
ExMAn: A Generic and Customizable Framework
for Experimental Mutation Analysis∗

Technical Report 2006-519

Jeremy S. Bradbury, James R. Cordy, Juergen Dingel

School of Computing, Queen’s University
Kingston, Ontario, Canada

{bradbury, cordy, dingel}@cs.queensu.ca

October 2006

Abstract

Current mutation analysis tools are primarily used to compare different test suites and are tied to a
particular programming language. In this paper we present the ExMAn experimental mutation analysis
framework – ExMAn is automated, general and flexible and allows for the comparison of different quality
assurance techniques such as testing, model checking, and static analysis. The goal of ExMAn is to allow
for automatic mutation analysis that can be reproduced by other researchers. After describing ExMAn, we
present a scenario of using ExMAn to compare testing with static analysis of temporal logic properties.
We also provide both the benefits and the current limitations of using our framework.

1 Introduction

Mutation [Ham77, DLS78] has been used in the testing community for over 25 years and is traditionally
used to evaluate the effectiveness of test suites. Moreover, mutation provides a comparitive technique for
assessing and improving multiple test suites. A number of empirical studies (e.g., [ABL05, DR05]) have
relied on using mutation as part of the experimental process.

Although mutation as a comparative technique has been used primarily within the testing community,
it does have application in the broader area of quality assurance and bug detection techniques. Our work
is based on the idea that mutation can be used to assess testing (e.g., random testing, concurrent testing
with tools such as IBM’s ConTest), static analysis (e.g., FindBugs, Jlint, PathInspector), model checking
(e.g., Java PathFinder, Bandera/Bogor), and dynamic analysis. For example, previously we proposed us-
ing mutation to compare sequential testing with property based static analysis using Path Inspector and to
compare concurrent testing using ConTest with model checking [BCD05]. The goal of comparing different
techniques using mutation is to better understand any complementary relationship that might exist and to
use the assessment to design improved hybrid techniques to detect bugs. A combined approach to verifying
concurrent Java recently used manual mutants to develop a hybrid analysis approach using code inspection,
static analysis (FindBugs, Jlint), dynamic analysis and testing [LDG+04].

We propose a generalized approach to experimental mutation analysis (see Figure 1) in which all of
the components and artifacts can be interchanged with other components and artifacts. This generalized

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Quality
Assurance
Technique/

Tool 2

Quality
Assurance
Technique/

Tool 1

Mutant Generator

PropertiesPropertiesQuality
Artifacts

PropertiesPropertiesQuality
Artifacts

Mutant Analysis Results Generator

Original
Source

Mutant
Source

Figure 1: Generalized Mutation Analysis

approach can be used to compare any number of quality assurance tools that use any kind of quality artifacts.
For example, to compare sequential testing with static analysis that uses temporal logic properties. The only
restriction is that all tools compared must be able to be applied to the same original source which can be any
program language or even an executable modelling language.

Implementing a generalized experimental mutation analysis approach to empirically assess different
quality assurance techniques is a challenging problem. A mutation approach that supports the compari-
son of different quality techniques would have to provide a high degree of automation and customizability.
The high degree of automation is required to execute the mutation analysis process and is essential to allow
for experimental results to be reproduced. Automation can be achieved through automatically generated
scripts to handle the generation of mutants, the mutant analysis, and the generation of results such as mutant
score. Customizability is necessary because the approach has to be language and quality artifact indepen-
dent. On the one hand, language independence means that pluggable mutation generators and compilers are
ideal. On the other hand quality artifact independence means the approach should support the comparison of
different pluggable quality assurance tools that use artifacts including test cases, assertions, temporal logic
properties, and more. In the absence of such a framework, running a wide variety of experiments would
mean a considerable duplication of effort.

We have developed the ExMAn (EXperimental Mutation ANalysis) framework as a realization of our
generalized approach. That is, ExMAn is a reusable implementation for building different customized mu-
tation analysis tools for comparing different quality assurance techniques.

In Section 2 we will provide an overview of existing mutation analysis tools that have influenced the
design and implementation of ExMAn. In Section 3 we will provide a description of ExMAn’s architecture
as well as the functionality of the ExMAn framework. In Section 4 we will provide a scenario of using
ExMAn for comparing different quality assurance techniques. We will present our conclusions and future
work in Section 5.

2 Background

There are several mutation tool including Mothra [DGK+88, DO91], Proteum [DM96], and MuJava [OMK04,
MOK05] that our work builds upon. The Mothra tool is a mutation tool for Fortran programs that allows
for the application of method level mutation operators (e.g. relational operator replacement). The Proteum
tool is a mutation analysis tool for C programs. MuJava is the most recent mutation tool and was designed

Quality Artifact
Selectors

Tool 1

Tool n

LEGEND
BUILT-IN COMPONENT

EXTERNAL TOOL COMPONENT
OR PLUGIN COMPONENT

QA Tool
1

Compiler
(Optional)

Mutant
Viewer

ExMAn

Mutant
Generator

QA Tool
n

Results
Generator &

Viewer

Hybrid Artifact
Set Generator

Source
Viewer

Artifact
Generator 1
(Optional)

Artifact
Generator n
(Optional)

Plugin Interface Script Generator &
Executor

Script Generator &
Executor

Compiler
Viewer

(Optional)

QA Tool
Viewers

Tool 1

Tool n

Figure 2: ExMAn Architecture

The architecture consists of built-in components (appear inside dark grey box) and external tool components and plugin
components (appear outside of grey box at top of diagram). The built-in components in the light grey box provide the ExMAn user
interface and allow for control of the external tool components via the Script Generator & Executor. The plugin components are

accessed using a plugin interface. Arrows in the diagram represent the typically control flow path between components.

for use with Java and includes a subset of the method-level operators available in Mothra as well as a set of
class mutation operators to handle object oriented issues such as polymorphism and inheritance (e.g. mutate
the public keyword into protected). The difference between ExMAn and these tools is that although
each is highly automated they were designed to apply mutation analysis to testing. Thus, each is program
language dependent and assumes only test cases as quality artifacts. Despite this limitation, all of these tools
are excellent for applying mutation analysis to testing and we have learned from their design in building
ExMAn as a flexible alternative.

3 Overview of ExMAn

3.1 Architecture

The ExMAn architecture is composed of three kinds of components: built-in components, plugin compo-
nents, and external tool components. The built-in components are general components that are used in all
types of experiments (see Figure 2). We will discuss most of the general components in our description of
the ExMAn process in Section 3.2. However, we will discuss one important built-in component, the Script
Generator & Executor, now. This built-in component provides the interface to the external tool components
such as a mutant generator. This component builds and executes scripts when requested by built-in viewer
components. Scripts are customized for particular tools based on tool profiles that contain information on the
interface of the tool (preferable command line) and a project file that contains information on where input

and output are stored. We chose to use a script-based interface for the external tool components because the
script interface was more flexible then other interfaces such as a plugin interface and because existing tools
are not required to conform to a specific interface.

While the built-in components are general and are used in all mutation analysis experiments, the external
components can be replaced, or their usage modified, from one experiment to the next. There are three types
of external tool components:

• Mutant generator. We can use existing mutant generators such as the Andrews and Zhang C mutant
generator tool [AZ03]. We have also designed several custom mutation tools for C and Java using a
source transformation langage, TXL [CDMS02].

• Compiler. If we are using a testing approach that requires compiled code we can use standard external
compilers such as gcc or javac.

• Quality Assurance Techniques & Tools. We can run the mutation analysis on a variety of quality
assurance tools including model checkers, static analysis tools, concurrent testing tools, and standard
testing techniques.

In addition to the external tool component, there is also one type of plugin component that can be adapted
from one experiment to the next:

• Artifact Generator. We can develop optional customized plugins to generate data for each quality
assurance technique in a given experiment. For example, a plugin for testing would produce test
cases while a plugin for model checking or static analysis might produce assertions or temporal logic
properties.

We have implemented a plugin interface for artifact generators instead of using the script interface because
many of the quality assurance tools we are interested in comparing do not have existing artifact generation
capabilities. Therefore, we have to create custom generation components instead of using existing external
tools. In the future we plan to also provide an alternative script interface for artifact generators to allow us
to integrate ExMAn with existing test generation tools.

3.2 Process Description

Mutation analysis in ExMAn requires a setup phase and an execution phase. The setup phase is required
because of the generic and customizable nature of the framework (see Figure 3(a)). Since ExMAn is not
tied to any language, or analysis tools, profiles have to be created for using ExMAn with specific compilers,
mutant generators and analysis tools (see Figure 4). A profile contains details on the command-line usage
and purpose of the tool. For example to compare concurrent testing using ConTest and model checking using
Java PathFinder we would have to ensure that ExMAn has defined profiles for a Java compiler, a Java mutant
generator (e.g. MuJava) and profiles for executing tests in ConTest as well as model checking with Java
PathFinder. ExMAn has preinstalled profiles for standard compilers (gcc, javac), mutant generators, and
quality assurance approaches (sequential testing, ConTest, Java PathFinder, Bandera/Bogor, Path Inspector).
However these tools have to be installed separately and the profiles might have to be edited to include the
correct installation paths.

Once tool profiles have been created, a project for a particular experimental mutation analysis has to be
defined (see Figure 5). The project includes information such as the project name and purpose, the compiler
(optional), mutant generator, a finite set of quality assurance analysis tools being compared using mutation,
and the paths to all input and output artifacts (e.g., test case input and output directories, mutant directory).
When reproducing results a previously created project can be used and the setup phase can be bypassed.

Project Profile

Create Project

Mutation
Tool

Profiles

Analysis
Tool

Profiles

Compiler
Profiles

Create Tool Profiles

(a) Setup phase

Select Original Source Code Select Quality Artifacts (e.g. Tests, Properties)

Generate Mutants for Original Source & Mutants

Run Analysis with Original Source & Mutants

Generate and View Mutation Analysis Results

1

Compile Original Source & Mutants (Optional)

4

3

2

5

6

(b) Execution phase

Figure 3: ExMAn Process

Figure 4: ExMAn Tool Profile Creator Dialog

Figure 5: ExMAn Create/Edit Project Dialog

The execution phase occurs once ExMAn has been customized for a particular experimental mutation
analysis. The execution phase consists of the following steps (see Figure 3(b)):

1. Original Source Code Selection: select the program or model source to be used in the mutation analy-
sis. A generic language-independent Source Viewer displays the source but does not do any language
specific pre-processing to ensure the source is syntactically correct.

2. Mutant generation: the mutant generator specified in the project is used to generate a set of mutants
for the original source code. The Mutant Viewer reports the progress of the mutant generation.

3. Compile Original Source Code & Mutants: an optional step that occurs only if at least one of the qual-
ity assurance tools involves dynamic analysis or testing. The progress of the compilation is reported
in the Compile Viewer.

4. Select Quality Artifacts: for each quality assurance analysis tool being analyzed using mutation a set
of quality artifacts is selected. For example, with model checking a set of assertions can be selected
from an assertion pool. The assertion pool can be generated by an optional Artifact Generator plugin
or we can use an existing assertion pool. The selection of quality artifacts can be conducted randomly
or by hand using a Quality Artifact Selector & Viewer. For example we could randomly select 20
assertions from an assertion pool or select them by hand. Each quality artifact can also be viewed in a
dialog interface.

5. Run Analysis with Original Source Code & Mutants: Quality Analysis Tool Viewers call automatically
generated scripts which allow all of the quality assurance tools to be run automatically. For each
tool’s set of quality artifacts, we first evaluate each artifact using the original source to determine the
expected outputs. Next we evaluate the artifacts for all of the mutant versions of the original program.
During this step all of the tool analysis results and analysis execution times of each artifact with each
program version are recorded and the progress is reported. Quality Analysis Tool Viewers also provide
an interface to customize the running of the analysis by placing limits on the size of output and the
amount of CPU time. For example, a mutant might cause the original program to go into an infinite
loop and never terminate which would be a problem if we are evaluating a test suite. Fortunately, the
user can account for this by placing relative or absolute limits on the resources used by the mutant
programs. If relative limits are used then the resources used by the original program are recorded
and the resources used by each mutant are monitored and the mutant is terminated once it exceeds a
relative threshold (e.g. 60 seconds of CPU time more then the original program).

6. Collection and Display of Results: results using all of the quality assurance tools are displayed in
tabular form in the Results Generator & Viewer. The data presented includes the quality artifact vs.
mutant raw data, the mutant score and analysis time for each quality artifact and the ease to kill each
mutant (i.e. the number of quality artifacts that kill each mutant). We also can generate hybrid sets
of quality artifacts from all quality assurance tools that have undergone mutation analysis using the
Hybrid Artifact Set Generator. For instance, if different artifacts are used with different tools we report
the combined set of quality artifacts that will achieve the highest mutant score. Additionally, we can
generate the hybrid set of artifacts that achieve a certain mutant score (e.g. 95%) and has the lowest
execution cost or smallest set of quality artifacts.

4 ExMAn in Practice

We will now outline a scenario that demonstrate ExMAn’s flexibility and the novel application of mutation
analysis that is possible using our framework. The scenario does not provide a statistical comparison of
quality assurance techniques. Instead, the scenario demonstrates customizing ExMAn for experimental
mutation analysis research.

Consider a scenario where we compare sequential testing and static analysis. In this scenario we can use
the following external components and plugins with ExMAn:

• Mutant generator. The Andrews and Zhang C mutant generator tool [AZ03].

• Compiler. gcc.

• Quality Assurance Techniques & Tools.

– Technique 1: Sequential testing.

– Technique 2: Static Analysis using Path Inspector (a tool that allows for the analysis of temporal
logic properties).

• Artifact Generator. We could compare a test suite selected randomly from an already existing test
pool with a set of properties that are selected randomly from a generated pool of temporal properties.
Our property generator plugin for Path Inspector first extracts possible property variables from the
program and then composes variables using temporal logic property patterns.

Using ExMAn with the above customization we could determine the mutant score of each analysis
technique and produce the hybrid set that has the highest mutant score. The hybrid set may contain both tests
and properties or could potential contain only tests or only properties.

We could also reconfigure ExMAn to compare analysis using hand created properties with Path Inspector
versus properties created using our property generator plugin.

5 Conclusion

ExMAn is a generic and flexible framework that allows for the automatic comparison of different quality
assurance techniques and the development of hybrid quality assurance approaches. The flexibility of ExMAn
occurs because of the separation of the built-in components that can be used in any mutation analysis from
the external tool components that place restrictions on the mutation analysis. By using a script invocation
interface to access the mutant generator, compiler and quality assurance techniques under analysis we allow
them to be easily interchanged with no modifications to the original tools. We have demonstrated the cus-
tomization of ExMAn using one example and are currently planning empirical assessments of testing, static
analysis, and formal analysis.

Although ExMAn is a generalized and customizable way to conduct mutation analysis it does have
limitations and we have identified several areas of future work:

• Add some facility to semi-automatically or automatically identify equivalent mutants.

• Add ability to automatically specify patterns for the creation of mutation operators.

• Expand the artifact selection to allow for the selection of multiple quality artifact sets for each type
and thus allow for statistical analysis.

We are interested in improving the functionality and flexibility of the ExMAn framework and hope to address
the above limitations in the near future.

6 Availability

We are currently using ExMAn to conduct several empirical studies regarding the bug detection abilities of
testing vs. property-based analysis for both sequential and concurrent systems. Once we have completed
these experiments and evaluated the usability and effectiveness of ExMAn we plan to publicly release Ex-
MAn in January 2007.

References

[ABL05] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is mutation an appropriate tool for
testing experiments? In Proc. of 27th International Conference on Software Engineering (ICSE
2005), pages 402–411, 2005.

[AZ03] James H. Andrews and Yingjun Zhang. General test result checking with log file analysis. IEEE
Trans. Softw. Eng., 29(7):634–648, 2003.

[BCD05] Jeremy S. Bradbury, James R. Cordy, and Juergen Dingel. An empirical framework for com-
paring effectiveness of testing and property-based formal analysis. In Proc. of 6th Int. ACM
SIGPLAN-SIGSOFT Work. on Program Analysis for Software Tools and Engineering (PASTE
2005), Sept. 2005.

[CDMS02] James R. Cordy, Thomas R. Dean, Andrew J. Malton, and Kevin A. Schneider. Source trans-
formation in software engineering using the TXL transformation system. J. of Information and
Software Technology, 44(13):827–837, 2002.

[DGK+88] R.A. DeMillo, D.S. Guindi, K.N. King, W.M. McCracken, and A.J. Offutt. An extended
overview of the Mothra software testing environment. In Proc. of the 2nd Workshop on Soft-
ware Testing, Verification, and Analysis, pages 142–151, Jul. 1988.

[DLS78] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints for test data selection:
help for the practicing programmer. IEEE Computer, 11(4):34–41, Apr. 1978.

[DM96] M. Delamaro and J. Maldonado. Proteum–a tool for the assessment of test adequacy for c
programs. In Conf. on Performability in Computing Sys. (PCS 96), pages 79–95, Jul. 1996.

[DO91] Richard A. DeMillo and A. Jefferson Offutt. Constraint-based automatic test data generation.
IEEE Trans. Softw. Eng., 17(9):900–910, 1991.

[DR05] Hyunsook Do and Gregg Rothermel. A controlled experiment assessing test case prioritization
techniques via mutation faults. In Proc. of the 21st IEEE International Conference on Software
Maintenance (ICSM 2005), pages 411–420, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[Ham77] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Trans. on Soft. Eng.,
3(4), Jul. 1977.

[LDG+04] Brad Long, Roger Duke, Doug Goldson, Paul A. Strooper, and Luke Wildman. Mutation-based
exploration of a method for verifying concurrent Java components. In Proc. of Workshop on
Parallel and Distributed Systems: Testing and Debugging (PADTAD 2004), Apr. 2004.

[MOK05] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava : An automated class mutation system.
Journal of Software Testing, Verification and Reliability, 15(2):97–133, Jun. 2005.

[OMK04] Jeff Offutt, Yu-Seung Ma, and Yong-Rae Kwon. An experimental mutation system for Java.
In Proc. of the Workshop on Empirical Research in Software Testing (WERST’2004). SIGSOFT
Software Engineering Notes, 29(5):1–4, ACM Press, 2004.

