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Abstract

The current version of Java (J2SE 5.0) provides a high level of support for concurreny in compari-
son to previous versions. For example, programmers using J2SE 5.0 can now achieve synchronization
between concurrent threads using explicit locks, semaphores, barriers, latches, or exchangers. Further-
more, built-in concurrent data structures such as hash maps and queues, built-in thread pools, and atomic
variables are all at the programmer’s disposal.

We are interested in using mutation analysis to evaluate, compare and improve quality assurance
techniques for concurrent Java programs. Furthermore, we believe that the current set of method muta-
tion operators and class operators proposed in the literature are insufficient to evaluate concurrent Java
source code because the majority of operators do not directly mutate the portions of code responsible for
synchronization. In this paper we will provide an overview of concurrency constructs in J2SE 5.0 and
a new set of concurrent mutation operators. We will justify the operators by categorizing them with an
existing bug pattern taxonomy for concurrency. Most of the bug patterns in the taxonomy have been used
to classify real bugs in a benchmark of concurrent Java applications.

1 Introduction

As a result of advances in hardware technology (e.g. multi-core processors) a number of practioners and
researchers have advocated the need for concurrent software development [SL05]. Unfortunately, developing
correct concurrent code is much more difficult than developing correct sequential code. The difficulty in
programming concurrently is due to the many different, possibly unexpected, executions of the program.
Reasoning about all possible interleavings in a program and ensuring that interleavings do not contain bugs
is non-trivial. Edward A. Lee discussed concurrency bugs in a recent paper [Lee06]:

“I conjecture that most multithreaded-general purpose applications are so full of concurrency
bugs that - as multicore architectures become commonplace - these bugs will begin to show up
as system failures.”
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The presence of bugs in concurrent code can have serious consequences including deadlock, starvation,
livelock, dormancy, and incoincidence (calls occurring at the wrong time) [LSW05].

We are interested in using mutation to evaluate, compare, and improve quality assurance techniques
for concurrent Java. The use of mutation with Java has been proposed in previous work – for instance the
MuJava tool [MOK05]. MuJava includes two general types of mutation operators for Java: method level
operators [KO91, MOK05] and class level operators [MKO02]. The method level operators include modi-
fications to statements (e.g., statement deletion) and modifications to operands and operators in expressions
(e.g., arithmetic operator insertion). The class level operators are related to inheritance (e.g., super keyword
deletion), polymorphism (e.g., cast type change), and Java-specifc features. In general, the method and class
level mutation operators do not directly mutate the synchronization portions of the source code in Java (J2SE
5.0) that handle concurrency. Furthermore, we conjecture that additional operators are needed in order to
provide a more comprehensive set of operators that can truly reflect the types of bugs that often occur in
concurrent programs. In this paper we present a set of concurrent operators for Java (J2SE 5.0). We believe
our new set of concurrency mutation operators used in conjunction with existing method and class level
operators provide a more comprehensive set of mutation metrics for the comparison and improvement of
quality assurance testing and analysis for concurrency.

In the next section (Section 2) we will provide an overview of the support for concurrency in Java (J2SE
5.0). In Section 3 we provide an overview of real concurrency bug patterns which we will use to classify
our concurrency mutation operators and demonstrate that the set of operators is both comprehensive and
representative of real bugs. The set of mutation operators for concurrency and the bug pattern classification
are presented in Section 5. Finally in Section 6 we provide our conclusions and an overview of our future
work on using our new mutation operators.

2 Java Concurrency

Threads. Java concurrency is built around the notion of multi-threaded programs. The Java documentation
defines a thread as “...a thread of execution in a program.”2 A typical thread is created and then started using
the start() method and will be terminated once it has finished running. While a thread is alive it can often
alternate between being runnable and not runnable. A number of methods exist that can affect the status of
a thread:

• sleep(): will cause the current thread to become not runnable for a certain amount of time.

• yield(): will cause the current thread that is running to pause (temporarily).

• join(): will cause the caller thread to wait for a target thread to terminate.

• wait(): will cause the caller thread to wait until a condition is satisfied. Another thread notifies the
caller that a condition is satisfied using the notify() or notifyAll() method.

Synchronization. Prior to J2SE 5.0, Java provided support for concurrency primarily through the use
of the synchronized keyword. Java supports both synchronization methods and synchronization blocks.
Additionally, synchronization blocks can be used in combination with implicit monitor locks.

Other Concurrency Mechanisms. In J2SE 5.0, additional mechanisms to support concurrency were
added as part of java.util.concurrent1:

2java.lang.Thread documentation
1definitions of mechanisms and methods from the java.util.concurrent and the java.util.concurrent.locks

documentation



• Explicit Lock (with Condition): Provides the same semantics as the implicit monitor locks but provides
additional functionality such as timeouts during lock acquisition.

– lock(), lockInterruptibly(), tryLock(): lock acquisition methods.

– unlock(): lock release method.

– await(), awaitNanos(), awaitUniterruptibly(), awaitUntil(): will cause a thread to wait (similar to
wait() method).

– signal(), signalAll(): will awaken waiting threads (similar to notify() and notifyAll() methods).

• Semaphore: Maintains a set of permits that restrict the number of threads accessing a resource. A
Semaphore with one permit acts the same as a Lock.

– acquire(), acquireUninterruptibly(), tryAcquire(): permit acquisition methods, some of which
block until a permit is available.

– release(): permit release method that will send a permit back to the semaphore.

• Latch: Allows threads from a set to wait until other threads complete a set of operations.

– await(): will cause current thread to wait until latch has finished counting down or until the thread
is interrupted.

– countDown(): will decrement the latch count.

• Barrier: A point at which threads from a set wait until all other threads reach the point.

– await(): used by a set of threads to wait until all other threads in the set have invoked the await()
method.

• Exchanger: Allows for the exchange of objects between two threads at a given synchronization point.

Built-in Concurrent Data Structures. To reduce the overhead of developing concurrent data structures,
J2SE 5.0 provides a number of collection types including ConcurrentHashMap and five different Block-
ingQueues.

Built-in Thread Pools. J2SE 5.0 provides a built-in FixedThreadPool and an unbounded CachedThread-
Pool.

Atomic Variables. The java.util.concurrent.atomic package includes a number of atomic
variables that can be used in place of synchronization: AtomicInteger, AtomicIntegerArray, AtomicLong,
AtomicLongArray, AtomicBoolean, AtomicReference and AtomicReferenceArray. Each atomic variable type
contains new methods to support concurrency. For example, AtomicInteger contains methods such as ad-
dAndGet(), getAndSet() and others.

3 Bug Patterns for Java Concurrency

Farchi, Nir, and Ur have developed a bug pattern taxonomy for Java concurrency [FNU03]. The bug patterns
are based on common mistakes programmers make when developing concurrent code in practice. Further-
more, the taxonomy has been expanded and used to classify bugs in an existing public domain concurrency
benchmark maintained by IBM Research [EU04]. The benchmark contains 40 programs ranging in size
from 57 to 17000 loc. Programs in the benchmark are from a variety of sources including student created
programs, tool developer programs, open source programs, and a commercial product. In our attempt to
develop a comprehensive set of concurrency mutation operators we will later classify our operators with



respect to the bug patterns taxonomy. Since this bug pattern taxonomy was developed prior to J2SE 5.0 we
have had to add some additional patterns that occur in concurrency constructs not available at the time the
taxonomy was proposed. We distinguish between the original bug patterns(*), the added bug patterns also
used in the benchmark classification(**) and new patterns that we are including (+):

• Nonatomic operations assumed to be atomic bug pattern.* “...an operation that “looks” like one
operation in one programmer model (e.g., the source code level of the programming language). but
actually consists of several unprotected operations at the lower abstraction levels” [FNU03]. In this
paper we also include nonatomic floating point operations** in this pattern.

• Two-state access bug pattern.* “Sometimes a sequence of operations needs to be protected but the
programmer wrongly assumes that separately protecting each operation is enough” [FNU03].

• Wrong lock or no lock bug pattern.* “A code segment is protected by a lock but other threads do
not obtain the same lock instance when executing. Either these other threads do not obtain a lock at
all or they obtain some lock other than the one used by the code segment” [FNU03].

• Double-checked lock bug pattern.* “When an object is initialized, the thread local copy of the
objects field is initialized but not all object fields are necessarily written to the heap. This might cause
the object to be partially initialized while its reference is not null” [FNU03].

• The sleep() bug pattern.* “The programmer assumes that a child thread should be faster than the
parent thread in order that its results be available to the parent thread when it decides to advance.
Therefore, the programmer sometimes adds an ‘appropriate’ sleep() to the parent thread. However,
the parent thread may still be quicker in some environment. The correct solution would be for the
parent thread to use the join() method to explicitly wait for the child thread” [FNU03].

• Losing a notify bug pattern.* “If a notify() is executed before its corresponding wait(), the notify()
has no effect and is “lost” ... the programmer implicitly assumes that the wait() operation will occur
before any of the corresponding notify() operations” [FNU03].

• Other missing or nonexistent signals.+ This pattern generalizes the losing a notify bug pattern to all
other signals. For example, at a barrier the await() method has to be called by a set number of threads
before the program can proceed. If an await() from one thread never occurs then all of threads at the
barrier may be stuck waiting.

• Notify instead of notify all bug pattern.** If a notify() is executed instead of notifyAll() then threads
with some of its corresponding wait() calls will not be notified [LDG+04].

• A “blocking” critical section bug pattern.* “A thread is assumed to eventually return control but it
never does” [FNU03].

• The orphaned thread bug pattern.* “If the master thread terminates abnormally, the remaining
threads may continue to run, awaiting more input to the queue and causing the system to hang” [FNU03].

• The interference bug pattern.** A pattern in which “...two or more concurrent threads access a
shared variable and when at least one access is a write, and the threads use no explicit mechanism
to prevent the access from being simultaneous.” [LSW05]. The interference bug pattern can also be
generalized from classic data race interference to include high level data races** which deal “...with
accesses to sets of fields which are related and should be accessed atomically” [AHB03].



• The deadlock (deadly embrace) bug pattern.** “...a situation where two or more processes are un-
able to proceed because each is waiting for one of the others to do something in a deadlock cycle ... For
example, this occurs when a thread holds a lock that another thread desires and vice-versa” [LSW05].

• Starvation bug pattern.+ This bug occurs when their is a failure to “...allocate CPU time to a thread.
This may be due to scheduling policies...” [Lea00]. For example, an unfair lock acquisition scheme
might cause a thread never to be scheduled.

• Resource exhaustion bug pattern.+ “A group of threads together hold all of a finite number of
resources. One of them needs additional resources but no other thread gives one up” [Lea00].

• Incorrect count initialization bug pattern.+ This pattern occurs when there is an incorrect initial-
ization in a barrier for the number of parties that must be waiting for the barrier to trip, or an incorrect
initialization of the number of threads required to complete some action in a latch, or an incorrect
initialization of the number of permits in a semaphore.

4 Related Work: Existing Mutation Operators for Java

Currently, there are two main groups of operators for mutating Java source code: method and class mutation
operators. As previously stated we believe the existing operators are complementary to our concurrency
mutation operators.

4.1 Method Mutation Operators

Method level operators [KO91, MOK05] have been used in previous mutation tools for other programming
languages besides Java (e.g., the Mothra tool set for mutating Fortran programs ??). These operators are ap-
plied to statements, operands and operators (see Table 0(a)). Operators applied to statements perform actions
such as modification, replacement, and deletion. Operators applied to operands primarily are replacements.
Operators applied to operators include insertion, deletion, and replacement. The sufficient set of method
level mutation operators in Table 0(a) have been implemented in the muJava tool [OMK04, MOK05]. The
sufficient set of operators was defined with respect to an empirical study of method operators with a set of
Fortran programs [OLR+96]. Further research is also empirically studying this problem [NA06].

4.2 Class Mutation Operators

A set of class level operators [MKO02] were developed and implemented in the muJava tool [OMK04,
MOK05] are used for the creation of mutants that results from object oriented bugs. The class level oper-
ators are related to inheritance, polymorphism, and Java-specific object oriented features (see Table 0(b)).
Operators related to inheritance include access modifier changes, overriding method changes, and changes
in reference to parent classes. Operators related to polymorphism include changes to class type, type casting,
and overloaded methods. Operators related to Java-specific features including inserting and deleting the this
and static keywords.

5 Concurrent Mutation Operators

We propose five categories of mutation operators for concurrent Java: modify parameters of concurrent
methods, modify the occurrence of concurrency method calls (removing, replacing and exchanging), mod-
ify keywords (addition and removal), switch concurrent objects, and modify critical regions (shift, expand,



(a) Method mutation operators [KO91, OLR+96]

 
 

 Operator Description 
AOR Arithmetic Operator Replacement 
AOI Arithmetic Operator Insertion 
AOD Arithmetic Operator Deletion 
ROR Relational Operator Replacement 
COR Conditional Operator Replacement 
COI Conditional Operator Insertion 
COD Conditional Operator Deletion 
SOR  Shift Operator Replacement 
LOR Logical Operator Replacement 
LOI Logical Operator Insertion 
LOD  Logical Operator Deletion Me
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ASR  Assignment Operator Replacement 

AAR Array Reference for Array Reference 
Replacement 

ABS Absolute Value Insertion 

ACR  Array Reference for Constant 
Replacement 

ASR Array Reference for  Scalar Variable 
Replacement 

CAR Constant for Array Reference 
Replacement 

CNR Comparable Array Name Replacement 
CRP  Constant Replacement 
DER Do Statement End Replacement 
DSA Data Statement Alterations 
GLR Goto Label Replacement 
RSR Return Statement Replacement 
SAN Statement Analysis 

SAR  Scalar Variable for Array Reference 
Replacement 

SCR Scalar for Constant Replacement 
SDL Statement Deletion 
SRC Source Constant Replacement 
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SVR Scalar Variable Replacement 

(b) Class mutation operators used in muJava [MKO02]

 
 

 Operator Description 
AMC Access Modifier Change 
IHD Hiding Variable Deletion 
IHI Hiding Variable Insertion 
IOD  Overridding method deletion 

IOP  Overridding method  calling position 
change 

IOR  Overridding method rename 
ISI  super keyword insertion 
ISD  super keyword deletion Cl
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IPC  Explicit call to a parent's constructor 
deletion 

PNC new method call with child class type 

PMD Member variable declaration with parent 
class type 

PPD Parameter variable declaration with child 
class type 

PCI Type cast operator insertion 
PCC Cast type change 
PCD Type cast operator deletion 

PRV Reference assignment with other 
comparable variable 

OMR Overloading method contents replace 
OMD Overloading method deletion 
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JTI this keyword insertion 
JTD this keyword deletion 
JSI static modifier insertion 
JSD static modifier deletion 
JID Member variable intialization deletion 

JDC Java-supported default constructor 
creation 

EOA Reference assignment and content 
assignment replacement 

EOC Reference comparison and content 
comparison replacement 

EAM Accessor method change 
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EMM Modifier method change 

Table 1: Existing mutation operators

shrink and split). The relationship between these general operator categories and the concurrency mecha-
nisms provided in J2SE 5.0 is presented in Table 2 – which demonstrates that the operators provide coverage
over the J2SE 5.0 concurrency mechanisms.

A complete list of the operators we will be presenting in this section is provided in Table 3. The mutant
operators are designed specifically to represent mistakes that programmers may make when implementing
concurrency. Therefore, many of the operators are specific only to concurrency methods, objects and key-
words. We have tried to use context and knowledge about Java concurrency to make the operators as specific
as possible in order to make concurrency mutation analysis more feasible by reducing the total number of
mutants produced.

Readers familiar with method and class level mutation operators will notice that some of our mutation
operators are special cases of existing mutation operators while others are new operators that have not been
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Modify Parameters of Concurrent Methods  –       – – – – 
Modify the Occurrence of Concurrency Method Calls  – – –     – – –  
Modify Keyword –     – – – – – – – 
Switch Concurrent Objects – – – –        – 
Modify Concurrent Region –      – – – – – – 

Table 2: The relationship between new mutation operators for concurrency and the concurrency features
provided by J2SE 5.0
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Concurrency Mutation Operators 
for Java (J2SE 5.0) 
MXT – Modify Method-X Time  
(wait(), sleep(), join(), and await() method calls) 
MSP - Modify Synchronized Block Parameter 
ESP - Exchange Synchronized Block Parameters 
MSF - Modify Semaphore Fairness 
MXC - Modify Permit Count in Semaphore and Modify Thread 
Count in Latches and Barriers 
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MBR - Modify Barrier Runnable Parameter 
RTXC – Remove Thread Method-X Call  
(wait(), join(), sleep(), yield(), notify(), notifyAll() Methods) 
RCXC – Remove Concurrency Mechanism Method-X Call 
(methods in Locks, Semaphores, Latches, Barriers, etc.) 
RNA - Replace NotifyAll() with Notify() 
RJS - Replace Join() with Sleep() 
ELPA - Exchange Lock/Permit Acquisition 
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EAN - Exchange Atomic Call with Non-Atomic 
ASTK – Add Static Keyword to Method 
RSTK – Remove Static Keyword from Method 
ASK - Add Synchronized Keyword to Method 
RSK - Remove Synchronized Keyword from Method 
RSB - Remove Synchronized Block 
RVK - Remove Volatile Keyword  Mo
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RFU - Remove Finally Around Unlock 
RXO - Replace One Concurrency Mechanism-X with Another 
(Locks, Semaphores, etc.) 
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EELO - Exchange Explicit Lock Objects 
SHCR - Shift Critical Region 
SKCR - Shrink Critical Region 
EXCR – Expand Critical Region Mo
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Table 3: Concurrency mutation operators for Java



previously proposed. Other related work from the concurrency bug detection community includes a set of 18
hand-created concurrency mutants [LDG+04] for a previous version of Java that did not contain many of the
concurrency mechanisms available in J2SE 5.0. We have compared our comprehensive set of operators with
this work and found that our operators in combination with the method and class level operators subsume the
manual mutants used in the previous work. The idea of using mutation for concurrency was also suggested by
Ghosh who proposed two mutation operators (RSYNCHM and RSYNCHB) for removing the synchronized
keyword from methods and removing synchronized blocks [Gho02]. The operators proposed by Ghosh are
equivalent to the Remove Synchronized Keyword from Method (RSK) and Remove Synchronized Block
(RSB) operators presented in this paper.

5.1 Modify parameters of concurrent method

These operators involve modifying the parameters of methods for thread and concurrency classes. Some of
the method level mutation operators that modify operands are similar to the operators proposed here.

5.1.1 MXT - Modify Method-X Timeout

The MXT operator can be applied to the wait(), sleep(), and join() method calls (introduced in Section 2)
that include an optional timeout parameter. For example, in Java a call to wait() with the optional timeout
parameter will cause a thread to no longer be runnable until a condition is satisfied or a timeout has occurred.
The MXT replaces the timeout parameter, t, of the wait() method by some appropriately chosen fraction or
multiple of t (e.g., t/2 and t ∗ 2). We could replace the timeout parameter by a variable of an equivalent
type however since we know that the parameter represents a time value it is just as meaningful to mutate the
method to both increase and decrease the time by a factor of 2.

Original Code: MXT Mutant for wait():

long t ime = 10000;
t ry {

wai t ( t ime ) ;
} catch . . .

long t ime = 10000;
t ry {

wai t ( t ime ∗2 ) ; / / or rep lace wi th t ime /2
} catch . . .

The MXT operator with the wait() method is most likely to result in an interference bug or a data race. The
MXT operator with the sleep() and join() methods is most likely to result in the sleep() bug pattern. For
example, in a situation where a sleep() or join() is used by a caller thread to wait for another thread, reducing
the time may cause the caller thread to not wait long enough for the other thread to complete.

The MXT operator can also be applied to the optional timeout parameter in await() method calls. Both
barriers and latches have an await() method. In barriers the await() method is used to cause a thread to wait
until all threads have reached the barrier. In latches the await() method is used by threads to wait until the
latch has finished counting down, that is until all operations in a set are complete. For example:

Original Code: MXT Mutant for await():

CountDownLatch la t ch1
=new CountDownLatch ( 1 ) ;

. . .
long t ime = 50;
l a t ch1 . awai t ( t ime , TimeUnit . MILLISECONDS ) ;
. . .

CountDownLatch la t ch1
=new CountDownLatch ( 1 ) ;

. . .
long t ime = 50;
l a t ch1 . awai t ( t ime /2 , TimeUnit . MILLISECONDS ) ;
/ / or rep lace t ime wi th t ime∗2
. . .



The MXT operator when applied to an await() method call will most likely result in an interference bug.

5.1.2 MSP - Modify Synchronized Block Parameter

Common parameters for a synchronized block include the this keyword, indicating that synchronization
occurs with respect to the instance object of the class, and implicit monitor objects. If the keyword this or an
object is used as a parameter for a synchronized block we can replace the parameter by another object or the
keyword this. For example:

Original Code:

pr ivate Object lock1 = new Object ( ) ;
private Object lock2 = new Object ( ) ;
. . . .
public void methodA ( ) {

synchronized ( lock1 ){ . . . }
}
. . .

MSP Mutant: Another MSP Mutant:

pr ivate Object lock1 = new Object ( ) ;
private Object lock2 = new Object ( ) ;
. . .
public void methodA ( ) {

synchronized ( lock2 ){ . . . }
}
. . .

private Object lock1 = new Object ( ) ;
private Object lock2 = new Object ( ) ;
. . .
public void methodA ( ) {

synchronized ( th is ){ . . . }
}
. . .

The MSP operator will result in the wrong lock bug pattern.

5.1.3 ESP - Exchange Synchronized Block Parameters

If a critical region is guarded by multiple synchronized blocks with implicit monitor locks the ESP operator
exchanges two adjacent lock objects. For example:

Original Code: ESP Mutant:

pr ivate Object lock1 = new Object ( ) ;
private Object lock2 = new Object ( ) ;
. . . .
public void methodA ( ) {

synchronized ( lock1 ){
synchronized ( lock2 ){ . . . }

}
}
. . .
public void methodB ( ) {

synchronized ( lock1 ){
synchronized ( lock2 ){ . . . }

}
}
. . .

private Object lock1 = new Object ( ) ;
private Object lock2 = new Object ( ) ;
. . . .
public void methodA ( ) {

/ / swi tched lock1 and lock2 i n methodA
synchronized ( lock2 ){

synchronized ( lock1 ){ . . . }
}

}
. . .
public void methodB ( ) {

synchronized ( lock1 ){
synchronized ( lock2 ){ . . . }

}
}
. . .



The ESP mutation operator can result in a wrong lock bug because exchanging two adjacent locks will cause
the locks to be acquired at incorrect times for incorrect critical regions. The ESP operator can also cause a
classic deadlock (via deadly embrace) bug to occur as is the case in the above example.

5.1.4 MSF - Modify Semaphore Fairness

Recall in Section 2 that a semaphore maintains a set of permits for accessing a resource. In the constructor
of a Semaphore there is an optional parameter for a boolean fairness setting. When the fairness setting is not
used the default fairness value is false which allows for unfair permit acquisition. If the fairness parameter is
a constant then the MSF operator is a special case of the Constant Replacement (CRP) method level operator
and replaces a true value with false and a false value with true. In the case that a boolean variable is used as
a parameter we simply negate it.

A potential consequence of expecting a semaphore to be fair when in fact it is not is that there is a
potential for starvation because no guarantees about permit acquisition ordering can be given. In fact, when
a semaphore is unfair any thread that invokes the Semaphore’s acquire() method to obtain a permit may
receive one prior to an already waiting thread - this is known as barging3.

Original Code: MSF Mutant:

i n t permi ts = 10;
private f i n a l Semaphore sem

= new Semaphore ( permits , true ) ;
. . .

i n t permi ts = 10;
private f i n a l Semaphore sem

= new Semaphore ( permits , fa lse ) ;
. . .

5.1.5 MXC - Modify Concurrency Mechanism-X Count

The MXC operator is applied to parameters in three of Java’s concurrency mechanisms: Semaphores,
Latches, and Barriers. A latch allows a set of threads to countdown a set of operations and a barrier al-
lows a set of threads to wait at a point until a number of threads reach that point. The count being modified
in Semaphores is the set of permits, and in Latches and Barriers it is the number of threads. We will next
provide an example of the MXC operator for Semaphores, Latches, and Barriers.

The constructor of the Semaphore class has a parameter that refers to the maximum number of available
permits that are used to limit the number of the threads accessing the shared resource. Access is acquired
using the acquire() method and released using the release() method. Both the acquire() and release() method
calls have optional count parameters referring to the number of permits being acquired or released. The MXC
operator modifies the number of permits, p, in calls to these methods by decrementing (p--) and incrementing
(p++) it by 1. For example:

Original Code: MXC Mutant for a Semaphore:

i n t permi ts = 10;
private f i n a l Semaphore sem

= new Semaphore ( permits , true ) ;
. . .

i n t permi ts = 10;
private f i n a l Semaphore sem

= new Semaphore ( permits−−,true ) ;
. . .

A potential bug that can occur from modifying permit counts in Semaphores. In the above example if the
total number of permits had been one then decrementing the number of permits by 1 would have lead to
a situation where no permits were ever available. Another bug could occur if we increased the number of
permits acquired by the acquire() method but did not increase the count in the release() method which could

3java.util.concurrent documentation



eventually exhaust the resources. In this case we could end up with a blocking critical section bug once all
of the permits were held but not released.

Similar to the Semaphore constructors permit count, The constructor of the concurrent latch class Count-
DownLatch has a thread count parameter that can also be incremented and decremented. For example:

Original Code: MXC Mutant for a Latch:

i n t i = 10;
CountDownLatch la t ch1

= new CountDownLatch ( i ) ;
. . .

i n t i = 10;
CountDownLatch la t ch1

= new CountDownLatch ( i −−);
. . .

The MXC operator can also increment and decrement the thread count parameter in the constructor of
the concurrent barrier class CyclicBarrier. For example:

Original Code: MXC Mutant for a Barrier:

i n t i =10;
C y c l i c B a r r i e r b a r r i e r 1

= new C y c l i c B a r r i e r ( i ,
new Runnable ( ) {

public void run ( ) {
}

} ) ;
. . .

i n t i =10;
C y c l i c B a r r i e r b a r r i e r 1

= new C y c l i c B a r r i e r ( i ++ ,
new Runnable ( ) {

public void run ( ) {
}

} ) ;
. . .

A potential bug that can occur from modifying the number of threads in Latches and Barriers is resource
exhaustion.

5.1.6 MBR - Modify Barrier Runnable Parameter

The CyclicBarrier constructor has a parameter that is an optional runnable thread that can happen after all
the threads complete and reach the barrier. The MBR operator modifies the runnable thread parameter by
removing it if it is present. This is a special case of the method level mutation operator, statement deletion
(SDL). For example:

Original Code: MBR Mutant:

i n t i =10;
C y c l i c B a r r i e r b a r r i e r 1

= new C y c l i c B a r r i e r ( i ,
new Runnable ( ) {

public void run ( ) {
}

} ) ;
. . .

i n t i =10;
C y c l i c B a r r i e r b a r r i e r 1

= new C y c l i c B a r r i e r ( i ) ;
/ / runnable thread parameter removed ‘

. . .

An example of a bug caused by the MBR operator is missed or nonexistent signals if some signal calls
were present in the runnable thread.

5.2 Modify the occurrence of concurrency method calls: remove, replace, and exchange

This class of operators is primarily interested in modifying calls to thread methods and methods of concur-
rency mechanism classes. Examples of modifications include removal of a method call and replacement or



exchange of a method call with a different but similar method call. The operators that remove method calls
are special cases of the method level operator: Statement Deletion (SDL).

5.2.1 RTXC - Remove Thread Method-X Call

The RTXC operator removes calls to the following methods: wait(), join(),sleep(), yield(), notify(), and noti-
fyAll(). Removing the wait() method can cause potential interference, removing the join() and sleep() methods
can cause the sleep() bug pattern, and removing the notify() and notifyAll() method calls is an example of los-
ing a notify bug. We will now provide an example of the RTXC operator used to remove a wait() method
call.

Original Code: RTXC Mutant for wait():

t ry {
wai t ( ) ;

} catch . . .

t ry {
/ / removed wa i t ( ) ;

} catch . . .

5.2.2 RCXC - Remove Concurrency Mechanism Method-X Call

The RCXC operator can be applied to the following concurrency mechanisms: Locks (lock(), unlock()),
Condition (signal(), signalAll()), Semaphore (acquire(), release()), Latch(countDown(), and ExecutorSer-
vice(e.g., submit()).

Let us consider a specific application of the RCXC operator in a ReentrantLock or a ReentrantRead-
WriteLock with a call to the unlock() method. The RCXC operator removes this call thus the lock is not
released causing an example of a blocking critical section bug. For example:

Original Code: RCXC Mutant for a Lock:

pr ivate Lock lock1 = new ReentrantLock ( ) ;
. . .
lock1 . lock ( ) ;
t ry {

. . .
} f i n a l l y {

lock1 . unlock ( ) ;
}
. . .

private Lock lock1 = new ReentrantLock ( ) ;
. . .
lock1 . lock ( ) ;
t ry {

. . .
} f i n a l l y {

/ / removed lock1 . unlock ( ) ;
}
. . .

The RCXC operator can also be used to remove calls to the acquire() and release() methods for a
Semaphore. On the one hand, if an acquire() call is removed interference may occur. On the other hand, if a
release() call is removed a blocking critical section bug might be the result.

Original Code:

i n t permi ts = 10;
private f i n a l Semaphore sem = new Semaphore ( permits , true ) ;
. . .
sem. acqu i re ( ) ;
. . .
sem. re lease ( ) ;
. . .



RCXC Mutant for a Semaphore: Another RCXC Mutant for a Semaphore:

i n t permi ts = 10;
private f i n a l Semaphore sem

= new Semaphore ( permits , true ) ;
. . .
/ / removed sem. acqu i re ( ) ;
. . .
sem. re lease ( ) ;
. . .

i n t permi ts = 10;
private f i n a l Semaphore sem

= new Semaphore ( permits , true ) ;
. . .
sem. acqu i re ( ) ;
. . .
/ / removed sem. re lease ( ) ;
. . .

Due to the similar nature of applying the RCXC operator for other concurrency mechanisms we will not
provide any additional examples.

5.2.3 RNA - Replace NotifyAll() with Notfiy()

The RNA operator replaces a notifyAll() with a notify() and is an example of the notify instead of notify all
bug pattern.

Original Code: RNA Mutant:

. . . n o t i f y A l l ( ) ; . . . . . . n o t i f y ( ) ; . . .

5.2.4 RJS - Replace Join() with Sleep()

The RJS operator replaces a join() with a sleep() and is an example of the sleep() bug pattern.

Original Code: RJS Mutant:

. . . j o i n ( ) ; . . . . . . s leep ( 1 0 0 0 0 ) ; . . .

5.2.5 ELPA - Exchange Lock/Permit Acquistion

In a Semaphore the acquire(), acquireUninterruptibly() and tryAcquire() methods can be used to obtain one
or more permits to access a shared resource. The ELPA operator exchanges one method for another which
can lead to potential timing changes as well as starvation. For example, an acquire() method will try and
obtain one or more permits and will block and wait until the permit or permits become available. If the
thread that invoked the acquire() method is interrupted it will no longer continue to block and wait. If the
acquire() method invocation is changed to acquireUninterruptibly() it will behave exactly the same except it
can no longer be interupted. Thus in situations where the semaphore is unfair or if for other reasons the
number of requested permits never becomes available the thread that invoked the acquireUninterruptibly()
will stay dormant and wait. If an acquire() method invocation is changed to a tryAcquire() then a permit
will be acquired if one is available otherwise the thread will not block and wait. tryAcquire() will acquire a
permit or permits unfairly even if the fairness setting is set to fair. Use of tryAcquire() may cause starvation
for threads waiting for permits.



Original Code:

i n t permi ts = 10;
private f i n a l Semaphore sem = new Semaphore ( permits , true ) ;
. . .
sem. acqu i re ( ) ;
. . .

ELPA Mutant:

i n t permi ts = 10;
private f i n a l Semaphore sem = new Semaphore ( permits , true ) ;
. . .
sem. a c q u i r e U n i n t e r r u p t i b l y ( ) ;
. . .

Another ELPA Mutant:

i n t permi ts = 10;
private f i n a l Semaphore sem = new Semaphore ( permits , true ) ;
. . .
sem. t r yAcqu i re ( ) ;
. . .

The ELPA operator can also be applied to the lock(), lockInterruptibly(), tryLock() method calls with
Locks.

5.2.6 SAN - Switch Atomic Call with Non-Atomic

A call to the getAndSet() method in an atomic variable class is replaced by a call to the get() method and a
call to the set() method. The effect of this replacement is that the combined get and set commands are no
longer atomic. For example:

Original Code: SAN Mutant:

Atomic In teger i n t 1 = 15;
. . .
i n t o ldVa l = i n t 1 . getandSet ( 4 0 ) ;
. . .

A tomic In teger i n t 1 = 15;
. . .
i n t o ldVa l = i n t 1 . get ( ) ;
i n t 1 . se t ( 4 0 ) ;
. . .

5.3 Modify keywords: add and remove

We consider what happens when we add and remove keywords such as static, synchronized,volatile, and
finally.

5.3.1 ASTK - Add Static Keyword to Method

The static keyword used for a synchronized method indicates that the method is synchronized using the class
object not the instance object. The ASTK operator adds static to non-static synchronized methods and causes
synchronization to occur on the class object instead of the instance object. The ASTK operator is an example
of the wrong lock bug pattern.



Original Code: ASTK Mutant:

public synchronized void aMethod ( ) {
. . . }

public s t a t i c synchronized void aMethod ( ) {
. . . }

5.3.2 RSTK - Remove Static Keyword from Method

The RSTK operator removes static from static synchronized methods and causes synchronization to occur
on the instance object instead of the class object. Similar to the ASTK operator, the RSTK operator is an
examples of the wrong lock bug pattern.

Original Code: RSTK Mutant:

public s t a t i c synchronized void bMethod ( ) {
. . . }

public synchronized void bMethod ( ) {
. . . }

5.3.3 ASK - Add Synchronized Keyword to Method

The synchronized keyword is added to a non-synchronized method in a class that has synchronized methods
or statements. The ASK operator has the potential to cause a deadlock, for example, if a critical region
already exists inside the method.

Original Code: ASK Mutant:

public void aMethod ( ) {
. . . }

public synchronized void aMethod ( ) {
. . . }

5.3.4 RSK - Remove Synchronized Keyword from Method

The synchronized keyword is important in defining concurrent methods and the omission of this keyword is
a plausible mistake that a programmer might make when writing concurrent source code. The RSK operator
removes the synchronized keyword from a synchronized method and causes a potential no lock bug. For
example:

Original Code: RSK Mutant:

public synchronized void aMethod ( ) { . . . } public void aMethod ( ) { . . . }

5.3.5 RSB - Remove Synchronized Block

Similar to the RSK operator, the RSB operator removes the synchronized keyword from around a statement
block which can cause a no lock bug. For example:

Original Code: RSB Mutant:

synchronized ( th is ){
<statement c1>
}

/ / synchronized ( t h i s ) i s removed
<statement c1>
. . .



5.3.6 RVK - Remove Volatile Keyword

The volatile keyword is used with a shared variable and prevents operations on the variable from being
reordered in memory with other operations. In the below example we remove the volatile keyword from a
shared long variable. If a long variable, which is 64-bit, is not declared volatile then reads and writes will be
treated as two 32-bit operations instead of one operation. Therefore, the RVK operator can cause a situation
where a nonatomic operation is assumed to be atomic. For example:

Original Code: RVK Mutant:

v o l a t i l e long x ; long x ;

5.3.7 RFU - Remove Finally Around Unlock

The finally keyword is important in releasing explicit locks. In the below example, finally ensures that the
unlock() method call will occur after a try block regardless of whether or not an exception is thrown. If finally
is removed the unlock() will not occur in the presence of an exception and cause a blocking critical section
bug.

Original Code: RFU Mutant:

pr ivate Lock lock1 = new ReentrantLock ( ) ;
. . .
lock1 . lock ( ) ;
t ry {

. . .
} f i n a l l y {

lock1 . unlock ( ) ;
}
. . .

private Lock lock1 = new ReentrantLock ( ) ;
. . .
lock1 . lock ( ) ;
t ry {

. . .
}
lock1 . unlock ( ) ;
. . .

5.4 Switch concurrent objects

When multiple instances of the same concurrent class type exist we can replace one concurrent object with
the other.

5.4.1 RXO - Replace One Concurrency Mechanism-X with Another

When two instances of the same concurrency mechanism exist we replace a call to one with a call to the
other. For example, consider the replacement of Lock method calls:

Original Code: RXO Mutant for Locks:

pr ivate Lock lock1 = new ReentrantLock ( ) ;
private Lock lock2 = new ReentrantLock ( ) ;
. . .
lock1 . lock ( ) ;
. . .

private Lock lock1 = new ReentrantLock ( ) ;
private Lock lock2 = new ReentrantLock ( ) ;
. . .
/ / should be c a l l to lock1 . lock ( )
lock2 . lock ( ) ;
. . .

We can also apply the RXO operator when 2 or more objects exist of type Semaphore, CountDownLatch,
CyclicBarrier, Exchanger, and more. For example consider the application of the RXO operator with two



Semaphores and two Barriers:

Original Code: RXO Mutant for Semaphores:

pr ivate f i n a l Semaphore sem1
= new Semaphore (100 , true ) ;

private f i n a l Semaphore sem2
= new Semaphore (50 , true ) ;

. . .
sem1 . acqu i re ( ) ;
. . .

private f i n a l Semaphore sem1
= new Semaphore (100 , true ) ;

private f i n a l Semaphore sem2
= new Semaphore (50 , true ) ;

. . .
/ / should be c a l l to sem1 . acqu i re ( )
sem2 . acqu i re ( ) ;
. . .

Original Code: RXO Mutant for Barriers:

f i n a l C y c l i c B a r r i e r bar1
= new C y c l i c B a r r i e r (20 ,

new Runnable ( ) { . . . } ) ;
f i n a l C y c l i c B a r r i e r bar2

= new C y c l i c B a r r i e r (20 ,
new Runnable ( ) { . . . } ) ;

. . .
bar1 . awai t ( ) ;
. . .

f i n a l C y c l i c B a r r i e r bar1
= new C y c l i c B a r r i e r (20 ,

new Runnable ( ) { . . . } ) ;
f i n a l C y c l i c B a r r i e r bar2

= new C y c l i c B a r r i e r (20 ,
new Runnable ( ) { . . . } ) ;

. . .
/ / should be c a l l to bar1 . awai t ( )
bar2 . awai t ( ) ;
. . .

5.4.2 EELO - Exchange Explicit Lock Object

We have already seen the exchanging of two implicit lock objects in a synchronized block and the potential
for deadlock (Section 5.1.3). The EELO operator is identical only it exchanges two explicit lock object
instances:

Original Code: EELO Mutant:

pr ivate Lock lock1 = new ReentrantLock ( ) ;
private Lock lock2 = new ReentrantLock ( ) ;
. . .
lock1 . lock ( ) ;
. . .
lock2 . lock ( ) ;
. . .
f i n a l l y {

lock2 . unlock ( ) ;
}
. . .
f i n a l l y {

lock1 . unlock ( ) ;
}
. . .

private Lock lock1 = new ReentrantLock ( ) ;
private Lock lock2 = new ReentrantLock ( ) ;
. . .
lock2 . lock ( ) ;
. . .
lock1 . lock ( ) ;
. . .
f i n a l l y {

lock2 . unlock ( ) ;
}
. . .
f i n a l l y {

lock1 . unlock ( ) ;
}
. . .

5.5 Modify critical region : shift, expand, shrink and split

The modify critical region operators cause the modification of the critical region by moving statements both
inside and outside the region and by dividing the region into multiple regions.



5.5.1 SHCR - Shift Critical Region

Shifting a critical region up or down can potentially cause interference bugs by no longer synchronizing
access to a shared variable. An example of shifting a synchronized block up is provided below. The SHCR
operator can also be applied to shift up or down critical regions using other concurrency mechanisms.

Original Code: SHCR Mutant:

<statement n1>
<statement n2>
synchronized ( th is ){

/ / c r i t i c a l reg ion
<statement c1>
<statement c2>

}
<statement n3>
<statement n4>
. . .

<statement n1>
<statement n2>
/ / c r i t i c a l reg ion

<statement c1>
synchronized ( th is ){

<statement c2>
<statement n3>

}
<statement n4>
. . .

The SHCR operator can also be used to shift the critical region created by an explicit lock. For example:

Original Code: SHCR Mutant:

pr ivate Lock lock1 = new ReentrantLock ( ) ;
. . .
public void m1 ( ) {
<statement n1>
<statement n2>
lock1 . lock ( ) ;
t ry {

/ / c r i t i c a l reg ion
<statement c1>
<statement c2>

} f i n a l l y {
lock1 . unlock ( ) ;

}
<statement n3>
. . .

private Lock lock1 = new ReentrantLock ( ) ;
. . .
public void m1 ( ) {
<statement n1>
lock1 . lock ( ) ;
t ry {

<statement n2>
/ / c r i t i c a l reg ion

<statement c1>
} f i n a l l y {

lock1 . unlock ( ) ;
}
<statement c2>
<statement n3>
. . .

5.5.2 EXCR - Expand Critical Region

Expanding a critical region to include statements above and below the statements required to be in the critical
region can cause performance issues by unnecessarily reducing the degree of concurrency. For example:



Original Code: EXCR Mutant:

<statement n1>
<statement n2>
synchronized ( th is ){

/ / c r i t i c a l reg ion
<statement c1>
<statement c2>

}
<statement n3>
<statement n4>
. . .

<statement n1>
synchronized ( th is ){

<statement n2>
/ / c r i t i c a l reg ion

<statement c1>
<statement c2>
<statement n3>

}
<statement n4>
. . .

The EXCR operator can also cause correctness issues and consequences such as deadlock when an
expanded critical region overlaps with or subsumes another critical region.

5.5.3 SKCR - Shrink Critical Region

Shrinking a critical region will have similar consequences (interference) to shifting a region since both the
SHCR and SKCR operators move statements that require synchronization outside the critical section. Below
we provide an example of the SKCR operator using a Lock.

Original Code: SKCR Mutant:

pr ivate Lock lock1 = new ReentrantLock ( ) ;
. . .
public void m1 ( ) {
<statement n1>
lock1 . lock ( ) ;
t ry {

/ / c r i t i c a l reg ion
<statement c1>
<statement c2>
<statement c3>

} f i n a l l y {
lock1 . unlock ( ) ;

}
<statement n2>
. . .

private Lock lock1 = new ReentrantLock ( ) ;
. . .
public void m1 ( ) {
<statement n1>
/ / c r i t i c a l reg ion

<statement c1>
lock1 . lock ( ) ;
t ry {

<statement c2>
} f i n a l l y {

lock1 . unlock ( ) ;
}
<statement c3>
<statement n2>
. . .

5.5.4 SPCR - Split Critical Region

Unlike the SHCR or SKCR operators, splitting a critical region into two regions will not cause statements
to move outside of the critical region. However, the consequences of splitting a critical region into 2 regions
is potentially just as serious since a split may cause a set of statements that were meant to be atomic to be
nonatomic. For example, in between the two split critical regions another thread might be able to acquire the
lock for the region and modify the value of shared variables before the second half of the old critical region
is executed.



Original Code: SPCR Mutant:

<statement n1>
synchronized ( th is ){

/ / c r i t i c a l reg ion
<statement c1>
<statement c2>

}
<statement n2>
. . .

<statement n1>
synchronized ( th is ){

/ / c r i t i c a l reg ion
<statement c1>

}
synchronized ( th is ){

<statement c2>
}
<statement n2>
. . .

5.6 Summary

In the above subsections we have provided an overview of concurrency mutation operators for Java (J2SE
5.0). In our discussion of each operator we have briefly mentioned the bug pattern that relates to that operator.
Table 4 provides a summary of this relationship and shows that the operators we propose are examples of
real bug patterns. Overall almost all of the bug patterns are covered by the operators demonstrating that the
proposed concurrency operators are not only representative but provide good coverage. The bug patterns that
do not have mutation operators are typically more specific complex patterns and the development of general
operators related to these patterns is not feasible.

 
Concurrency Bug Pattern Mutation Operators 
Nonatomic operations assumed to be 
atomic bug pattern 

RVK, EAN 

Two-stage access bug pattern SPCR 
Wrong lock or no lock bug pattern MSP, ESP, EELO, SHCR, SKCR, EXCR, 

RSB, RSK, ASTK, RSTK, RCXC, RXO 
Double-checked locking bug pattern – 
The sleep() bug pattern MXT, RJS, RTXC 
Losing a notify bug pattern RTXC, RCXC 
Notify instead of notify all bug pattern RNA 
 Other missing or nonexistent signals bug 
pattern 

MXC, MBR, RCXC 

A “blocking” critical section bug pattern RFU, RCXC 
The orphaned thread bug pattern – 
The interference bug pattern MXT, RTXC, RCXC 
The deadlock (deadly embrace) bug pattern ESP, EXCR, EELO, RXO, ASK 
Starvation bug pattern MSF, ELPA 
Resource exhaustion bug pattern MXC 
Incorrect count initialization bug pattern MXC 

Table 4: Concurrency bug patterns vs. concurrency mutation operators

6 Conclusion

We have presented a set of concurrency mutation operators to be used as a metric in the comparison of
different test suites and testing strategies for concurrent Java as well as different quality assurance tools for
concurrency. Although we are primarily interested in concurrent mutation operators as comparative metrics
we believe that these operators can also serve a role similar to method and class level mutation operators



as both comparative metrics and coverage criteria. Our new concurrency operators should be viewed as a
complement not a replacement for the existing operators used in tools like muJava. For example, using the
concurrency operators can cause direct concurrency bugs while using the method and class level operators
can cause indirect concurrency bugs.

We believe that our concurrency operators are comprehensive and representative of real bugs. We have
justified the operators by comparing them to a set of bug patterns that have been used to identify real bugs in
concurrent Java programs. Additionally, our classification of concurrency operators shows that the operators
are well distributed across the majority of bug patterns.

Currently we are implementing our concurrency mutation operators in a source transformation language
TXL [CDMS02]. Upon completion of our implementation we plan to validate the operators with our muta-
tion analysis framework ExMAn [BCD06]. We are interested in using our concurrency operators with the
programs in the IBM concurrency benchmark to compare concurrency testing and model checking.
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