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Abstract

This summary paper describes the general properties and features of two systems of semantic
representation: Montague’s Intensional Logic and Jackendoff’s Conceptual Structures. Each
system of representation is based upon a different type of semantic theory, and thus each
one is meant to express different semantic and linguistic phenomena. The basic concepts
of how each formalism works and their expressiveness will be explored. Several linguistic
phenomena will be explained and used as test cases to demonstrate the expressiveness and
limitations of each semantic formalism. Additionally, the first order predicate calculus is
explained and used to express linguistic phenomena as an aid for the reader.
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1 Introduction

Research in the areas of formal semantics and computer science has resulted in a new
and exciting area called computational semantics. This important branch of computational
linguistics is concerned with the automated processing of meaning obtained from natural
language expressions (Blackburn and Bos, 2003). Paramount to the field is the develop-
ment of semantic formalisms that are suitable for automated processing (Blackburn and
Bos, 2003). The purpose of these semantic formalisms is to systematically, precisely and
unambiguously describe meaning underlying natural language expressions. Semantic for-
malisms have applications in areas such as machine translation (Lønning and Oepen, 2006),
natural language generation (Donald, 2006), information storage and retrieval (Koyama
et al., 1998), dialogue systems (Traat and Bos, 2004) and information extraction (Bollegala
et al., 2007).

The expressiveness of a semantic formalism may be evaluated based on a number of
criteria including linguistic coverage, precision and accuracy. First, a formalism must have
appropriately wide linguistic coverage in the sense that it must be possible to express a
large number of different linguistic phenomena such as quantification, tense, modality and
propositional attitudes (Bos, 2005; Donald, 2006). Coverage may also be calculated with
respect to a set of natural language domains the formalism is capable of operating within.
Such domains may include airline ticket purchases, weather reports, sports announcements
and lunar landing scenarios (Ammicht et al., 2007; Donald, 2006; Weischedel, 2006). Second,
the formalism must allow for the precise expression of semantic information. For example,
the formalism must be able to express the differences between the English expressions “few”
and “a few”. Third, the formalism must be accurate with respect to the meaning it attempts
to describe. For example, the formalism must be able to describe exactly and correctly what
the quantification “few” means. Other evaluation criteria may include human-usability
aspects and coverage over semantic phenomena such as entailment, synonymy, polysemy
and antonymy (Donald, 2006; Davis and Gillon, 2004).

Formalisms operate in different ways depending on the type of semantic theory they are
based upon. The classification of semantic theories into meaningful categories is complex,
as the study of semantics has attracted researchers from a number of diverse disciplines
including philosophy, logic, psychology and linguistics (Davis and Gillon, 2004). Further
complications arise as many theories attempt to account for overlapping sets of semantic
phenomena, thus making it difficult to draw clear and insightful distinctions. Following
from Davis and Gillon (2004), the classification approach used in this paper will divide
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semantic theories into two categories: reference theories and meaning theories.

1.1 Reference Theories

Reference theories are concerned with the denotation of linguistic expressions relative to a
single reference coordinate. This denotation, typically referred to as an extension, comes
in different forms depending on the type of expression. To illustrate this point, consider
the expression “the Emperor of Rome”. This statement reflects a set of individuals, one for
each possible world and time. The extension of this expression is an individual at a single
world and time coordinate. For “Caesar is the Emperor of Rome”, the extension is a truth
value obtained by evaluating a set of predicates at a particular time and world coordinate
(Dowty, 1981).

Reference based formalisms evaluate the extension of an expression to relative reference
coordinates. Lewis (1972) refers to these coordinates as contextual coordinates which may
include time, possible world, speaker, audience and place. Formalisms based on reference
theories are typically realized as model-theoretic constructs based on truth semantics and
possible worlds1. One popular reference theoretic based formalism is the first order predicate
calculus. In unextended versions of the first order predicate calculus model, time, possible
world, speaker or any other contextual coordinate type are unavailable. Thus all extensions
in this language are relative to a single reference point. Variations of the first order predicate
calculus (e.g. first order tensed logic, first order modal logic) have been developed that
integrate additional coordinate reference sets (Saeed, 2003).

Extensions only express a narrow semantic value of a statement (Dowty, 1981). Consider
the sentence “Caesar seeks a conspirator”. One possible extension is evaluated based on
truth-conditional statements expressing that Caesar is seeking a conspirator that we know to
be Brutus. This particular extension can be captured with the first order predicate calculus.
The wider set of semantic values, known as the sense or intension of the expression, are
calculated relative to other sets of referential coordinates. For example, another “sense” of
“Caesar seeks a conspirator” is evaluated based on truth-conditional statements expressing
that Caesar is seeking a conspirator despite the fact that none exist. This sense can only
be obtained by evaluating the expression relative to a set of possible worlds that agree with
Caesar’s belief that a conspirator actually exists. In other words, the proper denotation can
only be obtained by examining extensions using referential coordinates that differ from the
way the world actually is.

1.2 Meaning Theories

Meaning theories are concerned with the overall meaning or sense that is expressed by a
linguistic construction (Davis and Gillon, 2004). This sense, referred to as an intension,
contains the set of all possible extensions for an expression (Dowty, 1981). For example,
the intension of the expression “the Emperor of Rome” would contain the set of all the
possible individuals that the Emperor of Rome may have referred to in the past, present or
future. Thus if we consider only the time coordinate, then at time t1 the denotation may
be Augustus while at time t2 the denotation may be Tiberius. For the expression “Caesar
seeks a conspirator”, the set of extensions would contain the instance where Caesar is seeking

1Possible worlds simply describe different states of affairs. The world we live in, called the actual world
is described by a series of circumstances. Other possible worlds are described by circumstances that differ
from our own in infinitely many ways (Kearns, 2000).
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Brutus, where Caesar is seeking any conspirator, and where Caesar is seeking a conspirator
despite the fact that none exist. To summarize, with meaning theories the value of an
expression refers to the entire set of extensions or values that an expression may contain.
Formalisms based on meaning theories are typically realized as series of feature structures
that correspond to basic, recognizable concepts.

Meaning theories are further sub-categorized when we examine how we assign sense
to lexical items. Consider the lexical item “assassin”. An atomic meaning theory would
stipulate that “assassin” is nothing more than a structureless concept [assassin] that cannot
be decomposed (Davis and Gillon, 2004). Stated another way, there is no meaning relation
between “assassin” and “a murderer who kills for monetary gain”, since each expression
has an isolated meaning. Opposed to atomic meaning theories are molecular meaning
theories that decompose simple expressions into other meaning constituents (Wierzbicka,
1996). These types of meaning theories can further be subdivided into the classifications of
analytic and encyclopedic.

Analytic molecular meaning theories distinguish between two types of sentences (Davis
and Gillon, 2004). Consider the sentence “assassins are murderers who kill for monetary
gain”. This type of sentence is analytic in nature as it defines a word in terms of other words,
whereas the sentence “human blood is red” is synthetic since it talks about the nature of the
world. Both types of sentences allow for meaning entailments. For example, unlike atomic
meaning theories, “assassin” would carry a meaning relation to “a murderer who kills for
monetary gain”. Encyclopedic molecular meaning theories do not distinguish between syn-
thetic and analytic sentence types (Davis and Gillon, 2004). As a result, word meaning and
world nature become fused in the lexical definition of a word. To demonstrate, consider the
words “conspirator” and “assassin”. If an individual Caesar holds a belief that conspirators
are assassins, then “assassin” will be in the lexical definition of “conspirator”. Thus Caesar
will be able to infer “Brutus is an assassin” directly from “Brutus is a conspirator”.

1.3 Goal of the Paper

The purpose of this paper is to examine the expressiveness of semantic representations of
two different types, each one based upon a different semantic theory. Specifically, this paper
will explore the semantic formalism developed by Montague (1974a) known as Intensional
Logic, and the formalism developed by Jackendoff (1990) known as Conceptual Structures.
To explain the basic machinery of each, a series of simple linguistic phenomena in English
will be presented and expressed using both formalisms2. Additionally, first order predicate
calculus representations will be provided and explained for each linguistic example. This is
done as an aid for the reader and to demonstrate how each formalism attempts to correct
for problems or insufficiencies with the traditional first order predicate calculus approach to
express meaning. The expressiveness of each formalism will be evaluated with respect to the
precision, accuracy and human-usability of their resultant semantic statements. By virtue
of the fact that our comparison involves a variety of linguistic phenomena, the coverage of
each formalism will also be examined.

The remainder of this paper will proceed as follows. Section 2 will explain the basic
machinery underlying the first order predicate calculus, intensional logic and conceptual

2English sentence fragments will be used exclusively, since the intended audience is expected to be well
versed in the English language. The reader is reminded that any natural language could be used in place
of English, as the underlying meaning of a linguistic expression is intended to be language independent in
nature.
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structures using a series of simple linguistic concepts. Section 3 will compare the expressive
power behind each formalism by exploring how each one successfully (or inadequately)
captures the meaning of more advanced linguistic concepts. Finally, section 4 will summarize
the differences between formalisms and provide some concluding remarks.

2 A Tale of Three Formalisms

The purpose of this section is to introduce the basic machinery of each formalism. To accom-
plish this task, simple English expressions will be provided, with their semantic equivalents
expressed using the first order predicate calculus, intensional logic and conceptual struc-
tures. The intended result is to provide the reader with enough background explanation
of each formalism to understand their operation in relation to the more complex linguistic
examples which will be explored in section 3. The principles behind each model, as well as
their basis in semantic theory are described briefly below.

The first order predicate calculus has been used extensively as a formalism for capturing
the semantics of natural languages, despite the fact that only a very loose methodology exists
for translating the meaning of a natural language expression into its first order logical
equivalent. The attraction of this particular formalism comes from the extensive set of
computational tools for various inferencing and automated reasoning tasks (Blackburn and
Bos, 2003). The first order predicate calculus is a reference theoretic formalism that is
based upon a model M that consists of the tuple 〈A, F〉 where A is a domain of individuals
(the set of entities e) and F is a function that assigns values to constant terms (names
and predicates) (Dowty, 1981). Predicates are functions that take zero or more terms as
arguments and return truth values. Additionally, it is possible to assign values to variable
terms through the use of a variable assignment g. The truth value of a particular expression
is always obtained relative to the model M and any variable assignments g (Dowty, 1981).
The semantics of the operators ∧, ∨, ↔, →, ∀ and ∃ will not be covered here as computer
scientists are assumed to be familiar with their use and definition.

Intensional logic is a reference theoretic formalism that extends the model that the first
order predicate calculus is based upon. Montague (1974a) defined a rigorous methodology
for building a grammar by requiring that each syntactic formation rule be coupled with a
well defined semantic interpretation. Montague realized that complex syntactic constituents
are built from relatively simple ones. Thus his treatment of a grammar ensures that every
syntactic formation rule has a well defined semantic interpretation, which in turn leads to
well defined semantic definitions for any production in the language (Partee, 1972; Mon-
tague, 1974a). Semantic rules are specified using intensional logic, a formalism based on a
model M that consists of the quintuple 〈A, W, T, <, F〉 where A is a domain of individuals,
W is a domain of possible worlds, T is the domain of possible times, < is an ordering on
T, and F is a function that assigns values to constant terms relative to a (time, world) pair
(Dowty, 1981). Variable assignments g also exists in the model, again used to resolve values
for bound variables. Since it is type theoretic in nature, the formalism contains two basic
types: entities (e) and truth values (t). Additional types are defined recursively, with a
derived sense type (Dowty, 1981). In addition to the logical and quantification symbols of
the first order predicate calculus, Montague defines operators ˆ, �, F, P, =, � and � which
will be discussed throughout the paper.

Finally, conceptual structures are based on an encyclopedic molecular meaning theory.
The model that Jackendoff (1990) describes involves the notion of feature structures that
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express basic concepts. These conceptual structures form the fundamental building blocks
that humans are assumed to use to build a mental representation of linguistic and non-
linguistic information (Jackendoff, 1983). The basic unit of information contained within
a conceptual structure is a concept. Jackendoff (1990) suggests that every human has an
innate set of conceptual primitives that can be combined with learned information using
conceptual formation rules to provide a rich description of possible meanings (Jackendoff,
1983; Wierzbicka, 1996). Each major content-bearing syntactic structure in an expression
has a mapping to a well defined conceptual structure. The overall meaning of a sentence is
carried by combinations of various structures obtained from the syntax of the expression.

2.1 Names and Individuals

To begin our examination, consider the name “Brutus” which relates to the semantic in-
dividual Marcus Junius Brutus. The name is represented below using first order predicate
calculus, intensional logic and conceptual structures:

brutus (1)

brutus’ (2)

[
Thing BRUTUS

]
(3)

Although the representation in (1) does not constitute a well-formed first order predicate
calculus formula, it demonstrates how syntactic names are represented by individual con-
stants3 (Korfhage, 1966). The actual semantic value of the constant term brutus maps to
the individual Marcus Junius Brutus in our model. Other constant terms such as “marcus”
and “assassin” could also map to the same semantic value. The notation [α]M,g will be
used when we talk about the denotation of the term α relative to the model M and variable
assignment g (Dowty, 1981). Thus [Brutus]M,g = Marcus Junius Brutus.

The intensional logic representation in (2) bears a strong resemblance to the first order
predicate calculus representation in (1). The constant term brutus’ functions in much the
same way as it did in (1), except that brutus’ refers to a specific, numbered constant term.
There are an infinite number of constant and variable terms available in intensional logic
- constants denoted Cn,<a> (the set of constants of type a) and variables denoted Vn,<a>

(the set of variables of type a) (Dowty, 1981). Primed terms are used as convenient labels
for otherwise complicated variable names. For example, brutus’ may actually be constant
C46,e, the constant term number 46 of the type entity. A variable x is simply a convenient
label for what may be variable term 156 of the type entity, denoted V156,e. The primed
notation and other “English-like” labels simply allow for a more natural way of referring to
various terms. Moving on to semantic values, the denotation of a term is obtained slightly
differently than the first order predicate calculus equivalent. Where the first order predicate
calculus extension was evaluated relative to the model M and the variable assignment g, the
intensional logic extension is obtained relative to M and g as well as a time coordinate and
world coordinate (Dowty, 1981). Thus [brutus]M,w,t,g = Marcus Junius Brutus. Unless

3One should note that the first order predicate calculus representations used throughout this paper break
from traditional notation. Multi-letter constant terms such as “brutus” and “caesar” will be used instead of
traditional single letter constant terms “b” and “c” (Korfhage, 1966; Rubin, 1990). Multi-letter predicates
are also employed, again breaking notational conventions but, it is hoped, improving clarity.
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otherwise stated, the w and t coordinate (chosen from the sets W and T respectively) are
considered to be reflective of the actual world and the current time4. Finally, representation
(2) does not reflect a well formed formula. A correct way of expressing the term “brutus”
would be to express it in relation to the set of properties that define it. We will explore
properties of individuals in the next section.

Turning to Jackendoff’s formalism, representation (3) contains a conceptual structure.
As stated before, conceptual structures are representations of mental constructs used by
humans. A conceptual structure may have one or more conceptual constituents, each with
a specific type. The set of types is defined as Thing, Event, State, Action, Place, Path,
Property, Manner and Amount5 (Jackendoff, 1983, 1990). Representation (3) expresses a
conceptual structure that is composed of a Thing BRUTUS that is understood to be Marcus
Junius Brutus.

2.2 Properties of Individuals

In some instances, it is advantageous to talk about the set of properties that define an
individual. For example, the set of properties that may define Brutus would be: male,
animate and conspirator6. With the first order predicate calculus, intensional logic and
conceptual structures, the following representations would suffice:

MALE(brutus) ∧ ANIMATE(brutus) ∧ CONSPIRATOR(brutus) (4)

λP[�P(brutus’)] (5)

[
Thing BRUTUS

]
(6)

With the first order predicate calculus, there is no way refer abstractly to the set of
properties that define a term. Since properties are expressed using predicates, the only way
to talk about the set of properties that defines Brutus would be to create a conjunctive list
of all the applicable one-place predicates, which we see in representation (4). Predicates
and their denotations are discussed in more detail in the next section.

The intensional logic expression in (5) introduces the λ operator and the extension
operator �. The λ-operator is a function abstractor, and in this context is used to make
an abstract reference to the characteristic functions (P) that describe the properties of
“brutus” (see section 2.3 for the definition of a characteristic function) (Dowty, 1981). For
example, when combined with the predicate male’, the expression λP[�P(brutus’)](male’)
would reduce using λ-conversion to �male’(brutus’), which effectively is a truth-conditional
statement that says that Brutus is male. The λ-operator can be used to abstract over
any type in the language. Thus an abstraction over terms, predicates, relations between
predicates or any other complex type is allowed.

The extensional operator � attached to the term P in (5) has a profound effect on the
denotation. The � forces the value of the abstract predicate P to be read relative to a
world, time pair of coordinates we are using while interpreting the model (Dowty, 1981).
Inversely, the intensional operator ˆ would be used if we wanted to refer to the sense or

4Montague uses I and J in favour of W and T (Dowty, 1981).
5This list is not inclusive of all the possible conceptual types. It is based on assumptions about how

conceptual “parts of speech” may be organized (Jackendoff, 1990).
6This list is not exhaustive, but rather representative of some of the properties an individual may exhibit.
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entire set of characteristic functions that P could potentially be across all world and time
coordinates (Dowty, 1981). For example, consider the predicate “the Emperor of Rome”.
The truth value of the expression ∃x[�emperor of rome’(x)] would be true if there was some
individual x who is the Emperor of Rome at a given world, time pair coordinate. In contrast,
the expression ∃x[ˆemperor of rome’(x)] would be true if there were some individual x who is
the Emperor of Rome at any point in time and in any possible world. The � operator cancels
the intensional operator, thus the expressions ˆ�male’(x) and male’(x) are equivalent, being
extensions of the male’ predicate at the current time and world coordinate (Dowty, 1981).
Any predicate or designator without a �or ˆoperator is understood to be read only as an
extension. Examining this notion from the perspective of types, �emperor of rome is of the
type <e, t>, which is a function (emperor of rome at the given world, time coordinate)
that takes an entity and returns a truth value. The type of ˆemperor of rome is <s, <e,
t>>, which is the set of functions (emperor of rome at every world, time coordinate) that
takes an entity and returns a truth function (Dowty, 1981).

Turning to conceptual structures, the constituent BRUTUS introduced in (6) is implic-
itly understood to contain the set of properties that define Marcus Junius Brutus. Where
first order predicate calculus terms simply refers to a real world object, the structure in
(6) is a fully realized conceptual structure of the object in question. It is possible to pick
out a property associated with a constituent and explicitly make mention of it for syntactic
realization. For example, knowing that Brutus is a man, the following conceptual structure
would be equivalent to (6): [

BRUTUS
Thing [Property MALE ]

]
(7)

With representation (7), restrictive modification is used to modify the Thing BRUTUS and
indicate that Brutus is a MALE. The Property MALE becomes fused with the conceptual
constituent Thing BRUTUS. This notation usually only serves to explicitly mark features of
a conceptual constituent that are important for syntactic purposes. For example, restrictive
modification would be employed in instances where adjectives modify nouns (e.g. red knife)
(Jackendoff, 1983, 1990).

It is also worthwhile to note that the fusion of the Property MALE with the Thing
BRUTUS results in a Thing that maintains all the same semantic properties that it once did,
but without any duplication of properties that the fusion may have introduced (Jackendoff,
1990). To understand this concept, consider representation (7) where there is an implicit
Property MALE that is already associated with the Thing BRUTUS. After the fusion of the
Property MALE with the Thing BRUTUS, the resultant structure would have two MALE
Properties. One property is the implicitly associated property, the other is the explicitly
marked property. This double specification has absolutely no effect on the conceptual
meaning, and therefore we delete one of the MALE Properties from the structure. In this
instance, the explicitly marked MALE Property remains. In instances where we fuse two
explicitly marked properties, the result is a structure where only one will remain.

2.3 Predicates

Predicates are simply relationships between various entities (Kearns, 2000). In the previous
section, we abstractly referred to a series of predicates which described certain properties
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of individuals. Consider the sentence “Brutus is an honourable man” represented below7:

HONOURABLE(brutus) ∧ MALE(brutus) (8)

�honourable’(brutus’) ∧ �male’(brutus’) (9)

 BEIdent

 [
BRUTUS

Thing [Property MAN]

]
,

[Place ATIdent([Property HONOURABLE ])]


State

 (10)

The first order predicate calculus representation in (8) contains a series of predicates
that we have already seen, joined together by the logical operator ∧. If read literally, this
statement expresses that “Brutus is honourable and Brutus is a man”. Unfortunately, the
logical operator ∧ must be employed to convey meaning despite the lack of evidence in
the English statement that such a logical operator is necessary8 (Jackendoff, 1983). Addi-
tionally, there is no indication as to whether these properties are transient or immutable.
Whereas immutable properties such as genetic traits may be implicitly connected to an
individual, a transient property such as honourable may depend on an exact time or set of
circumstances (Kearns, 2000).

Turning to the predicates themselves, the predicate MALE represents a function fMALE

that maps elements from the domain of individuals into the truth value or t domain defined
as {0, 1} (Dowty, 1981). The function fMALE is known as the characteristic function of
the set MALE, as it defines what members are part of the set MALE, and those that are
not. Entities will be mapped to 1 if they are in the set, or 0 if they are not. For example,
given our entity domain {Marcus Junius Brutus, Gaius Julius Caesar, Juliet Capulet}, the
function fMALE would be {Marcu Junius Brutus → 1, Gaius Julius Caesar → 1, Juliet
Capulet → 0}. Similar treatment exists for the predicate HONOURABLE.

The treatment of the intensional logic expression in (9) is much the same as in (8). Again
the terms male’ and honourable’ are understood to represent the characteristic functions
that would map entities into the domain {0, 1}. The difference in the Montague model is
that the characteristic functions of each predicate may change depending on the time and
world coordinate (Dowty, 1981). For example, at time t1 the characteristic function for
honourable’ (fhonourable′) may have the mapping {Marcus Junius Brutus → 1, Gaius Julius
Caesar → 1, Juliet Capulet → 1}, but at time t2 it may be {Marcus Junius Brutus → 0,
Gaius Julius Caesar → 1, Juliet Capulet → 1}. This allows us to capture the fact that
some properties may be transient, since the resultant values of the function may change
depending on the referential coordinates used relative to the model. Since the expression
in (9) uses the extensional operator � the truth value of the function honourable’ will be
relative to the current time and actual world.

Examination of the conceptual structure expressed in (10), reveals the use of a function-
argument structure (Jackendoff, 1990). Function argument structures take conceptual con-
stituents as arguments and relate them to each other in various ways. The semantic type
of the function is defined by the nature of the relationship it expresses. For example, a

7For the sake of simplicity, we choose to express the state of being a man as a consequence of being male.
A more rigorous definition of man would be a combination of adult and male.

8In English, and usually translates to the use of ∧. However, and is not present in the statement “Brutus
was an honourable man”.
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GO function is an Event where the BE function would be a State. Furthermore, the set
of functions is limited to a set of conceptual primitives that cannot be further decom-
posed into any other sets of functions9. If read literally, the representation in (10) reads
as a State containing the function BE which relates the Thing BRUTUS as being AT the
Property HONOURABLE. Representing this property as a Place suggests that an object
may move from that location to someplace else, correctly capturing the transient nature of
HONOURABLE.

Although this structure may at first appear to be more complex than the first order
predicate calculus equivalent, Jackendoff (1983) notes that the subscripts may be dropped
once the reader is familiar with the types of each constituent and function-argument struc-
ture. Throughout the remainder of this paper, subscripts will be omitted where the types
of the semantic objects have already been introduced. This is done to improve clarity and
reduce clutter. As an example, (10) may be rewritten as: BEIdent

 [
BRUTUS
[ MAN ]

]
,

[ ATIdent([ HONOURABLE ])]

  (11)

2.4 Verb Phrases

Moving to more complex linguistic examples, consider the sentence “Brutus stabbed Cae-
sar”10. Both the first order predicate calculus representation and conceptual structure
representation are given below:

STAB(brutus, caesar) (12)

λP[�P(brutus’, caesar’)](stab’) (13)

 CAUSE

 [ BRUTUS ],[
GO

(
[Thing ],
[Path TO([Place IN([ CAESAR ])])]

) ] 
[Manner PUNCTURE ]

 (14)

New complexity is found in the form of extra argument places for the predicate STAB in
the first order predicate calculus representation in (12). The first argument place indicates
the agent performing the action and the second argument place indicates the patient of the
action. The terms agent and patient are known as thematic roles or θ-roles, and are used
as informal markers to describe the contents of predicate arguments (Haegeman, 2005). A
verb assigns a θ-role to each of its arguments, and a rule known as the θ-Criterion states
that each syntactic constituent may receive one and only one thematic role (Haegeman,
2005; Poole, 2002; Radford, 1997).

The intensional logic expression in (13) contains a non-reduced representation of the
sentence. Although we have seen λ-expressions before in (5), this one differs in that there

9As of Jackendoff (1990), the set of conceptual primitives has not been fully enumerated as it is still
uncertain which functions should not be further decomposed into other functions.

10To simplify the explanation of various linguistic phenomena and their treatment, all the first order
predicate calculus, intensional logic and conceptual structure examples will have the default reading of the
past tense for now. Section 3.1 will talk more about the difficulties surrounding tense.
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is the possibility for it to be reduced to a simpler form. All expressions containing λ-
terms in intensional logic should be reduced to their simplest form wherever applicable.
Further reduction of (5) was not possible since it was left unspecified what predicate should
be combined with the λ-bound term. However, since a predicate is specified in (13), the
expression should undergo λ-conversion as demonstrated below:

λP[�P(brutus’, caesar’)](stab’)
↓

�stab’(brutus’, caesar’)
(15)

As we can see, the converted representation in (15) and (12) are completely equivalent
statements. This equivalence is made possible due to the fact that we are only examining
the extension of the predicate in (13).

The conceptual structure representation in (14) literally reads that the Thing BRUTUS
caused an unspecified Thing to be placed inside of CAESAR. The addition of the restrictive
modifier PUNCTURE is used to indicate the Manner in which the action is performed.
Although the complexity of this structure appears to make it much more unwieldy than the
first order predicate calculus representation, it is possible to represent this action in another
way with a different structure. More details of this simplification are given below.

2.5 Prepositional Phrases

Consider the sentence “Brutus stabbed Caesar with a knife”. Although we have a basic
form for the STAB action, the prepositional phrase “with a knife” forces the addition of
another argument place in the first order predicate calculus representation. An additional
worry is the complexity of the conceptual structure representation. However, it is possible
to simplify the latter by using different primitive functions. Representations for “Brutus
stabbed Caesar with a knife” are below:

∃x( KNIFE(x) ∧ STAB(brutus, caesar, x) ) (16)

∃x[ �knife’(x) ∧ �stab’(brutus’, caesar’, x) ] (17)

 CAUSE

 [ BRUTUS ],[
GO

(
[Thing KNIFE ],
[Path TO([Place IN([ CAESAR ])])]

) ] 
[Manner PUNCTURE ]

 (18)

Unfortunately, the first order predicate calculus representation in (16) strays away from
the English it attempts to describe. If read literally, the logical formula reads “there exists
some thing x such that x is a knife and Brutus stabs Caesar with it”. The existential
quantifier is required due to the indefinite reading of “a knife” (Kearns, 2000). Here “a
knife” signals that we have an object that is known to be a member of the set of knives,
but no particular, uniquely identifiable knife is singled out11. The third argument place
introduced to the function STAB is used to indicate the object that was used to perform
the action and can be viewed as one of the many contextual coordinates that are required to

11This particular reading reflects a non-specific indefinite (Kearns, 2000) term. The issues surrounding
definite and indefinite descriptions are discussed later in section 3.4.
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fully describe the STAB action. Additional prepositional phrases would potentially require
more argument places on each predicate.

The same comments for the first order predicate calculus representation apply to the
intensional logic expression seen in (17). Existential quantification is introduced in order to
create the indefinite description of “a knife”, and additional argument places are created for
stab’ in order to accommodate the prepositional phrase. The extensional reading of both
stab’ and knife’ make the entire expression equivalent to the first order predicate calculus
representation in (16).

Turning to conceptual structures, in representation (18), the empty Thing constituent is
filled by the Thing KNIFE. However, there are several ways that this English sentence may
have been realized using conceptual structures. Assuming there was a primitive conceptual
function STAB that relates two Things, we could obtain the structure as expressed in:[

STAB([ BRUTUS ], [ CAESAR ])
[ WITH[ KNIFE ] ]

]
(19)

This new structure contains a semantic function which is much closer to the one found in
the first order predicate calculus representation. The primitive function STAB may also be
defined to accept three arguments to give:[

STAB([ BRUTUS ], [ CAESAR ], [ KNIFE ])
]

(20)

While (20) contains the same meaning as (19), the definition of STAB in (19) provides the
greatest flexibility, since additional circumstances beyond the basic action can simply be
fused to the main Event constituent. Thus a complex sentence such as “Brutus stabbed
Caesar with a knife at noon on the steps” becomes:

STAB([ BRUTUS ], [ CAESAR ])
[ WITH[ KNIFE ] ]
[ AT([ NOON ]) ]
[ ON([ STEPS ]) ]

 (21)

It is worthwhile to note at this point as well, that each major syntactic structure is mapped
onto a conceptual constituent (Jackendoff, 1990). To see how this works, consider the
following syntactic structure that relates to our original sentence “Brutus stabbed Caesar
with a knife at noon on the steps”:

[NP Brutus ] [V P stabbed [NP Caesar] [PP with a knife] [PP at noon] [PP on the steps]]
(22)

By comparing the syntactic structure in (22) to the conceptual structure in (21), we can
observe the mappings in detail. The NPs Brutus and Caesar become Thing constituents
which are directly incorporated into the conceptual function STAB. As the verb STAB
is considered to be the head of the VP, it becomes the main function in the conceptual
structure. Since the PPs serve to modify the circumstances of the main action, they become
conceptual Places that are fused with the main function12.

12For the purposes of this paper, manner, time and place elements are related to the action.
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2.6 Anaphoric Expressions

Another complexity that exists in natural language is the notion of anaphora. In anaphoric
expressions, pronouns or other referring expressions are used to refer to a previously men-
tioned object (McCoy and Strube, 1999). Consider the sentence “Juliet stabbed herself”13.
Here the reflexive “herself” points back to the object “Juliet”. Valid first order predicate
calculus, intensional logic and conceptual structure representations become:

STAB(juliet, juliet) (23)

�stab’(juliet’, juliet’) (24)

[ STAB([ JULIET ]α, [ α ]) ] (25)

In the first order predicate calculus representation (23) the constant term “juliet” is
used twice, filling both argument places for the predicate STAB. Unfortunately, this repre-
sentation does not provide clues as to when a pronoun may be used in the realized syntactic
construct. The literal meaning of this expression would be “Juliet stabbed Juliet”, an En-
glish statement that is completely unnatural and potentially ambiguous in situations where
there may be more than one Juliet14.

As becomes obvious from the extensional reading of stab’ in the intensional logic expres-
sion in (24), the representation is equivalent to the first order predicate calculus expression
in (23). However, to solve some of the problems with knowing when to use a pronoun, an
alternative expression may be employed:

∃x[ x = juliet’ ∧ �stab’(juliet’, x) ] (26)

Montague (1974b) allows for the identity operator = in intensional logic. This operator
assigns the characteristic function of a predicate or designator to a variable. Hence, the
semantic value of x takes on the denotation of juliet’. The advantage of (26) over (24) is
that the x can give us clues where a pronoun may be used in a syntactic representation,
albeit at the price of introducing an existentially quantified variable.

Turning to conceptual structures, the α in representation (25) is used to indicate binding
between conceptual constituents (Jackendoff, 1990). In this instance, the superscripted α
attached to the Thing JULIET signals that any further use of the symbol α will be taken to
refer to the Thing JULIET. Such variable assignments provide a way of referring back to a
previously introduced conceptual constituent without introducing ambiguity. For example,
with the sentence “a Roman stabbed a Roman”, there is ambiguity involved as to whether
there is more than one Roman participating in the event. Without using variables to indicate
references to previously introduced constituents, we would have the following structure:

[ STAB([ ROMAN ], [ ROMAN ]) ] (27)

With (27), ambiguity arises as to whether the second instance of the Thing ROMAN is
related to the first. The use of Greek symbols in representation (25) prevents this problem

13Sadly, the world could never know that Juliet became a Montague.
14To resolve this type of ambiguity in the first order predicate calculus representation, the reader is

reminded that separate constant terms would be created for each Juliet, say “juliet1” and “juliet2”.
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from occurring, and provides us hints that further instances of Greek symbols may be
appropriate for replacement with pronouns or reflexives15.

2.7 Implication

Consider the instance where we wish to relate the fact that the action of Brutus stabbing
Caesar resulted in his death. The English sentence “Brutus stabbed Caesar to death”
conveys this information. The various representations become:

STABTODEATH(brutus, caesar) (28)

∃e∃d∃x[ �knife’(x) ∧ e = �stab’(brutus’, caesar’, x) ∧
d = �die’(caesar’) ∧ �cause’(e, d) ]

(29)

[
CAUSE

(
[Event STAB([ BRUTUS ], [ CAESAR ]α)],
[State BE([ α ], [ DEAD ])]

) ]
(30)

The STABTODEATH first order predicate calculus construction in (28) relates the fact
that Brutus stabbed Caesar to death. Unfortunately, we are forced to create a predicate
that fuses the notions of “stab” and “death” together into an inseparable entity. A more
natural tendency would be to create an expression such as:

STAB(brutus, caesar) ∧ DIE(caesar) (31)

While (31) follows our sensibilities about keeping the two predicates separate, the logical ∧
does not properly express the causal connection between the two actions. In other words,
the STAB predicate is interpreted completely separately from the DIE predicate, and in
no way does the expression imply that STAB caused DIE to occur (Jurafsky and Martin,
2000).

The intensional logic representation in (29) allows us to express fine-grained detail over
the exact causes of Caesar’s death. This is accomplished with the identity operator that
allows a variable to represent a characteristic function (or any other complex type) (Dowty,
1981). The cost of this particular implementation is the introduction of three existentially
qualified variables. However, we could have allowed for functions as arguments, thus reduc-
ing the expression to:

∃x[ �knife’(x) ∧ �cause’( �stab’(brutus’, caesar’, x), �die’(caesar’) ] (32)

Additionally, had we wanted to express the fact that it was the knife that caused Caesar’s
death, we could do so by manipulating the order of the arguments in (32) accordingly.

Conceptual structures provide for a great deal of control over subtle linguistic differences
that may appear in English while maintaining a greater degree of clarity. The expression
in (30) indicates that the act of stabbing Caesar is what resulted in Caesar’s death in the
sentence “Brutus stabbed Caesar to death”. With this representation, the Event related
to the stabbing of Caesar is clearly marked as the CAUSE of the death of Caesar. The
representation of “Caesar died from the stab wound received from Brutus” would become:

15Strictly speaking, the use of Greek symbols should be employed with every constituent. The lack of a
Greek symbol on a constituent signals a new and unique object.
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 CAUSE

 [Event CAUSE
(

[Event STAB([ BRUTUS ],[ CAESAR ]α)],
[Event WOUND([ α ])]

)
,

[State BE([ α ], [ DEAD ])]

 
(33)

Again, with (33), the structured layout of the representation helps the reader to understand
what is the ultimate CAUSE of the death of Caesar.

3 Comparing Expressiveness

Having explored the basic principles behind each formalism, we now turn to evaluating
their expressiveness. As stated previously, expressiveness is measured in terms of linguis-
tic coverage, precision and accuracy. In this section, a number of more complex linguistic
phenomena will be explained and expressed using the first order predicate calculus, inten-
sional logic and conceptual structures16. The overall goal of this section is to highlight the
strengths and weaknesses of each formalism.

3.1 Tense

In the real world, facts about objects change depending on time. To understand an expres-
sion such as “Brutus stabs Caesar”, we need to know when this statement applies (Dowty,
1981). With the treatment of English syntax, a variety of syntactic devices, such as aux-
iliary verbs and various verb suffixes, signal that interpretation of the current expression
is to be evaluated relative to different points in time (Moss and Tiede, 2006; Saeed, 2003;
Reichenbach, 1947). For this type of analysis to work, time needs to be viewed as a series of
“instants in time” with an ordering on how each one follows from the other (Saeed, 2003).
Using this analysis, we can classify an event as occurring before the current time (the past),
at the current time (the present) or after the current time (the future)17 (Reichenbach,
1947; Saeed, 2003). This particular analysis allows us to define what are called “simple
tenses”. Turning to concrete linguistic examples, the verb in “Brutus stabs Caesar” lacks
mark-up that would suggest a different time for interpretation. This unmarked form is
indicative of the present tense. Other tenses such as the past or future tense rely on overt
mark up of the English syntax to indicate that a different temporal time frame should be
used when interpreting the sentence. For example, the verb in “Brutus stabbed Caesar”
has morphological markings which suggest interpretation should take place at an earlier
temporal location.

Up to this point in the paper, we have treated all of our expressions as applying in some
past temporal state in order to force a past tense interpretation of various expressions. We
will change that notion now so that unless otherwise indicated, all statements reflect the
current time or present tense.

3.1.1 Simple Past and Future Tenses

The following expressions attempt to capture the past tense sentence “Caesar died”:
16In instances where an unmodified form of the first order predicate calculus is unable to express intended

meaning, specially modified versions of the formalism will be used.
17Reichenbach (1947) refers to the current time as the speech event time. In other words, the current time

corresponds to when the phrase is uttered, read, or otherwise produced
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∃e( DIE(caesar, e) ∧ ∃t( TLOC(e, t) ∧ t < s ) ) (34)

P[ die’(caesar’) ] (35)

[
DIE([ CAESAR ])
[ ATTemp([ PAST ]) ]

]
(36)

The model in the first order predicate calculus representation in (34) has changed slightly
in order for us to capture tenses. Presumably, the domain of entities A contained only
individuals. We now expand it to include events and instances of time (Blackburn and Bos,
2003). With this new model in mind, we find that the DIE predicate has changed to relate
the death of Caesar to an entity e, which is understood to be the event that the predicate
refers to. The TLOC predicate equates the death event e to the existentially quantified
variable t, which is understood to represent the time at which event e occurs. A second
time, the current time is indicated with the s term. The past tense reading of the predicate
is obtained through the notation t < s, which has the effect of saying that t (the event
time) occurs at an earlier point in time than s (the current time). When taken together,
the entire statement reads: Caesar’s death event e occurred at a time t that was earlier than
the current time s. Although this expression captures the “essence” of the past tense, it
does so at the cost of creating an ontologically complex entity domain, since we now have to
allow both events and times in the domain of individuals. However, this mechanism easily
expresses future tense readings, such as “Caesar will die”:

∃e( DIE(caesar, e) ∧ ∃t( TLOC(e, t) ∧ t > s ) ) (37)

The only change that is evident in representation (37) is that the time t specified is greater
than the current time s. This has the effect of saying that the event in question will
take place in the future. This particular treatment of simple past and future tenses is
satisfactory in terms of the precision and accuracy needed to capture the meaning of simple
tense statements.

The intensional logic expression in (35) introduces the P operator. Recall that in the
model for intensional logic, < was a partial ordering on T (the set of all instances of time).
In the intensional logic language, t is understood to be the current time while any other t’
is understood to be at a point before or after t (Dowty, 1981). The P operator works using
the partial ordering on T, by evaluating die’(caesar’) at time coordinate t’, where t’ < t. In
other words, if there is any point in time prior to the current time where die’(caesar’) would
evaluate to true, then the entire expression of P[ die’(caesar’) ] will be true. This provides
a simple past tense reading. An additional operator for the simple future tense also exists,
making the sentence “Caesar will die” possible:

F[ die’(caesar’) ] (38)

The expression in (38) will be true if there exists any value of die’(caesar’) that evaluates
to true at any point in time t’ such that t’ > t. Obvious difficulties arise if our current time
coordinate t happens to be at the start of time or at the end of the set of all times. For
example, using the future tense operator F at the end of time will result in an undefined
value, as will employing the past tense operator P at the beginning of time. However, Dowty

16



(1981) rationalizes this issue away by stating that the domain of times T can be viewed as
an infinite set. Since reality says that no human being was alive at the beginning of time
to utter a past tense phrase, and since it is unlikely that any human will exist to utter a
future tense phrase at the end of time, the problem of using F or P at either end of the time
continuum is, practically speaking, a non-issue. As with the first order predicate calculus
representations, this particular treatment is both precise and accurate for use with simple
past and perfect tenses.

Turning to conceptual structures, the expression in (36) is a likely candidate to express
a past tense event. Jackendoff’s discussions do not explicitly cover a treatment of tense,
although there are hints as to how this might be accomplished. Jackendoff (1983) introduces
the ATTemp function, which indicates an exact temporal location that an event occurred.
In this particular expression, we will use this function to indicate (rather abstractly) that
the event in question occurred at some point in temporal space we know to have already
passed. Other temporal locations may include FUTURE, TOMORROW or YESTERDAY,
each of which can be interpreted to be in the past or future respectively. The expression of
“Caesar will die” becomes: [

DIE([ CAESAR ])
[ ATTemp([ FUTURE ]) ]

]
(39)

Conceptual structures allow for the same sort of precision and accuracy that both the first
order predicate calculus and intensional logic expressions allowed.

3.1.2 Progressive and Perfect Tenses

More complex tenses may be obtained through various combinations of tense and aspect.
In linguistic terms, grammatical aspect is concerned with how the action is distributed over
a period of time (Saeed, 2003). In simple tenses, the start or end point of the action being
described is either unimportant or unknown. For example, the sentence “Caesar went to
the Senate” does not give any indication as to whether the action is complete or not, it just
provides information that the action occurred sometime in the past. In this example, we
say that the conjugation of the verb “go” has an indefinite aspect, and when combined with
a past tense operator it gives rise to the simple past tense. In the previous section, these
simple tenses can easily be expressed by stating the event time t relative to the current time
s. However, other aspects exist that give rise to different readings that cannot be expressed
using this simple analysis of tenses. Consider the sentence “Caesar was going to the Senate”.
In this instance, the verb “go” presents an aspect that the action is ongoing but may not
yet be complete. The only information available is that the start of the action occurred
sometime in the past. This particular aspect suggests an action that is continuing, and
when combined with a past tense operator gives rise to the past progressive tense (Saeed,
2003). Different still is the verb “go” in the sentence “Caesar had gone to the Senate”.
With this example, the aspect suggests the action is complete, and combines with a past
tense operator to give rise to the past perfect tense (Saeed, 2003).

Each of the aspects discussed above require that we extend the analysis of tenses to
include a reference time r (Reichenbach, 1947). This point in time may be before or after
the speech time and before or after the actual event time. In order to obtain progressive
or perfect tenses, we need to know whether or not the event was complete or ongoing at
the reference time in the past or future. This is accomplished by changing the associated
time and ordering of t, r or s in a given expression. For example, consider the sentence
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“Brutus had stabbed Caesar”. With this example, the ordering of the event time t, the
reference time r and the speech time t would be t < r < s. Essentially this tells us that
the event t was complete before some reference point r, and that the event was in the past
since r < s. Many different combinations of tenses and aspects are possible with this model
(Reichenbach, 1947; Moss and Tiede, 2006).

To see how each formalism deals with different tenses and their aspects, consider the
past perfect tensed statement “Caesar had gone to the Senate” represented below:

∃e( GO(caesar, senate, e) ∧ ∃t( TLOC(e, t) ∧ t < r ∧ ( r < s ) ) ) (40)

PP[ go’(caesar’, senate’) ] (41)

[
GO([ CAESAR ], [ TO([ SENATE ]) ])
[ ATTemp([ BEFORE([ PAST ]) ]) ]

]
(42)

The first order predicate calculus expression seen in (40) has introduced the symbol r
to represent the reference time, while the symbols s and t still represent the current time
and event time respectively. This particular expression directly incorporates the system
described by Reichenbach (1947). Knowing this, representation (40) has changed slightly
to incorporate reference time r. The GO predicate has been expanded in order to relate the
variable e to the action of Caesar going to the Senate, while the TLOC predicate states that
event e and time t are related. The rest of the statement focuses on temporally locating the
event time t relative to a reference r and the current time s. As in the previous example,
the ordering of t < r < s provides the perfect past reading.

The intensional logic representation in (41) introduces no new operators. Instead it
recursively applies the P operator to create the term PP. As seen in the previous section,
the P operator forces the evaluation of the expression to be performed at some earlier time
coordinate. The repeated application of the P operator to make PP directs the evaluation to
occur at some point in time before the point in time we are being directed to, thus providing
the past perfect tense (Dowty, 1981). Additionally, by the same mechanism, future perfect
tenses can be obtained by modifying the expression with the operator combination FP.
However, while repeated applications of the F or P operator are allowed in infinite combi-
nations (for example, FFF, PPP, FPF, etc), there is no way to use this particular treatment
to represent any of the progressive tenses or a proper present perfect tense (Dowty, 1981).

With the conceptual structure representation in (42), a new function BEFORE is intro-
duced to signal that the event occurred at some time before a reference point in the past.
As in the simple tense representation seen in section 3.1.1, this particular function argument
structure is not discussed directly by Jackendoff, but may be possible if we assume there is
an ontological category called Time. Jackendoff (1983) makes mention that other ontologi-
cal categories such as Time may be possible beyond the relatively well defined categories of
Thing, State, Event, etc. However, he does not suggest any treatment beyond how one may
handle Events and States within the spatial domain. If we accept Time as a category, then
it is also conceivable to accept Duration as a category. With these two categories, it would
then be possible to model past progressive statements such as “Caesar had been going to
the Senate” with:
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 GO([ CAESAR ], [ TO([ SENATE ]) ])
[Duration INCOMPLETE ]
[ ATTemp([ BEFORE([ PAST ]) ]) ]

 (43)

This particular treatment provides the precision and accuracy needed to express a wide
variety of tenses.

3.2 Modality

In linguistics, the term modality is used in relation to expressions that state the possibility
or necessity of a particular proposition (Kearns, 2000; von Fintel, 2005). For example,
“Brutus must kill Caesar” is a modal expression conveying necessity while, “Brutus may
kill Caesar” is a modal expression conveying possibility. Modalities are classified with
respect to the set of possible worlds under which a proposition might necessarily or possibly
be true18(von Fintel, 2005). Several different classifications of modality exist including the
alethic, dynamic, deontic, epistemic and teleological modalities (von Fintel, 2005). For
example, the expression “Brutus may kill Caesar” has two different readings depending on
the type of modality that is intended. The epistemic interpretation conveys the meaning
that Brutus had both the ability and intent to kill Caesar and the known facts of their
relationship support the conclusion that Brutus may have taken this action. The deontic
interpretation conveys the meaning that a behavioral code of conduct allows Brutus to kill
Caesar, should Brutus wish to do so. Additional classifications of modality exist, each one
reflective of a different set of possible worlds (von Fintel, 2005). For the purposes of this
paper, the basic operation of necessity and possibility will be explored within the epistemic
and deontic modalities.

3.2.1 Epistemic Modality

The epistemic modality expresses the necessity or possibility of a statement in relation to
the set of facts at hand (Kearns, 2000; Saeed, 2003; von Fintel, 2005). For example, consider
the statement “Brutus may kill Caesar”. There are two possible values of truth that the
English statement “may” suggests. We can imagine that in one instance Brutus does indeed
kill Caesar and the denotation of “Brutus kills Caesar” will be true. However, there is a
second instance where Brutus does not kill Caesar, and the denotation is false. In order to
deal with this seemingly dual nature that “may” suggests, the denotation of the expression
is obtained by quantifying the set of possible worlds that the statement operates within
(von Fintel, 2005). With this particular analysis, statements that express possibility need
only be true in an existentially quantified possible world. In other words, there need be at
least one possible world in which the expression is true (Saeed, 2003). With statements that
convey necessity such as “Brutus must kill Caesar” the set of possible worlds is universally
quantified. In other words, the statement must be true across all possible worlds.

Turning to the expression of epistemic statements in each formalism, consider the state-
ment “Rome must be ruled by an Emperor”. The formal representations of each are given
below:

18Possible world semantics simply says that there exist an infinite number of realities in which the state
of affairs differs from the one in the actual world we live in (von Fintel, 2005).
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∃w( ACTUAL-WORLD(w) ∧ ∀v( R(w, v) → ∃x( EMPEROR(v, x)
∧ RULE(v, x, rome) ) ) )

(44)

�∃x[ emperor’(x) ∧ rule’(x, rome’) ] (45)

[
NECESSARY+Ep( RULE([ EMPEROR ], [ ROME ]) )

]
(46)

The first order predicate calculus representation in (44) has changed slightly once again.
First, the domain of entities A has changed to include the set of possible-worlds. Second,
two new specially designed predicates have been created: the ACTUAL-WORLD predicate
to pick out the real world, and an accessibility relation R that allows us to specify over what
set of worlds a particular action should occur in (Blackburn and Bos, 2003). Finally, each
predicate in the language now requires an extra argument place to indicate what world the
truth value is relative towards. The entire expression may be read as: there exists a world
w known as the actual world, and that accessing all other worlds v, there is some individual
x in world v such that x is an Emperor and x rules Rome. To express the possibility in
“Rome may be ruled by an Emperor”, the expression becomes:

∃w( ACTUAL-WORLD(w) ∧ ∃v( R(w, v) → ∃x( EMPEROR(v, x)
∧ RULE(v, x, rome) ) ) )

(47)

In (47), as expected, the only change comes in the form of the variable v being existentially
qualified instead of universally qualified. This change has the effect of saying that there
exists a world w known as the actual world, and that accessing some other world v, there
is some individual x in every world v such that x is an Emperor and x rules Rome. As
expressed before, the distinction between necessity and possibility lies with which set of
possible worlds are chosen for the statement.

Turning to the intensional logic expression in (45), the symbol � is introduced. The �
binds the right hand side of the expression and forces the predicates emperor’ and rule’ to be
examined for truth at every possible world coordinate w’. The expression is true if and only
if the predicates are true under every single world coordinate (Dowty, 1981). This expresses
the same effect that was captured with the first order predicate calculus representation seen
in (44), albeit with a much more elegant expression. To express the possibility in “Rome
may be ruled by an Emperor”, the expression would become:

�∃x[ emperor’(x) ∧ rule’(x, rome’) ] (48)

The expression in (48) contains the � symbol, used to express possibility. In this instance,
the � binds the left hand side of the expression and forces predicate emperor’ and rule’
to be examined for truth across possible world coordinates w’. However, in contrast to
�, the � operator requires that the predicate hold under only one (or more) possible world
coordinates (Dowty, 1981). Again, this analysis is consistent with the treatment of epistemic
modality.

As in the case of tense, Jackendoff did not offer a specific set of structures for modality.
However, the conceptual structure in (46) represents a possible candidate for expressing a
modal statement. The subscripted +Ep is a semantic feature that describes the type of
modal that is present. In general, the function of a given semantic feature is to indicate
whether or not a particular property is to be applied to a function-argument structure
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(Jackendoff, 1990). In this case, the feature +Ep signals that this is to be understood in
an epistemic modality. Another modal function POSSIBLY could also be defined in order
to express terms such as “Rome may be ruled by an Emperor”:[

POSSIBLY+Ep( RULE([ EMPEROR ], [ ROME ]) )
]

(49)

Again, the same analysis applies to POSSIBLY in that the +Ep semantic feature applies
to the function argument structure.

3.2.2 Deontic Modality

The deontic modality expresses necessity and possibility relative to a set of possible worlds
that agree with a behavioral code of conduct or set of rules (Kearns, 2000; Saeed, 2003;
von Fintel, 2005). For example, the expression “Brutus must kill Caesar” expresses the
fact that Brutus must adhere to a code of conduct in which he is ordered to kill Caesar.
By contrast, the expression “Brutus may kill Caesar” expresses the fact that Brutus has
permission to kill Caesar and may do so if he wishes to. It is possible for some English
sentences with modal meanings to become ambiguous with respect to the type of modal
context being created. For example, it is difficult to determine if the expression “Brutus
must kill Caesar” should be interpreted in an epistemic or deontic context (is this statement
a factual conclusion based upon the best available evidence, or is it law?). As pointed out
by von Fintel (2005), usually the background context provides enough information to clarify
the modal meaning. At the semantic level, this ambiguity is non-existant since unique modal
operators are usually employed provide the necessary distinction. For example, while the �
operator in intensional logic conveyed epistemic necessity, a new symbol would be needed
to convey deontic necessity.

Consider the expression of the following deontic statement “Brutus must kill Caesar” in
each formalism:

∃w( ACTUAL-WORLD(w) ∧ ∀v( RDE(w, v) → KILL(v, brutus, caesar ) ) ) (50)

O[ kill’(brutus’, caesar’) ] (51)

[
NECESSARY+De( KILL([ BRUTUS ],[ CAESAR ]) )

]
(52)

The first order predicate calculus representation in (50) looks very similar to the epis-
temic representation in (44). However, instead of using a normal accessibility relation R,
a relation which spans only deontic worlds is introduced called RDE. The necessity of the
statement is captured by the fact that the statement is quantified over the set of all possi-
ble deontic worlds. To express deontic possibility, the quantification simply changes from
universal to existential. The sentence “Brutus may kill Caesar” is represented by:

∃w( ACTUAL-WORLD(w) ∧ ∃v( RDE(w, v) → ∃x( EMPEROR(v, x)
∧ RULE(v, x, rome) ) ) )

(53)

With the intensional logic expression in (51), we see the introduction of an O operator.
Although not specified directly by Montague himself, the O operator has been suggested by
other researchers as a way of indicating an obligatory statement (Saeed, 2003). In effect, the
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O binds the right hand side of the expression such that the kill’ predicate is evaluated relative
to the set of deontic worlds. Furthermore the semantics of the O operator states that the
denotation of the expression must be true across all possible deontic worlds. Additionally,
the use of O requires there to be some type of ordering on possible worlds so that one
can distinguish between different world types (deontic, epistemic, alethic, bouletic, etc)19.
Although this type of world ordering wasn’t directly mentioned by Montague, it is quite
possible and practical in theory. To convey the permissive possibility of “Brutus may kill
Caesar”, a second operator Q is introduced that requires the sentence hold in only one
deontic world20:

Q[ kill’(brutus’, caesar’) ] (54)

Again, like the O operator, the Q operator allows for an elegant solution to expressing
modality. Moreover, the use of �, �, O and Q allow for the precision and accuracy needed
to convey different forms of modality. This treatment of adding additional operators that
pick out other subsets of possible worlds can be easily expanded to account for other modal
contexts such as the alethic, bouletic and teleological modalities.

The conceptual structure in (52) uses the same NECESSITY function argument struc-
ture seen in the epistemic statement of (46). The main difference is due to the semantic
feature of +De, which forces a deontic interpretation of the sentence. This same semantic
feature can also be applied to the POSSIBLY function to give the permissive reading of
“Brutus may kill Caesar” as seen below:[

POSSIBLY+De( KILL([ BRUTUS ],[ CAESAR ]) )
]

(55)

Using the NECESSITY and POSSIBLY function argument structures along with semantic
features such as +De or +Ep allows for the precision and accuracy needed to express modal
contexts. Additional semantic features may be added to express other modal contexts as
needed.

3.3 Quantification

In linguistics, quantifiers are used to describe the properties or states of a set of individuals
(Barwise and Cooper, 1981). Consider for example the sentence “every conspirator stabs
Caesar”. This statement asserts that all the individuals that are “conspirators” are involved
in the stabbing of Caesar. Changing the quantifier affects the reading of how many conspir-
ators may have been involved. For example, “a few conspirators stab Caesar” suggests that
a smaller set of individuals were involved in the stabbing of Caesar. In general, a quantifier
is typically built from a determiner (such as all, many, none) and a noun (Barwise and
Cooper, 1981). For example, the determiner in the first example sentence is “every” which
combines with the noun “conspirator” to create the quantifier “every conspirator”21.

19The alethic modality is also known as the logical modality and is concerned with possibility and necessity
across all possible worlds while bouletic modality reflects truth according to a speaker’s desires (von Fintel,
2005).

20Saeed (2003) suggests using an operator P to denote possibility. However, since P has been reserved for
past tense statements in intensional logic, Q will be used instead.

21We will follow the treatment of quantifiers as described by (Barwise and Cooper, 1981). The reader
should be aware that other analyses are possible in which a determiner such as some is defined as the
quantifier. A DET + NOUN construction would form a quantified expression.
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3.3.1 Every and Some

Consider the sentence “every conspirator stabs Caesar”, represented in each formalism
below:

∀x( CONSPIRATOR(x) → STAB(x, caesar) ) (56)

∀x[ conspirator’(x) → stab’(x, caesar’) ] (57)

[
STAB

( [
Type CONSPIRATOR
[Amount ALL ]

]
, [ CAESAR ]

) ]
(58)

The representation in (56) should be familiar to every reader who knows the first order
predicate calculus. In fact, this particular representation mirrors the intensional logic ex-
pression in (57). We will use this similarity to describe both expressions at the same time.
Recall that both the first order predicate calculus model and the intensional logic model
employed a variable assignment g. The universal quantifier ∀ binds a variable x such that
in order for the statement to be true, the expression must evaluate to true for every value
assignment the function g makes to the variable x (Dowty, 1981). This means that for every
possible value of x, the expression CONSPIRATOR(x)→ STAB(x, caesar) must be true as
well. Exploring the predicates and their logical connectives gives the following reading: if
the individual denoted by the variable x is a conspirator, then x stabs Caesar.

These particular representations look quite different from their English counterparts. At
the logical level, a quantifier and a conditional statement are needed to model the fact that
“every conspirator stabs Caesar”. This logical treatment is quite different than the deter-
miner + noun phrase combination that defines a quantifier. In other words, there appears
to be no way of determining which sub-expression is responsible for the noun phrase “every
conspirator” (van der Does and van Eijck, 1996). Based on our English language definition
of how to build a quantifier, it appears that the isolation of “every conspirator” requires
only the combination of the determiner “every” with the noun “conspirator”. However,
doing so in the first order predicate calculus is impossible. A first attempt would be to
simply use a universal quantifier along with a predicate as in:

∀x( CONSPIRATOR(x) ) (59)

Unfortunately, the expression in (59) does not relate to “every conspirator”, instead it states
that everything in the world is a conspirator. A higher level of abstraction is needed in order
to capture the essence of “every conspirator” alone. As we have seen before, intensional
logic allows us to use the λ-operator to abstract over the set of functions we can combine
with a conditional statement to give us a meaning of “every conspirator” in isolation:

λP[ ∀x[ �conspirator’(x) → �P(x, caesar’) ] ] (60)

With the expression in (60), we are able to refer abstractly to the characteristic functions
of the predicates that may combine with the other well formed portion of the statement
(Dowty, 1981). In essence, the P acts as a way of referring to any characteristic function
which takes two entities and returns a truth value. Since “every conspirator” is only defined
in contexts where a material implication is present, leaving the consequent abstractly defined
allows us to capture “every conspirator”, something that cannot be done in the first order
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predicate calculus alone (Dowty, 1981).
Turning to the conceptual structure representation in (58), the familiar STAB function

argument structure returns. The difference comes in the form of the first argument. Instead
of referring to a specific CONSPIRATOR Token, this argument refers to the Type of things
that are a CONSPIRATOR (Jackendoff, 1983). In this way, we can view this particular
structure as referring abstractly to the set of CONSPIRATORS that exist. An additional
Amount is specified that indicates ALL of the things that are considered to be CONSPIR-
ATORS are involved in this argument place. This particular treatment of using Amounts
and Types allows for the easy expression of various numbers of things.

Moving on to quantifiers involving “some”, consider the sentence “some conspirator
stabs Caesar”, represented in each formalism below:

∃x( CONSPIRATOR(x) ∧ STAB(x, caesar) ) (61)

∃x[ conspirator’(x) ∧ stab’(x, caesar’) ] (62)

[
STAB

( [
Type CONSPIRATOR
[Amount ONE ]

]
, [ CAESAR ]

) ]
(63)

As we would expect to see in (61) and (62), the universal quantifier ∀ has been replaced by
the existential quantifier ∃. This difference has the effect of saying that there only need to
be one value assignment to x that satisfies the expression for it to be considered true. This
is in direct contrast with the universal quantifier which stated that every value assignment
to x needed to satisfy the expression in order for it to be considered true. Additionally,
the existential quantifier can be analyzed in both the first order predicate calculus and
intensional logic owing to the fact that “some conspirator” is not involved in an implication
relationship with another predicate. For example, for “some conspirator” the following first
order predicate calculus representation is sufficient:

∃x( CONSPIRATOR(x) ) (64)

The conceptual structure expression in (63) holds no surprises either. Again, the Type
distinction is made along with an Amount of SOME to create the proper quantified expres-
sion “some conspirator”. As we shall see in section 3.3.3, this type of treatment is very
effective for dealing with any quantified amount.

3.3.2 Scopal Ambiguity with Quantifiers

Ambiguity in English can arise from a variety of factors, including polysemy (when a single
word has multiple related meanings), syntactic variants (e.g. garden-path sentences22) and
variation in quantifier scope (Kearns, 2000; Saeed, 2003). An example of this last case can
been seen in the sentence “every conspirator stabs some senator”. With this sentence, it is
unclear as to whether there is a single existentially quantified senator that the universally

22Garden-path sentences are syntactic constructions that are formulated without punctuation such that
a reader will begin to create an incorrect mental representation of the syntactic structure as they read each
individual word. Eventually, other syntactic constituents further along in the sentence will not properly fit
into the mental structure developed by the reader. These “parse errors” force the reader to go back, examine,
and revise the syntactic structure in order to determine the correct meaning of the sentence (Ferreira et al.,
2001). An example of a garden-path sentence is “the blood spilled on the steps dried”.
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quantified set of conspirators stab, or whether every conspirator is stabbing a different
existentially quantified senator (Kearns, 2000). A semantic formalism must be capable of
expressing both in an unambiguous way. Consider the first reading of the example sentence:

∃y∀x( CONSPIRATOR(x) ∧ SENATOR(y) → STAB(x, y) ) (65)

∃y∀x[ conspirator’(x) ∧ senator’(y) → stab’(x, y) ] (66)

[
STAB

( [
Type CONSPIRATOR
[Amount ALL ]

]
, [ SENATOR ]

) ]
(67)

Once again, we may analyze the first order predicate calculus and intensional logic
expressions concurrently. When read literally, expressions (65) and (66) state that there
exists some individual y (who is a senator), that every individual x (who is a conspirator)
stabs. The reading of a single senator is due to the fact that the existentially quantified
variable y appears outside of the scope of the universally quantified variable x. If we move
the existentially quantified y variable inside of the scope of the universal quantifier, the
reading changes:

∀x∃y( CONSPIRATOR(x) ∧ SENATOR(y) → STAB(x, y) ) (68)

In this instance, for every x who is a conspirator, there is some y who is a senator such that
x stabs y. As we can see, although the English is ambiguous as to which reading is intended,
the semantic representations in the first order predicate calculus and intensional logic are
capable of distinguishing between the two depending on the placement of the quantifiers.

For the conceptual structure expression in (67), the sense of a singular senator being
stabbed is achieved by leaving the SENATOR in the second argument place of the STAB
function a Token value rather than a type. Had we wished to make it such that every
conspirator stabbed some senator, not necessarily the same one, the same treatment with
Type distinction can be employed with SENATOR:[

STAB
( [

Type CONSPIRATOR
[Amount ALL ]

]
,
[
Type SENATOR

] ) ]
(69)

In (69), the amount of SENATOR is left unspecified, but since we are referring to a set of
things, rather than a specific Token, the reading we are left with is that every conspirator
stabbed something that was a senator, not necessarily the same SENATOR.

3.3.3 Few, A Few, Most and Many

Determiners such as few, a few, most and many cannot be represented in a formalism that
only contains the ∀ and ∃ quantifiers (Barwise and Cooper, 1981). Consider the first order
predicate calculus representations for the statement “every conspirator stabs Caesar”:

∀x( CONSPIRATOR(x) → STAB(x, caesar) ) (70)

In (70), an NP predicate CONSPIRATOR and a VP predicate STAB must combine with a
logical connective and logical quantifier to create the proposition expressed by the English
sentences. In section 3.3.1 we observed the fact that there were no directly identifiable
sub-expressions in the first order predicate calculus representation that directly related to
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the English fragment “every conspirator”. In essence the quantified noun phrase becomes
lost in the logical form (van der Does and van Eijck, 1996). Despite this disappearance, it is
possible to identify a “general format” that occurs in sentences that incorporate quantifiers
such as “every” or “all”. The universal quantifier is used to pick out all the objects in
the world, and the use of the logical connective → restricts the members involved in the
proposition to the type specified in the antecedent, namely those that are conspirators
(Kearns, 2000). In effect, when paired with the universal quantifier, the logical connective
→ is what provides the sorting mechanism of all the objects in the world into conspirators
or non-conspirators.

Unfortunately, with more restricted quantifiers such as “most”, the use of this “general
format” is not possible since there is no combination of logical quantifiers and logical con-
nectives which can provide a precise definition of what “most” means (Barwise and Cooper,
1981; Kearns, 2000). Natural language quantifiers such as “most” require that we can iden-
tify the set of conspirators in the world and compare its size to the set of things that are
non-conspirators. The universal quantifier paired with a logical connective only gives us
the power to sort the entire set of objects into two sets: conspirators and everything else.
We need a mechanism capable of separating real world objects into a series of classes at
the outset (conspirators stabbing Caesar and conspirators not stabbing Caesar), and then a
separate mechanism to compare class sizes (Kearns, 2000). In other words, the selection of
most conspirators must be performed as one complete, directly identifiable step that uses
tools that are lacking in both the first order predicate calculus and intensional logic.

Solutions to this problem come in several forms. One is the use of a restricted quantifier
notation which can be demonstrated with the English statement “most conspirators stab
Caesar” (Kearns, 2000):

[Most x: CONSPIRATOR(x)] STAB(x, CAESAR) (71)

With the representation in (71), the determiner most and its corresponding NP predicate
CONSPIRATOR have become a single object. Here “Most x” has specified the type of
quantification while CONSPIRATOR(x) has restricted the range of the quantifier. Since no
complex proposition is being formed with STAB, no logical connective is needed to express
the remainder of the sentence. Unfortunately, restricted quantifier notation is limited since
it provides no way of obtaining a truth-theoretic value (Kearns, 2000). In this example,
the formal definition of “Most x” is left unspecified. Other formalisms such as generalized
quantifiers theory use set theoretic definitions to express quantities such as most (Kearns,
2000). For example, “most conspirators stab Caesar” would be realized as:

|CONSPIRATOR(x) ∩ STAB(x, CAESAR)| > |CONSPIRATOR(x) - STAB(x, CAESAR)|
(72)

With representation (72), most is expressed by the fact that the cardinality of the set of
things that are conspirators who stab Caesar is larger than the cardinality of the set of things
that are conspirators but did not stab Caesar. Both restricted quantifiers and generalized
quantifiers theory allow us to express some quantified statements that intensional logic and
the first order predicate calculus cannot.

Turning to Jackendoff’s conceptual structures, we see there is no problem with restricted
quantifiers. Consider the conceptual structure expressing the statement “most conspirators
stabbed Caesar” below:
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[
STAB

( [
Type CONSPIRATOR
[Amount MOST ]

]
, [ CAESAR ]

) ]
(73)

As we can see, the “most” determiner is stated as an amount in the same way that we used
ALL and SOME to describe universal and existential quantification. Jackendoff (1990)
states that most conceptual constituents such as Thing, Event, State, etc can be quantified.
Although he does not state directly that the Amount constituent is the recommended
method of quantification, it fits well with how the conceptual structure model works. It
is conceivable that all individuals have a concept that relates to quantified amounts such
as many, few, a few, little, etc depending on the type or specific token that is involved
in the relationship (Jackendoff, 1990). This model allows for the precise and accurate
representation of all types of quantifiers.

3.4 Definite Descriptions

Definite descriptions are used to pick out real world objects (Kearns, 2000). Examples of
definite descriptions include names such as Caesar and Brutus and demonstratives such as
“that knife”. According to Russell’s theory of definite descriptions, in order for a description
to be considered definite, there must be some thing in the real world that exists, and that
thing must be unique (Kearns, 2000). In other words, the object must be existentially
quantified and the reference must be unambiguous. For example, consider the statement
“the Emperor of Rome is dead”. Here there is only one person who is the Emperor of Rome
and there must be something that is known as the Emperor of Rome. Associated with
definite descriptions is the notion of familiarity effects. This phenomenon simply states
that most objects must be first introduced or be familiar to a listener before a specific
definite description can be used (Kearns, 2000). For example, the use of the term “the
conspirator” presupposes that some particular individual has already been named in the
past as a conspirator, and that the listener is familiar with their real world referent.

We have already seen treatment of some definite descriptions throughout this paper.
For example, Caesar and Brutus are names that are definite descriptions of real world
individuals. However, we have not explicitly given treatment to definite determiners such
as “the” when combined with a noun phrase. Consider the statement “the Emperor of
Rome is dead” represented in each formalism below:

∃x( ROMANEMPEROR(x) ∧ ∀y( ROMANEMPEROR(y) → y = x ) ∧ DEAD(x) )
(74)

∃x[ ∀y[ romanemperor’(y) ↔ y = x ] ∧ dead’(x) ] (75)

[
BE([ DEAD ], [Token ROMANEMPEROR ])

]
(76)

The first order predicate calculus representation in (74) introduces the identity operator
=. When read literally, this particular expression simply states that some Roman Emperor x
exists, and that for all objects y, there is only one y that is x, the Roman Emperor, and that
the Roman Emperor is dead. With this expression, the is expressed as the combination of
the existential quantifier with a uniqueness constraint (Kearns, 2000). This has the overall
effect of providing a definite description of an object. However, there are problems with this
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expression. With (74), we assume that the set of all Emperors of Rome is exactly one. This
may seem to be a logical consequence, but if were dealing with “the dog”, it becomes highly
unlikely that only one dog existed in the entire world. Although the first order predicate
calculus representation captures the notion of a definite object precisely and accurately, it
does so by placing large restrictions on how many objects of the type in question must be
in the model.

With the intensional logic representation in (75), we see a very similar structure to the
one seen in the first order predicate calculus representation. Like the first order predicate
calculus representation, the set of Emperors of Rome must only have a cardinality of one
at the current index. However, due to the intensionality of the model, we are allowed to
have larger numbers of Emperors at future, past or differing world coordinates without
affecting the truth value of the current coordinate. In order to better accommodate how
a user may formulate a uniqueness constraint, potential expansions to the intensional logic
model include a “previous discourse coordinate” or a place coordinate (Dowty, 1981). These
coordinates would allow for a more precise definition of what objects should be included
inside the definition of any given set. For example, even though the set of all dogs is quite a
large set, restricting membership based on a place coordinate would allow for a much more
accurate truth-conditional statement.

With conceptual structures, Jackendoff theorizes that the Token versus Type distinction
of an object is what makes the difference when designating a definite description (Jackendoff,
1983). A Token of a Thing, State, Event, etc picks out a specific object in the world. This can
be seen in expression (76). Here a specific ROMANEMPEROR is known to be dead. Which
ROMANEMPEROR this particular representation refers to is determined by what mental
information the speaker has associated with the ROMANEMPEROR Thing in question. In
other words, the speaker will have a definite ROMANEMPEROR in mind.

3.5 Indefinite Descriptions

Indefinite descriptions are used when referring to any member of a particular set that is
not uniquely identifiable in context (Kearns, 2000). We have seen examples of indefinite
descriptions throughout this paper, for example “Brutus stabbed Caesar with a knife”. Here
the indefinite description of “a knife” signals that we are talking about a member of the set
of knives, without picking out a specific member of the set. Determiners such as “a” and
“an” typically combine with singular noun phrases to signal indefiniteness. Additionally,
indefinite descriptions may be classified as specific or non-specific, depending on whether an
individual exists in reality, or no such entity exists (Kearns, 2000). For example, a specific
indefinite reading may be found in the statement “Caesar is searching for a conspirator”.
In this instance we can imagine that Caesar is looking for Brutus, for example, someone he
knows to be a conspirator. A non-specific indefinite reading is also possible if one considers
an instance where no conspirator exists in reality, but Caesar believes that one is present.

Consider the specific treatment of the phrase “Caesar is searching for a conspirator”,
indicated below:

∃x( CONSPIRATOR(x) ∧ SEEK(caesar, x) ) (77)

∃x[ conspirator’(x) ∧ seek(caesar’, x) ] (78)
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[
SEEK([ CAESAR ], [Token CONSPIRATOR ])

]
(79)

The first order predicate calculus statement seen in (77) adequately captures the mean-
ing behind the English sentence, as we have seen in other examples throughout this paper.
However, treatment of the second reading of this sentence becomes more problematic. Con-
sider the instance where no such conspirator exists in reality. Since there is no specific entity
that we are referring to in the actual world, there is no way of capturing Caesar’s actions in
a concise manner. It would be possible to construct a specific predicate expressing Caesar’s
actions in an intransitive way such as below:

SEEKCONSPIRATOR( caesar ) (80)

However, such a construction suggests that a different SEEK predicate would be needed
for every type of individual in the world, both real and imagined. Although this would
adequately solve the problem of seeking a non-existent individual, it would do so at the
expense of requiring a larger number of predicates. For example, for every single class
of object available, a different SEEK relation would be required (e.g. SEEKFRIEND,
SEEKFOE, etc). If we are willing to accept this expense, then first order predicate calculus
is both precise and accurate enough to allow us to express indefinite descriptions.

The intensional logic example in (78) is very similar in structure to the first order
predicate calculus expression. However, the intensional logic formalism is able to express
the second reading of the statement with ease. Consider the instance where no conspirator
exists in reality, yet Caesar is searching for one:

seek’( caesar’, ˆλQ∃x[ conspirator’(x) ∧ �Q(x) ] ) (81)

In this particular example, Caesar is seeking some existentially quantified thing x which has
a property of containing conspirator-like properties. To understand how we arrive at this
reading, recall that the intensional operator binds everything to the right. This means that
both the existentially quantified variable x and the predicate conspirator’(x) are intensional.
The overall effect is that conspirator’(x) is evaluated relative to any possible world or time.
Although there may be no conspirator in this reality, there may be one in a different reality.
In the instance where no conspirator exists in any reality, the abstract predicate Q is
introduced. While Q is extensional in nature since the � cancels the intensional operator, it
is defined abstractly so that we may describe a conspirator as a set of properties, rather than
having to point out an actual individual. Although this particular analysis is both accurate
and precise, the overall user-friendliness becomes severely diminished when attempting to
analyze such complex constructions.

With the conceptual structure in (79), the Thing CAESAR is searching for a specific
Thing Token that is a conspirator. As seen previously, the Token distinction specifies
that the Thing CONSPIRATOR actually exists in the real world. In order to express the
second reading where a conspirator may not exist in reality, a Type distinction may be made
instead: [

SEEK([ CAESAR ], [Type CONSPIRATOR ])
]

(82)

In (82) the use of a Type states that Caesar is looking only for a Thing that has the proper-
ties of being a conspirator. In much the same way that intensional logic only described the
properties of the “thing” that Caesar is looking for, so too does this conceptual structure.
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Without referring to a specific instance of a CONSPIRATOR, the Type distinction simply
states that CAESAR is searching for something that fits with the concept of being a con-
spirator (Jackendoff, 1983). This particular analysis is both accurate and precise enough to
allow us to express both specific and non-specific indefinite descriptions.

4 Conclusions

This paper examined three systems of semantic representation: the first order predicate
calculus, intensional logic and conceptual structures. Each of these formalisms features
certain aspects which makes it attractive for different reasons. The first order predicate
calculus remains a favorite system of representation for computational linguists due to the
abundance of automated tools available for inferencing and theorem proving. Montague’s
intensional logic adds intensional elements such as possible world coordinates and time
coordinates directly to the underlying model and presents an elegant way of capturing the
semantics of a modal or tensed expression without negatively impacting the precision and
accuracy of extensional statements. Finally, Jackendoff’s conceptual structures offers a
meaning theoretic approach that is appealing for psychologists and linguists.

Using a number of simple linguistic phenomena as examples, we observed the expres-
siveness of each formalism. In nearly every case, each formalism proved to be capable of
capturing meaning with sufficient accuracy and precision. However, the set of linguistic phe-
nomena explored in this paper is by no means exhaustive. There are many more complex
phenomena that occur in natural language that Jackendoff and Montague have not explicitly
discussed. For example, Montague’s original research did not provide treatment for some
linguistic phenomena such as non-declarative sentences, relative clauses and questions. Sim-
ilarly, Jackendoff’s original research provides no treatment of conceptual functions beyond
those that deal with the spatial domain. This does not mean that these formalisms are
of no further interest for computational linguists. Each system of semantic representation
has been - and continues to be - actively expanded to account for these and other phe-
nomena. In fact, this paper has presented some of the extrapolations and extensions that
several researchers have proposed for each of these formalisms. For example, the first order
predicate calculus has been expanded several times to account for modal and tensed state-
ments, resulting in the creation of several first order logic variants. Similarly, researchers
have proposed extensions to Montague’s intensional logic to account for phenomena such as
non-declarative sentences, adverbs, questions, presupposition and propositional attitudes
(Dowty, 1981). With Jackendoff’s conceptual structures, similar expansions continue to
occur, with some researchers even having proposed a restatement of Jackendoff’s research
in terms of model-theoretic constructs (Zwarts and Verkuyl, 1994). Although no single
formalism may currently be capable of expressing the entirety of meaning that is possible in
natural language, continued research in linguistic and computational fields offers expansions
and extrapolations that enhance the precision, accuracy and coverage across a wide variety
of phenomena.

Finally, although we have observed that the expressiveness of each formalism is sufficient
to capture a large number of linguistic phenomena, the increasing notational complexity of
each formalism makes them unusable by an average human being. While this particular
aspect of semantic representation may not be of importance in computational tasks where
the underlying semantic expressions are not revealed to the end-user, it becomes vital in
instances where humans are directly responsible for the manipulation, input and interpreta-
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tion of semantic information. Further evaluation of these semantic formalisms with respect
to human usability aspects is warranted.
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