences of length three
and 13,401,684 sequences of length 4 were extracted. Figure 4.1 shows a table of statistics
for the extracted sequences.

Number of examples Length 3 Length 4
Range 4 – 11,021 0 – 1705
Mean 1650 104

Median 1250 67

Figure 4.1: Statistics for the sequences extracted from the new PDB format.

The rarity of particular amino-acid sequences partly results from the encoding scheme
of nucleotides. For instance the amino acid SER has six nucleotide codons associated with
it and PHE has two (see Figure 1.2). The sequence SER-SER-SER has 5010 occurrences
while PHE-PHE-PHE has only 651 occurrences. Of course, the physicochemical properties
of each amino acid also affect the abundance of certain sequences. For instance, ALA and
VAL are hydrophobic whereas PRO is hydrophilic; it would be assumed that sequences
containing ALA and VAL would be naturally more abundant than sequences with ALA and
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PRO. Indeed this happens: ALA-VAL-ALA has 8389 occurrences and ALA-PRO-ALA has
3429 occurrences. There is also the inherent bias of the PDB and structural determination
methods favouring proteins of particular classes over others (see Section 2.2, Section 2.1).

This quick analysis of distributions of sequences in the PDB demonstrates that some
sequences will cause difficulties for SPAA.

4.2 Exploring conformational variation with SVD

Computing the SVD of a matrix for a sequence of length 3 with number of occurrences
near the mean took 13s. The SVD of a matrix for a sequence of length 4 with number of
occurrences near the mean took 3s.

Figure 4.2 shows scree plots of singular values obtained from SVD on randomly selected
sequences of length 3. Figure 4.3 is similar but for sequences of length 4. The singular values
for both sequences of length 3 and 4 demonstrate a steep decline in the magnitude of the
singular values in the lower dimensions. This indicates that there are a few components that
account for the majority of variance present and that the remaining components account for
little variance. The singular values indicate that the resulting U matrix for most sequences
could be truncated at k = 2 − 3 for sequences of length 3 and k = 3 − 4 for sequences of
length 4. More plots of singular values can be seen in Appendix A.

Figure 4.4 shows 3-dimensional plots of the first 3 columns of the resulting U matrix
from SVD on sequences of length 3 and the subsequent areas on a Ramachandran plot they
represent (see Figure 3.4 for a detailed explanation of this process). Figure 4.5 is similar
but for sequences of length 4. Figure 4.6 shows a standard set of Ramachandran plots for
a specific sequence contrasted with a set of Ramachandran plots with conformational areas
obtained using SVD truncation. More plots of U matrices can be seen in Appendix B and
subsequent Ramachandran plots can be seen in Appendix C.

Limited structural information can be discerned from Figure 4.6.a. There are the appar-
ent structural possibilities of α-helices and β-sheets, but it is not possible to tell which indi-
vidual points are related throughout the set of plots and therefore what conformations are
actually present for that particular sequence. While a Ramachandran plot is only intended
to give conformational ranges for a pair of amino acids, this demonstrates the difficulty of
extracting generalized conformations from the raw PDB data. The SVD clusters shown on
Ramachandran plots in Figure 4.6 tell a drastically different story; four distinct structures
are present. One structure is a standard α-helix and one is a β-sheet. There is also one con-
formation which lies in a non-standard area of the α-helix region and one structure appears
to be a transitional element between secondary structures. Figures 4.4 and 4.5 detail more
examples of SVD’s abilities. The areas on the subsequent Ramachandran plots represent
generalized conformational possibilities for each respective amino-acid sequence. Therefore,
the clusters present in the geometric interpretation are conformational possibilities. These
conformational possibilities can be typical secondary structures, but more importantly, they
can also be unique structural elements for a sequence of amino acids that may be vital for
protein structure prediction.
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Figure 4.2: Scree plots for singular values from SVD on specific sequences of length 3.
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Figure 4.3: Scree plots for singular values from SVD on specific sequences of length 4.
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Figure 4.4: A series of figures showing: a graph of the first 3 columns of a U matrix resulting
from SVD on a specific sequence on the left, a resulting set of Ramachandran plots showing
conformational areas represented by the clusters on the right. Coloured areas represent
similar clusters throughout each set. These figures are for sequences of length 3.
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Figure 4.5: A series of figures showing: a graph of the first 3 columns of a U matrix resulting
from SVD on a specific sequence on the left, a resulting set of Ramachandran plots showing
conformational areas represented by the clusters on the right. Coloured areas represent
similar clusters throughout each set. These figures are for sequences of length 4.
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Figure 4.6: (a) A set of Ramachandran plots for the sequence LEU-VAL-ARG. (b) A set of
Ramachandran plots which has been created from clusters found using SVD on the sequence
LEU-VAL-ARG. The different shades indicate similar clusters throughout the set. The dark
grey cluster suggests an α helix between LEU − V AL and a sheet between V AL − ARG.
The black cluster suggest an α-helix with a different range of torsion angles than the grey
cluster between LEU − V AL and remains an α-helix between V AL − ARG. These types
of conformation are not intuitive from the original Ramachandran plot
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4.3 Obtaining canonical torsion angles with SVD

Truncating a resulting set of matrices produced from SVD at a value k and re-multiplying
them will produce a canonical version of the original matrix (see Equation 2.3). The canon-
ical version can than be investigated to see the effects of truncation.

Figure 4.7 compares a standard Ramachandran plot for selected sequences to a Ra-
machandran plot generated with data that has been decomposed, truncated and re-multiplied
using SVD. The ‘SVD-Ramachandrans’ show that many points have moved towards areas
commonly identified as having higher probabilities (see Figure 2.2). Points also show a
tendency to exhibit tighter grouping. This result implies that SVD successfully removes
components which are unrelated to the local structure of a particular amino-acid sequence.
Therefore, the resulting values can be considered canonical torsion angles from which com-
ponents have been removed that do not effect the main structure of the data.

The source of the weak components cannot be readily deduced but can be speculated
upon. There is an inherent error rate introduced by the physical determination methods
used to obtain protein structures. It is plausible that such errors are normally distributed
so that SVD can distinguish them from the structural components. Another possible source
of variation is the interaction of amino acids outside the window size of the sequence; and
physicochemical influences propagating through the protein backbone. Minor variations
in the torsion angles introduced from amino acids outside the window would introduce
variance unrelated to the most significant structure. There may be other potential sources
for the removed components, but the results of viewing the canonical torsion angles on
Ramachandran plots indicates that these sources are best accounted for as noise.

Denoising a set of torsion angles for a specific sequence of amino acids can be viewed
as obtaining a clearer picture of the fundamental structural possibilities for that sequence.
Using denoised sets therefore provides a more reliable framework for assembling proteins
from subsequences.

4.3.1 Obtaining structures with SDD

The SDD of a matrix for a sequence of length 3 with number of occurrences near the mean
took 25s. The SVD of a matrix for a sequence of length 4 with number of occurrences near
the mean took 5s.

Figure 4.8 shows the results of SDD compared to the results of SVD for selected se-
quences. SDD obtains near identical results for clustering conformations. SDD actually
provides a more refined separation then is immediately available from SVD since only 3
dimensions can be visualized at a time in SVD. More clusters with refined structures are
sometimes possible with SDD over SVD.

A typical clustering result from SDD performed on a SVD-denoised dataset is shown in
Figure 4.9. SDD finds distinct conformations for sets of amino acids. Like the results from
the SVD clusters, these conformations can represent standard secondary structural elements
or non-typical conformations which may be important to protein structure. The examples
are general results of randomly selected data.

SDD finds conformational possibilities for sequences of amino acids, which have been
denoised using SVD, and which are not obvious from the original data. The structures that
are obtained can represent standard secondary structural possibilities, but more importantly
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Figure 4.7: Ramachandran plots of torsion angles for specific sequences from native PDB
data (left column) compared to Ramachandran plots of canonical bond angles obtained from
SVD (right column).
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Figure 4.8: Demonstration of the clustering ability of SDD vs SVD for selected sequences
of amino acids. The results of SVD are used for position and cluster labels obtained from
SDD are denoted by colours and shapes.
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Figure 4.9: Sets of Ramachandran plots depicting the conformation possibilities obtained
from SDD for the respective sequences. The coloured areas represent similar clusters
throughout each set.
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can represent conformations which may be structurally significant in protein-structure pre-
diction.

4.4 Comparing actual and predicted conformations

The SPAA algorithm uses the structural possibilities obtained for each sequence and at-
tempts to predict protein structure by combining sequences into longer units.

4.4.1 Multiple predictions for short sequences

Figure 4.10 shows predicted torsion angles for the sequence FVAALNAGDL predicted
by SPAA, as well as its actual structure. SPAA suggests 7 distinct possibilities, one of
which very closely resembles the structure determined by traditional methods. The other
6 structures may exist in nature, but have not yet been observed. It took SPAA 35s to
generate these results.

PREDICTIONS FOR FVAALNAGDL

A:  (-60,-54)  (-59,-44)  (-60,-44)  (-63,-37)  (-63,-46) ...

P1: (-65,-45)  (-62,-41)  (-63,-41)  (-64,-41)  (-64,-40) ...

P2: (-65,-45)  (-62,-41)  (-63,-41)  (-64,-41)  (-64,-40) ...

P3: (-65,-45)  (-62,-41)  (-63,-41)  (-64,-41)  (-61,-37) ...

P4: (-65,-45)  (-62,-41)  (-59,-41)  (-66,-18)  (-86,-6)  ...

P5: (-65,-45)  (-62,-41)  (-65,-39)  (-144,141) (-119,127)...

P6: (-65,-45)  (-62,-41)  (-65,-39)  (-144,141) (-118,132)...

P7: (-132,119) (-121,120) (-126,145) (-115,124) (-113,140)...

A:  ... (-63,-31)  (-87,-8)   (67,30)    (-89,83)

P1: ... (-62,-30)  (-91,6)    (60,32)    (-91,85)

P2: ... (-64,-32)  (-76,-14)  (75,36)    (-114,5) 

P3: ... (-102,16)  (-72,3)    (-91,12)   (66,31)

P4: ... (60,36)    (-67,-18)  (75,36)    (-114,5) 

P5: ... (-82,117)  (-94,5)    (60,32)    (-91,85) 

P6: ... (-80,158)  (-57,134)  (85,2)     (-67,129) 

P7: ... (-80,158)  (-57,134)  (85,2)     (-67,129)

Figure 4.10: Several predicted structures for the amino acid sequence FNAALNAGDL are
displayed along with the actual structure. The actual structure and the closest prediction
are in bold.

SPAA can predict more than one structural possibility for any arbitrary input sequence.
In the PDB only one structural occurrence of this sequence may exist. This is a clear
indicator that the algorithm is able to not only utilize the original data, but extrapolate
from it to theorize novel structures which may exist.

While it may at first seem trivial to obtain several structures and then choose the most
correct version as evidence of validity, it is actually non-trivial for SPAA to return relatively
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1   VHLTPEEKTA VNALWGKVNV DAVGGEALGR LLVVYPWTQR FFESFGDLSS

      hHHHHH HHHHHgG  t TThHHHHHHH HHHH gGGGG GGgGG      

   oooOOOOOO oooooooooo oooooooooo oooooooooo oooooooooo

  

51   PDAVMGNPKV KAHGKKVLGA FSDGLAHLDN LKGTFSQLSE LHCDKLHVDP

  hHHHHtThHH HHHHHHHHHH HHHHHHttTT hHHHthHHHH HHiII    t 

  oooooooooo oooooOOOOO OOOOOONNN     NNNoooo oooooooooo

  

101   ENFRLLGNVL VCVLARNFGK EFTPQMQAAY QKVVAGVANA LAHKYH

  hHHHHHHHHH HHHHHHHHgG G  hHHHHHH HHHHHHHHHH HtgGG 

  oooooooooo oooooooooo ooooooCCC

Figure 4.11: A chart which details the amino acid sequence of the protein 1shr and the
prediction of this sequence from SPAA following the sequence/structure chart format.

few possibilities of which one is actually present in the PDB. The number of conformational
possibilities for an arbitrary set of amino acids is not necessarily known. However, the
probability of the algorithm accidentally obtaining a correct structure for a sequence even
as small as length 10 is low.

4.4.2 Predicting pieces of proteins

Sequences from a protein present in the PDB before the download date were selected for the
algorithm to attempt to predict. This will determine SPAA’s ability to assemble structures
about which it knows information implicitly. Figure 4.11 shows the a resulting prediction
from SPAA for the protein 1shr. It took SPAA 62s to generate results for this input. The
algorithm was able to accurately predict most of the protein’s fundamental structure within
an accuracy of 10 RMSD90. The algorithm succeeded in predicting complex turns leading
out of α-helices and also 3/10 helices and π-helices. Failures occurred near the 80th amino
acids due to a complex turn that was determined to be very non-standard. Another failure
occurred near the end of the protein due to filtering of a cluster for a particular amino-acid
sequence. More predictions from SPAA on this type of data can be found in Appendix D.
See Figure 3.10 for a review of the sequence/structure chart format.

Sequences from proteins that were added to the PDB after the download date were
selected for the algorithm to attempt to predict. This measures SPAA’s ability to predict
structures that have never been encountered before. Figure 4.12 shows results for the protein
1h47. It took SPAA 56s to generate results for this input. SPAA has correctly predicted a
large portion of the protein’s interior sequence. 33 of the 152 (≈22%) sequences of length 4
into which the input was split were weak. Notably, at the 88th and 122nd amino acid marks,
turns have correctly been predicted to within 10 RMSD. The 102nd to 107th amino acids
mark a random join between an α-helix and β-sheet, including a bend at the 103rd amino
acid mark, that has been accurately predicted. A complete prediction failed due to weak
areas in the data.

Figure 4.13 shows results for the protein 1qvn. It took SPAA 30s to generate results
for this input. SPAA correctly predicts a large interior portion of the protein sequence. 21
of the 65 (≈32%) sequences of length 4 into which the input was split were weak. The most
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51   LGAAALGDIG KLFPDTDPAF KGADSRELLR EAWRRIQAKG YTLGNVDVTI

  HHHTT   HH HHS SS GGG TT  HHHHHH HHHHHHHHTT  EE EEEEEE

                             WW WWOOOOOOOO OOOOOOOOOO OOOOOOOOOO

 

101   IAQAPKMLPH IPQMRVFIAE DLGCHMDDVN VKATTTEKLG FTGRGEGIAC

          E SSS  HHH HTHHHHHHHH HTT  GGGEE EEEE  TT H HHHTTSEEEE

  OOOOOOOOOO OOOOOOOOOO OOOOooWWWW  

151   EAVALLIKAT K

  EEEEEEE     

Figure 4.12: A chart which details the amino acid sequence of the protein 1h47 and the
prediction of this sequence from SPAA following the sequence/structure chart format.

1   APTSSSTKKT QLQLEHLLLD LQMILNGINN YKNPKLTRML TFKFYMPKKA

      HHHHHH HHHHHHHHHH HHHHHHHHHT S HHHHHHHT TS B  BS  

                    CC Cooooooooo oooooooooo 

51   TELKHLQCLE EELKPLEEAL NLAQSKNFHL RPRDLISNIN VIVLELKGSE

   SGGGGHHHH TTHHHHHHHH HH          HHHHHHHHH HHHHHHT SS 

  oooooooooo oooooooooo oWWWW

101   TTFMCEYADE TATIVEFLNR WITFCQSIIS TL

        B SS  B HHHHHHH HHHHHHHHHH TT 

Figure 4.13: A chart which details the amino acid sequence of the protein 1qvn and the
prediction of this sequence from SPAA following the sequence/structure chart format.
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...

101  VALRNRSNTP IKVDGKDVMP EVNRVLDKMK SFCQRVRSGD WKGYTGKSIT

     HHHTTTT     EETTEESHH HHHHHHHHHH HHHHHHHTT  SB TTS B   

           CCCo oOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOoC 

151  DIINIGIGGS DLGPLMVTEA LKPYSKGGPR VWFVSNIDGT HIAKTLASLS

     EEEEE  GGG THHHHHHHHH TGGGTTTS E EEEE  SSHH HHHHHHTTTT 

     CC

 

201  PETSLFIIAS KTFTTQETIT NAETAKEWFL EAAKDPSAVA KHFVALSTNT

     GGGEEEEEE  SSS  HHHHH HHHHHHHHHH HHH  GGGGG GTEEEEES H 

                NNNooooooo oooooooooo oooooooooo oooo???

 

251  AKVKEFGIDP QNMLEFWDWV GGRYSLWSAI GLSIALHVGF DHFEQLLSGA

     HHHHHHT  G GGEEE  TTT TGGGTTTTGG GHHHHHHHTH HHHHHHHHHH 

                                                 WWWooooooo

301  HWMDQHFLKT PLEKNAPVLL ALLGIWYINC YGCETHALLP YDQYMHRFAA

     HHHHHHHHHS  GGG HHHHH HHHHHHHHHT T   EEEEEE S STTTTHHH 

     oooooooooo oooooooooo oooooooooW WW

351  YFQQGDMESN GKYITKSGAR VDHQTGPIVW GEPGTNGQHA FYQLIHQGTK

     HHHHHHHHHH    EETTS B  SS    EEE    TTGGGGT THHHHHHSS  

401  MIPCDFLIPV QTQHPIRKGL HHKILLANFL AQTEALMKGK LPEEARKELQ

     EEEEEEEES B S   GGGH HHHHHHHHHH HHHHHHHH B  HHHHHHHHH 

                                           NNNoo oooooooooo

451  AAGKSPEDLE KLLPHKVFEG NRPTNSIVFT KLTPFILGAL IAMYEHKIFV

     HTT  HHHHH HHHGGG B      EEEEEES B  HHHHHHH HHHHHHHHHH 

     oooooooooo oooooooooo oooooooooo oooooooooo oooooooooo

501  QGIMWDINSF DQWGVELGKQ LAKKIEPELE GSSAVTSHDS STNGLISFIK

     HHHHTTB TT TTGGGHHHHH HHHHHHHHHS SS    SS H HHHHHHHHHH 

     oooo??

551  QQRDTKLEHH HHHH

     HHTT            

Figure 4.14: A chart which details the amino acid sequence of the protein 1u0f and the
prediction of this sequence from SPAA following the sequence/structure chart format.
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interesting feature of this prediction is from the 40th to the 56th amino acid mark. SPAA
accurately predicts a segment 16 amino acids long that involves random areas, turns, and
bends leading into a 3/10 helix. This shows that SPAA has the ability to predict complicated
structures longer than the sequences it uses as its basis.

Figure 4.14 shows results for the protein 1u0f. It took SPAA 89s to generate results for
this input. SPAA correctly predicts much of the complicated conformations of the protein.
156 of the 550 (≈28%) sequences of length 4 into which the input was split were weak.
Near the 100th amino acid mark, SPAA correctly predicts a long α-helix structure which
eventually turns into a complicated turn and random segment near the 140th amino acid.
SPAA was successful in predicting many structures beyond the standard α-helix and β-sheet
structures. There were points of failure due to lack of data and non-standard conformations.
However, SPAA was able to predict a significant portion of this large protein.

SPAA was not able to produce accurate predictions for every test input sequence. The
results for protein 1ceo, 1nq7 and 1q31 were not accurate. However, they had the following
percentage of weak sequences of length 4 respectively: 110 of 232 (≈47%), 102 of 237 (≈43%),
107 of 212 (≈50%).

More predictions from SPAA on new proteins from the PDB can be seen in Appendix D.
The SPAA algorithm is able to go beyond the bounds of the original data, accurately

proposing possible conformations for amino-acid combinations which have not yet been
determined. SPAA demonstrates the ability to produce complex structures well beyond
typical 3-state predictions. Torsion angles for turns, bends and random regions have been
predicted accurately as well as standard α-helices and β-sheets. The limitations that were
expected in Section 3.7.3 do indeed show up as problems in predicting entire structures.
However, SPAA is still able to predict large portions of proteins despite this. Some input
sequences did not return accurate results. These proteins tend to be those containing
sequences where the available data is far less than average. It appears that when the fraction
of weak sequences (see Section 3.7.3 for definition) is near 25% predictions are good, but
when it approaches 50%, SPAA’s ability diminishes.

4.4.3 Predicting an entire protein

The potential exists for the algorithm to predict entire structures in addition to the ability
to predict pieces of proteins. Protein 1crn is a simple plant protein, 46 residues in length.
Though short, the protein involves α-helices, turns and random bends. When the amino-
acid sequence of protein 1crn is used as input, four distinct structural possibilities are
returned, one of which is similar to the actual conformation. (It should be noted that the
first and last residue were omitted from the input sequence.) SPAA took 32s to produce
the results for 1crn. The predicted torsion angles were input in SwissProt3D to generate a
hypothetical structure for visual comparison to the actual structure. The results are shown
in Figure 4.15. The entire sequence of 1crn, along with the actual and predicted torsion
angles are given in Appendix E.

The algorithm was able to correctly generate torsion angles of turns leading into and
out of α-helices with little deviation from the actual values, as well as correctly predict the
length of the interior α-helices. One point of major error in the prediction is identified at a
PRO-GLU bond (see Appendix E for residues), which coincides with a turn joining the two
α-helices. The algorithm incorrectly suggests a torsion angle pair of φ′ = −57, ψ′ = −34
where the correct values are φ = −56, ψ = 146. The actual value for the torsion angle
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(a)

(a)

Figure 4.15: (a) A 3-dimensional representation of the actual structure of protein 1crn. (b)
A 3-dimensional model generated with predicted torsion angles from the SPAA algorithm.
The images were generated with Swiss-PdbViewer [10].

46



pair in question lay outside of the clusters obtained for the subset of amino acids at the
PRO-GLU bond. The sequence and combination of events that leads to this type of error
were examined in Section 3.7.3.

4.5 Discussion

Applying SVD to torsion-angle data has been demonstrated as a useful denoising technique.
SVD removes components unrelated to the main conformational possibilities of a set of
amino acids and produces conformations that seem to represent fundamental structures
more appropriately. The noise has many potential sources, some of which may be; error
from structural determination methods used to create the PDB, or structural influences that
propagate throughout the protein backbone.

SDD is an effective clustering technique that finds distinct conformational possibilities
for a sequence of amino acids. The clusters represent structures that extend beyond the
conventional secondary structural elements and provide a more accurate basis for protein
structure prediction by assembly of subsequences.

A dynamic-programming, data-driven approach is a valid approach to protein structure
prediction. SPAA has demonstrated the ability to produce accurate predictions for many,
different protein sequences. The algorithm is able to generate results for complex structural
elements that are trouble areas for other prediction algorithms (see Section 2.4). The ap-
proach taken in this study also has the advantage of returning torsion angles as opposed
to generic secondary structure from a predefined set. Detailed models such as the one for
1crn can be created from the torsion angle output.

There are flaws and limitations inherent to SPAA’s prediction techniques. Errors have
been introduced through data-processing methods. Structures can be discarded due to rarity
in the PDB. Some conformational possibilities are eliminated as structures are refined into
generalized versions. Of course, SPAA’s overall ability is linked the amount of data available
in the PDB.
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Chapter 5

Conclusions

Understanding protein function and structure is a world-wide initiative with benefits that
reach into many aspects of modern science. Elucidation of protein structure is currently per-
formed by structural determination methods that are slow and expensive. Modern protein-
structure prediction methods lack either the necessary accuracy or scope to be employed
as viable solutions. Predicting protein structure from first principles is computationally
intractable.

The objective of this work was to create a data-driven, protein-structure prediction
algorithm with improved accuracy and scope. Specifically, the algorithm should meet the
following criteria:

• Utilizes all of the available protein structure data that is available.

• Based on processed data that provides a more reliable framework.

• Successfully extrapolates from the available data to provide novel solutions for input
sequences.

• Provides more detailed predictions than is possible with many existing prediction
algorithms.

SPAA, and the data it uses, have been shown to fulfill the above requirements. The
ability to construct canonical torsion angles and find canonical conformations for short sub-
sequences was shown to give SPAA its predictive capability. The ability to assemble con-
formations of small sequences into larger structures would not be possible using the original
data. SPAA proved to be useful in providing accurate predictions for pieces of large pro-
teins and for providing full, detailed structures of small proteins. It produced more detailed
structures than secondary-structure prediction methods and has greater generalization than
comparative modelling approaches, producing results for a greater range of input.

Though demonstrating the potential to advance the state of the art, there are particular
limitations due to the nature of the methodology employed. These could possibly be resolved
in the future, particularly as the available data grows.

48



5.1 Future Work

Acquiring more data to use as the basis of SPAA will of course improve the accuracy and
scope of its predictions.

Using SPAA in tandem with other protein-structure prediction algorithms may provide
better results. An existing method which has the ability to generate entire structures for
larger proteins could be coupled with SPAA’s ability to produce very accurate predictions.
A method that is not as inherently data-bound as SPAA would be an apt choice. Some of
the predictions returned from SPAA were mostly complete, lacking only small pieces that
connect the structures into the final protein. Using a molecular simulation method just
for the gaps would require relatively little computational power, compared to generating
an entire structure, and provide a very detailed and complete conformation. Even using
secondary-structure predictions to fill in the gaps would provide a better idea of the final
overall structure of the entire protein.

Using an amino-acid substitution method to generate sequences of amino acids may yield
better results than generating every combination. Amino acids can be grouped into different
categories based on similar physicochemical properties. They can also be grouped together
by the likelihood of one amino acid being replaced by another due to point mutations.
Combining sequences that share similar properties may allow some areas of weak data to
be extended and provide better structural information. For example, LEU-LEU-LEU and
LEU-LEU-ILE may share similar conformational possibilities, but are treated as separate in
SPAA. There is, however, the inherent problem of using a suitable amino-acid substitution
heuristic, which continues to be an unsolved problem in bioinformatics.

The potential also exists to expand SPAA past just φ and ψ angles to include all possible
torsion angles that exist between two amino acid residues and provide results of even greater
detail. The ω and χ rotamer angles could be included for amino acid sequences to extend
the clustering results into a higher- dimensional space. However, the number of rotamer
angles are variable and depend on the amino acid residue, making it non-trivial to extend
the methodology to include this information.
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Appendix A

Resulting singular values from
SVD

Here are screen plots of singular values obtained from Singular Value Decomposition on
sets of torsion angles for the respective amino-acid sequences. Note how the singular values
decrease in later dimensions.
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A.1 Sequences of Length 3
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A.2 Sequences of Length 4

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

ALA−ALA−HIS − CY S ALA−ASN − THR− V AL

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

ALA−ASP −ALA−ALA ALA−GLU −ARG− LEU

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

ALA− LEU − LEU −GLN CY S − SER−ALA− LEU

55



1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

GLU −GLU − V AL−GLU GLY − LY S − PRO − LEU

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

GLY − PRO − V AL− V AL GLY − V AL− ILE − THR

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

LEU −ARG− SER− LEU LEU − LEU −ASP − LEU

56



1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

LEU −ARG− SER− LEU LY S −GLU −ALA− LEU

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6
0

500

1000

1500

2000

2500

LY S − LEU − PHE −ASN PHE − V AL− SER− SER

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

PRO −GLU − THR− LEU THR−GLY − THR− TRP

57



Appendix B

3-dimensional plots of U
obtained from SVD

Here are plots of the first 3 dimensions of U matrices from Singular Value Decomposition
on sets of torsion angles for the respective sequences of amino acids. The clusters observed
in the plot correspond to conformational possibilities for each sequence.
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B.1 Sequences of Length 3
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B.2 Sequences of Length 4
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Appendix C

Ramachandran plots with
clusters

Here are areas on Ramachandran plots corresponding to conformational possibilities deter-
mined by using SVD on the respective amino acid sequences.
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C.1 Sequences of Length 3
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C.2 Sequences of Length 4
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Appendix D

Prediction of structures from
the PDB

Here are sequence structure charts of predictions of proteins entered into the PDB after
October 18, 2004. The format of the chart is explained in Figure 3.10.
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   ooOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO

51   GEHNIDVLEG NEQFINAAKI ITHPNFNGNT LDNDIMLIKL SSPATLNSRV

  S SBTTS  S   EEEEESEE EE TT  TTT  TT  EEEEE SS    SSSS 

  OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOoo

  

101   ATVSLPRSCA AAGTECLISG WGNTKSSGSS YPSLLQCLKA PVLSDSSCKS

     EE SS    TT EEEEEE SS   SSS     SB EEEEE EE  HHHHHH 

  oooooooooo oooooooooo oooooooooo WWWW???

151   SYPGQITGNM ICVGFLEGGK DSCQGDSGGP VVCNGQLQGI VSWGYGCAQK

  HTTTT  TTE EEES TT S  B  TTTTT E EEETTEE EE E B SSSS T  

201   NKPGVYTKVC NYVNWIQQTI AAN

  T  EEEEEGG GSHHHHHHHH HTT

          ???

Figure D.1: A chart which details the amino acid sequence of the protein 1h9i and the
prediction of this sequence from SPAA following the sequence/structure chart format.

1   SIGTGDRINT VRGPITISEA GFTLTHEHIC GSSAGFLRAW PEFFGSRKAL

   EESSSEEEE TTEEEEHHHH  SEE SB SE E  TTHHHH  GGGGS HHHH  

     CCCoooo oooooooooo oooooooooo oooooooooo oooooooooo

51   AEKAVRGLRR ARAAGVRTIV DVSTFDIGRD VSLLAEVSRA ADVHIVAATG

  HHHHHHHHHH HHHTT  EEE E   GGGT   HHHHHHHHHH HT EEE EEE 

  oooooooooo oooooooooo oooooooooo ooooNNN    NNNooooooo

101   LWFDPPLSMR LRSVEELTQF FLREIQYGIE DTGIRAGII( LCX)VATTGK

    S   HHHH T  HHHHHHH HHHHHHT ST TT    SEEE EE SSS  HH 

  oooooooooo oooNNN

151   ATPFQELVLK AAARASLATG VPVTTHTAAS QRDGEQQAAI FESEGLSPSR

  HHHHHHHHHH HHHHH  EEE EE  GGGTHH HHHHHHHHHT T  GGGEEE  

...

Figure D.2: A chart which details the amino acid sequence of the protein 1qw7 and the
prediction of this sequence from SPAA following the sequence/structure chart format.
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   1 EVKLVESGGG LVQPGGSLKL SCAASGFTFS TYTMSWARQT PEKKLEWVAY 

       EEEEE  E EE TT  EEE EEEEESS GG GS EEEEEEE TT  EEE EE 

        wwwoooo oooooooooo oooooooooo oNNN

  51 ISKGGGSTYY PDTVKGRFTI SRDNAKNTLY LQMSSLKSED TALYYCARGA 

     E TTSS EEE  TTTTTTEEE EEEGGGTEEE EEE S  GGG  EEEEEEE   

         NNNooo oooooooooo oooooooooo oooooooooo ooooooooCC

 

 101 MFGNDFKYPM DRWGQGTSVT VSSAATTPPS VYPLAPGSAA QTNSMVTLGC 

     EEETTEEE S BS    EEEE E SS  B  E EEEE          SEEEEEE 

     CC

... 

Figure D.3: A chart which details the amino acid sequence of the protein 1seq and the
prediction of this sequence from SPAA following the sequence/structure chart format.

   1 MPRSLANAPI MILNGPNLNL LGQRQPEIYG SDTLADVEAL CVKAAAAHGG 

         TTTS E EEEE TTGGG TTSS HHHH  S  HHHHHHH HHHHHHHHT  

            CCC oooooooooo oooooooooo oooooooooo oooooooooo

  51 TVDFRQSNHE GELVDWIHEA RLNHCGIVIN PAAYSHTSVA ILDALNTCDG 

      EEEEE S H HHHHHHHHHH HHH SEEEEE  GGGGTTTHH HHHHHHHTTT 

     oooooooooo oooooooooo oooooooooo oooooooooo oooooooooo

 101 LPVVEVHISN IHQREPFRHH SYVSQRADGV VAGCGVQGYV FGVERIAALA 

       EEEEESS  GGGTTGGGS   SHHHH SEE EESSTTHHHH HHHHHHHHHH 

     oooooooooo oooooooooo oooooooooC CC

 151 GAGSARA 

Figure D.4: A chart which details the amino acid sequence of the protein 1v1j and the
prediction of this sequence from SPAA following the sequence/structure chart format.
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Appendix E

Protein 1crn

A sequence/structure diagram is provided for protein 1crn to demonstrate the complexity
of the secondary structural elements. The actual torsion angles of the entire sequence are
shown along with a set of predicted torsion angles from the SPAA algorithm. Angles which
SPAA incorrectly predicted are marked in bold.

E.1 Sequence

   1 TTCCPSIVAR SNFNVCRLPG TPEAICATYT GCIIIPGATC PGDYAN 

      EE SSHHHH HHHHHHHHTT   HHHHHHHH S EE SSS    TTS   
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E.2 Torsion angles

A  : (-107,144)  (-131,133)  (-118,151)  (-76,-18)  (-157,166)  (-63,-42)

P  : (-107,143)  (-131,136)  (-122,148)  (-75,-20)  (-156,167)  (-58,-49) 

A..: (-55,-44)   (-61,-43)   (-63,-43)   (-61,-42)  (-64,-39)   (-59,-47)

P..: (-60,-42)   (-61,-51)   (-59,-44)   (-60,-42)  (-69,-34)   (-58,-46)

A..: (-62,-35)   (-69,-41)   (-56,-36)   (-77,-16)  (-53,-46)   (-77,-7)

P..: (-66,-34)   (-67,-43)   (-57,-36)   (-76,-23)  (-55,-45)   (-76,-6)

A..: (106,7)     (-52,136)   (-56,146)   (-56,-36)  (-63,-34)   (-74,-37)

P..: (96,8)      (-69,149)   (-57,-34)   (-64,-36)  (-64,-42)   (-67,-39)

A..: (-64,-31)   (-62,-54)   (-68,-25)   (-67,-36)  (-108,-18)  (91,-3) 

P..: (-64,-35)   (-64,-52)   (-67,-27)   (-68,-35)  (-108,-20)  (91,-3)

A..: (-69,164)   (-129,157)  (-111,129)  (-124,158) (-78,-24)   (-89,-161)

P..: (-67,167)   (-134,158)  (-112,128)  (-123,156) (-77,-26)   (-83,-168)

A..: (-120,1)    (-114,104)  (-75,145)   (-71,162)  (-61,-23)

P..: (-118,1)    (-112,100)  (-73,142)   (-75,165)  (-62,-23) 
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