
Model Development Guidelines
for UML-RT

Tuhin Kanti Das and Juergen Dingel
{das, dingel}@cs.queensu.ca

Technical Report 2016-628

School of Computing, Queen’s University,
Kingston, Canada.

February 01, 2016

c© 2016 Tuhin Kanti Das and Juergen Dingel

Abstract

Software development guidelines are a set of rules which can help im-
prove the quality of software. These rules are defined on the basis of ex-
perience gained by the software development community over time. This
report discusses a set of design guidelines including design conventions,
patterns and anti-patterns for developing real-time embedded software
systems. These guidelines have been identified based on our analysis of
around 100 UML-RT models from industry and academia.

2

Contents

1 Introduction 6
1.1 Motivation . 6

2 Background 7
2.1 MDE for Embedded Real-Time Systems 7

2.1.1 Design Model . 7
2.1.2 Real Time Embedded Systems 7
2.1.3 MDE: An Approach to Deal with Complexity 8
2.1.4 UML-RT: The Real-Time Profile for UML 8

2.2 Definitions and Terminology . 9
2.2.1 Software Quality . 9
2.2.2 Quality Attributes . 9
2.2.3 Guidelines . 10
2.2.4 Conventions . 10
2.2.5 Principles . 10
2.2.6 Metrics . 11
2.2.7 Smells . 11
2.2.8 Patterns . 11
2.2.9 Antipatterns . 11

3 Design Guidelines for UML-RT 11
3.1 Design Conventions . 12

3.1.1 Resource Utilization . 12
3.1.2 UML-RT Transitions: Best Practices 17
3.1.3 Conjugation of Server-side Ports in a Binary Protocol . . 18
3.1.4 Avoid Unnecessary Use of Active Classes 20
3.1.5 Improvement of Visualization in UML-RT Diagrams . . . 20

3.2 Antipatterns . 22
3.2.1 Incorrect Use of Group Transitions 22
3.2.2 Incorrect Use of One-shot Timers 23
3.2.3 Misuse of Guard Conditions 26
3.2.4 Hidden States . 27
3.2.5 Pitfalls of Using Promote/Demote Operations in UML-

RT Inheritance . 32
3.2.6 Inappropriate Modeling Scope 33

3.3 Patterns . 34
3.3.1 Status Monitoring Scenario 34
3.3.2 Proper Use of System Timers 38
3.3.3 Separation of Responsibilities 39

3.4 Clones in UML-RT Models . 40

i

4 Related Work 42
4.1 Coding and Design Conventions 42
4.2 Patterns in Models . 43
4.3 Antipatterns in Models . 44
4.4 Clone Detection: the Current State-of-Art 44

4.4.1 Clone Detection Research in Code Driven Development . 44
4.4.2 Clone Detection Research in Model Driven Development . 46

5 Conclusion 47

List of Figures

1 Classification of Relevant Terminologies 10
2 Unconnected Ports . 15
3 Dead Code . 15
4 Unreachable States (a) Isolated State (b) State without any trig-

gered transitions . 16
5 Dead Computation . 16
6 Generated code for a) internal self-transition and b) external self-

transition . 18
7 Server-side Conjugation . 19
8 Misuse of Group Transition . 22
9 Refactor Solution for the Wrong Use of Group Transition 23
10 Use of a one-shot timer as a periodic timer 24
11 Comparison of One-shot and Periodic Timers: Timeout interval

is 50 milliseconds . 25
12 For a timeout interval of 50 milliseconds, the required and the

actual time taken by (a) One-shot timer (b) Periodic timer . . . 26
13 Misuse of Guard Conditions . 27
14 Replacement of Guards with a Choice-point 28
15 Wrong Use of State Abstraction 29
16 Proper Use of State Abstraction 30
17 Existence of Hidden States in a Model 30
18 Refactoring Hidden States . 31
19 Inheritance in UML-RT . 32
20 Global Capsule Scope in UML-RT 34
21 Refactored Capsule Scope . 35
22 State Monitoring - Wrong approach 35
23 Obtaining Statuses from Receiver and Jammer 36
24 Pattern Solution for State Monitoring 36
25 Wrong Placement of System Timer 38
26 Proper Placement of System Timer 39
27 Multiple Roles in a Single Port 39
28 Distribution of Responsibilities among Different Ports 39
29 Duplication in Self-transitions . 40

ii

30 Duplication in State Diagram . 41
31 Duplication in UML-RT Protocols 42

iii

1 Introduction

Complex distributed real-time software systems are most frequently encountered
in telecommunications, aerospace, defense and automatic control applications.
As the complexity of real-time software is continuously increasing, the design of
these systems is becoming very challenging. Model Driven Engineering (MDE)
has been introduced to mitigate this problem by allowing for systems to be
described at multiple levels of abstraction and providing automated support
for transforming and analyzing models [27]. As an example, for the analysis
and design of complex embedded software in the telecommunications industry,
an architectural description language named Real-time Object-Oriented Model-
ing (ROOM) has been presented in [66]. ROOM was aligned with the Unified
Modeling Language (UML) which gave rise to the real-time profile of UML
(UML-RT) [65]. Just like ROOM, UML-RT supports constructs for modeling
the structural and behavioral properties of a real-time system. The tool sup-
port for the development of real-time, embedded systems using Model-Driven
Engineering (MDE) and UML-RT is provided by IBM Rational Rose Real-Time
(RoseRT) [35], IBM RSA-RTE [33] and the open source tool PapyrusRT [22].

Although a large amount of research has already been conducted on the
quality evaluation of software systems, there has not been much research on
evaluating the quality aspects of models for real-time software systems. With
the goal of investigating this area, our research focuses on quality assessment of
design models for the real-time software systems. As part of this research, a set
of behavioral anti-patterns for UML-RT models is introduced in our previous
work [17]. This report extends this work and presents a comprehensive set
of model development guidelines for UML-RT including a number of model-
based design conventions, patterns and anti-patterns. During this research,
our ultimate goal is to design, implement and evaluate tool support for the
automatic detection of indicators of good or bad design based on these model
development guidelines.

This report is structured in the following way: Section 2 presents relevant
background terminology for software development guidelines in general. This is
followed by the introduction of the design guidelines for UML-RT in Section 3.
In addition to presenting model-based conventions, patterns and antipatterns,
this section also discusses a number of smells regarding duplications in UML-RT
models. Finally, a discussion on related work is presented in Section 4.

1.1 Motivation

In [36], the authors introduce a static analysis tool CodeSonar which can be
used to perform a whole-program, inter-procedural analysis on C/C++ code.
This tool checks the code for runtime exceptions and C-language library vio-
lations through a compile-time analysis, and can be used for identifying code
smells related to null-pointer dereferences, unreachable code, concurrency de-
fects in multi-threaded software, buffer overruns etc. that can result in system
crashes, memory corruption, and other serious problems. This analysis tool is

6

recommended by the United States Food and Drug Administrator (FDA) to
address the problem of defective software in medical devices [30]. In [75], a code
smell detection tool named JDeodorant is introduced in the form of an Eclipse
plugin. This tool can be used to automatically detect and remove type checking
bad smells in Java source code. In [24], the authors share their experience of
using a number of tools for code smell detection. In addition to emphasizing
the helpful nature of using these tools, they point out some of the challenges for
comparing different analysis tools.

Our research work is motivated by the success of these source code analysis
toolkits. These toolkits have proven to be successful in analyzing industrial-
strength code and are becoming part of recommended best practices. In a similar
fashion, the development of tool support for analyzing models for embedded
real time software systems could prove equally successful and influential. In
fact, during our collaboration with an industrial research partner, Ericsson Inc.,
the ongoing development of a model analyzer tool has been observed which is
believed to be very helpful for analyzing Ericsson models.

2 Background

2.1 MDE for Embedded Real-Time Systems

2.1.1 Design Model

A software design model is an abstract representation of a system. In MDE,
designing a system involves the process of deriving a design model from re-
quirement specifications from which a system can be generated more or less
automatically [32].

2.1.2 Real Time Embedded Systems

Similar to most computing systems, an embedded system consists of hardware,
software and an environment. However, the associated physical constraints do
not allow the embedded systems to follow one of the central ideas that has
enabled much of the progress in Computer Science: the separation of software
from the technical specifics of the underlying hardware allowing software to be
written in more abstract, application specific terms. In contrast, the design of
embedded systems requires the integration of essential paradigms from hardware
design, software design, and control theory in a consistent manner.

A real-time embedded system is an engineering artifact involving computa-
tion that is subject to physical constraints such as reaction constraints and
execution constraints [32]. Common reaction constraints associated with a real-
time embedded system include the specification of deadlines, throughput and
jitter which typically originate in the behavioral requirements of the system.
On the other hand, common execution constraints limit the availability of pro-
cessor speeds and power; and hardware failure rates come from the hardware
constraints of these systems [32].

7

Due to the increasingly reactive and distributed nature of the complex dis-
tributed real-time software systems, data processing centers are also migrating
to the real-time domain [66]. Because of the high complexity associated with
the design and realization of these systems, development typically involves large
teams. Since it requires high initial cost for developing real time software sys-
tems, preference is given to modifying existing software instead of rewriting it
when major new requirements are identified. Therefore, a well-designed archi-
tecture is extremely important for developing real-time software systems because
in addition to simplifying the initial construction, it also facilitates the evolution
of the system [65].

The term ”real-time” covers a wide spectrum of systems ranging from purely
time-driven to purely event-driven. These systems can also be categorized as
soft real time systems and hard real time systems. In the former class, some
occasional deadline misses can be tolerated. However, it is extremely important
to follow the timing requirements in the latter class as a missed deadline can
lead to disastrous consequences such as loss of life or property [28].

2.1.3 MDE: An Approach to Deal with Complexity

Although modern programming languages as well as the supporting integrated
development environments (IDEs) have advanced significantly, developing com-
plex real-time embedded software systems using current code-centric technolo-
gies still requires grueling effort. One of the most important factors that makes
the development of complex software systems difficult is the wide conceptual gap
between the problem and implementation domains. For bridging this gap, the
MDE vision of software development has been introduced where models are the
primary artifact and computer-based technologies are used to analyze the design
models and transform them into running systems. An important objective of
MDE research is the production of technologies that protect software developers
from the complexities of the underlying implementation platform. For example,
the ROOM modeling language has been introduced based on three principles
[66]: the key modeling concepts should to be domain specific and intuitive; sup-
port should be given for automatically generating an efficient implementation
from a design model; and it should be feasible to construct and verify initially
abstract executable analysis and design models which can be refined into final
versions gradually.

2.1.4 UML-RT: The Real-Time Profile for UML

Object orientation is very effective for coping with software complexity. The
de-facto standard object-oriented modeling language, the Unified Modeling Lan-
guage (UML) is gaining interest among the real-time community. An important
feature of UML is its extensibility mechanism through the use of stereo types,
tagged values and profiles. This feature allows the UML to be extended for
representing the specificities of a particular domain. In [65], based on the con-
cepts of the field-proven ROOM modeling language, a set of structural modeling

8

concepts has been defined for facilitating the specification of complex software
architectures for real-time systems. As these modeling constructs have a fully
formal semantics, the correctness of the models created using these constructs
can be verified formally. In addition, executable models can be developed using
these modeling constructs for achieving early validation of high-level design and
analysis models. The MDE tools mentioned above use UML-RT for compil-
ing design models into code and link it with the runtime system. A review of
the most important UML profiles for the development of real-time systems is
presented in [28].

However, UML-RT does not support hard real-time constraints. In [31], for
bridging the gap between a logical UML-RT model and its real-time implemen-
tation on the target platform, a schedulability analysis algorithm is modified for
making it compatible with the native runtime model of the Rose-RT tool.

2.2 Definitions and Terminology

2.2.1 Software Quality

In the area of Software Engineering, two related but distinct notions exist wher-
ever software quality is defined in a business context: software functional quality
and software structural quality. The conformance of software to a given design,
based on functional requirements or specifications is represented by the func-
tional quality [83]. It is typically enforced and measured through software test-
ing. On the other hand, the structural quality reflects the degree to which the
software is produced correctly. So, it represents how well the software complies
with the non-functional requirements such as, reliability or maintainability that
support the delivery of the functional requirements. In a code-oriented devel-
opment setting, the evaluation of software structural quality is done through
the analysis of its source code. Effectively, it determines how well the software
adheres to the sound principles of software architecture outlined in, e.g., [55].

2.2.2 Quality Attributes

For a piece of software to provide business value, the Consortium for IT Software
Quality (CISQ) has defined five major desirable structural characteristics on
the basis of ISO 9126-3 and the subsequent ISO 25000:2005 [25] quality model:
reliability, efficiency, security, maintainability and (adequate) size.

Measuring software quality is mainly motivated by two facts: risk manage-
ment and cost management. In addition to causing inconveniences, historically
software failures have caused human fatalities. An example of a programming
error that led to multiple deaths is discussed in [45]. This motivates the use
of regulations and oversight for the development of safety critical software as
found in, e.g., in medical and other devices. In addition, an application with
good structural software quality is much easier to understand and change in
response to changing business needs. Therefore, the associated costs for main-
taining such a software can be expected to be significantly less.

9

The following section will discuss the techniques proposed in the literature
for achieving software quality attributes:

2.2.3 Guidelines

Software development guidelines are defined as a set of recommended best prac-
tices that can be followed by a community to improve the productivity of existing
development and to produce consistent deliverables [76]. They usually comprise
a comprehensive set of standards and practices that should be followed when
developing software (See Figure 1).

Figure 1: Classification of Relevant Terminologies

2.2.4 Conventions

Software development conventions are the standards used in a development com-
munity to improve readability and maintainability of a software system. It is
particularly important in a multi-developer project where developers can read
and understand each other’s code more easily if a set of conventions is followed
[60]. Typically conventions are recommended to be followed strictly as they are
not subject to trade-offs and typically do not have any negative impact on the
quality of the design. Full benefits of conventions can only be achieved when
all developers follow them. Conventions are not usually enforced by compilers,
but some other tools are used for ensuring their practices.

2.2.5 Principles

In contrast to conventions, software development principles can be affected by
many factors and are usually subject to trade-offs. Following a set of princi-
ples assists software developers to use the best practices for some particular
situations, but the same principles might not be very effective in some other
situations. Therefore, special care is needed for defining software development
principles to ensure appropriate use. Usually, they are defined with some pos-
sible tradeoff scenarios. Principles are typically comprised of smells, patterns
and antipatterns.

10

2.2.6 Metrics

A metric is the mapping of a particular characteristic of a measured entity
to a numerical value. Software metrics are used to control the quality, size
and complexity of the software development. Metrics are usually defined with
statistical threshold values that divide the range of a metric value into different
regions. Depending on the region a metric value is in, an informed assessment
can be made about the measured entity [44].

2.2.7 Smells

In software development, a smell is any symptom in any phase of the develop-
ment that possibly indicates a deeper problem. Martin Fowler defined a smell
as a surface indication that usually corresponds to a deeper problem in the sys-
tem [26]. Smells are usually not incorrect and do not prevent the software from
functioning. So, instead of being treated as software bugs, they are considered
to be indications of weaknesses in the code or design that may slow down the
development process or increase the risk of bugs or failures in the future [78].

2.2.8 Patterns

A software pattern is a general reusable solution to a commonly occurring prob-
lem within a given context in software design. Patterns are formalized best
practices that can be used by software developers for solving common problems
when designing an application or system [82].

2.2.9 Antipatterns

An antipattern is used for describing a commonly occurring solution to a prob-
lem having some decidedly negative consequences. An antipattern is usually
described with a good alternative solution that is documented, repeatable and
proven to be effective [77].

3 Design Guidelines for UML-RT

This section introduces a set of software development guidelines for designing
UML-RT models. This set includes nine design conventions, six antipatterns
and three patterns. These guidelines are outcomes of our analysis of almost
100 UML-RT models in industry and academia. In addition to investigating a
repository of anonymized student models of a simple Electronic Warfare System
(EWS) in Royal Military College of Canada, inspecting a number of telecom-
munication models at Ericsson Inc. during a research visit of six weeks helped
us identify these design guidelines. The average size of the models we investi-
gated in the student model repository is as follows: 5 Capsules, 35 states, 71
transitions, 3 Protocols. The maximum depth of state nesting in these models
is 4. As expected, the size and complexity of the industrial models at Ericsson

11

are higher than in the models of the student model repository. The maximum
depth of state nesting observed in the Ericsson models is 6.

While investigating the UML-RT models, the inspection procedure is done
manually. This is followed by several discussions of our analysis results with a
number of UML-RT practitioners from industry and academia. Based on the
important feedback received during these collaborations, we refine the outcomes
of the model analysis.

3.1 Design Conventions

In addition to the common naming conventions for different UML-RT model
elements, there exist some other design conventions which should be followed
strictly while developing real-time embedded software. This section will discuss
a set of nine design standards for UML-RT.

3.1.1 Resource Utilization

Traditionally, digital systems are classified into two categories: general-purpose
and application-specific systems. In contrast to general-purpose systems which
mainly include desktop computers, workstations, server systems etc., application-
specific systems are designed for dedicated applications. Examples of application-
specific systems can be found in process control, networking and telecommunica-
tions, home appliances, consumer-electronics devices, etc. Application-specific
systems mainly exist as integral parts of larger systems and therefore, they
are treated as embedded systems. However, considering the widespread use of
embedded systems in everyday human activities, the authors in [84] defined em-
bedded systems as application specific systems which are mass produced only.

An embedded system is a computer controlled device which is mainly de-
signed to perform specific tasks. A very large class of embedded systems, namely
the real-time embedded systems, is characterized to have time constrained behav-
ior [23]. Real-time embedded software is often subject to limited resources, con-
cerning storage capacity, internal memory, power constraints etc. [42, 23]. This
is especially true for many mobile embedded systems which are both computa-
tional and energy constrained. It is important to utilize the limited resources
available within these real-time embedded systems for the proper functioning of
the system. This section discusses four conventions related to resource utiliza-
tion in UML-RT.

Similar to the concept of code cleaning, importance of model cleaning is
significant as it improves the understandability and maintainability of the cor-
responding model. Model cleaning helps us achieve better performance by uti-
lizing system resources properly. The final two conventions mentioned in this
section are related to the proper cleaning of UML-RT models.

1. Cancellation of Timers after Their Use

12

Background: The timing services in UML-RT provide users with general-
purpose timing facilities on the basis of both absolute and relative time. The
timing services can be accessed by creating a port with the pre-defined Timing
protocol. With the occurrence of a timeout event, the capsule instance that
created the timer request would receive a message with the pre-defined message
signal timeout. In order to receive the timeout message, a transition with a
trigger event for the timeout signal must be defined in the state machine of the
capsule. There are two ways available for creating timer requests in UML-RT:
One shot timer and periodic timer. A one shot timer expires only once, after
the specified time duration or at the specified time. On the other hand, periodic
timers are set to timeout repeatedly after the specified duration until the timer
is cancelled explicitly.

Convention: It is a good practice to ensure that all the timers are cancelled
properly when they are not needed anymore or before going to the shutdown
state of a capsule. Proper cancellation of a timer protects the capsule from
receiving any timeout events unexpectedly. This is truly beneficial in scenarios
when the system timer has already expired and the timeout events of other
timers are waiting in the queue to be processed. For one-shot timers, which are
defined with timer.informIn(), the request remains valid until the timeout event
is fired or the timer is cancelled. For periodic timers, which are defined with
timer.informEvery(), the timer request remains valid until it is cancelled. If a
timer is not cancelled properly, the request will keep firing even if the system is
in shutdown state. For example, a capsule can request a periodic timer which
would fire once in every second with the code below:

Timing.Request tRequest = timer.informEvery(1000L);

Afterwards, this timer can be cancelled sometime later in the capsule be-
havior with the following method call:

timer.cancelTimer(tRequest);

This method would return true if the Timing.Request object is valid and
cancelled successfully, or false otherwise.

Rationale

• Wasting resources may exacerbate performance problems.

• Unnecessarily executing resources may cause errors.

2. Termination of Created Capsules after Their Use
Background: A capsule’s structure is represented by the specification of the

type of capsules called capsule roles that can exist in the capsule’s collaboration.
Capsule roles are strongly owned by the container capsule and consequently,
their existence is depended on the existence of the container capsule.

A capsule role can fall in any of the following three types: fixed, optional
and plug-in. If the type is specified as fixed, which is the default type, the
creation and destruction of the capsule role is automatically done with that
of the container capsule. In contrast, optional capsule roles can be created

13

in the container capsule behavior after the creation of the container only if
their existence is necessary and can be destroyed before the container capsule
terminates. On the other hand, capsule roles defined with plug-in type are
mainly used as place holders for dynamic relationships if the objects that would
play the capsule roles are unknown prior to runtime. Upon receiving information
regarding these objects, appropriate capsule instances can be plugged into these
slots and the corresponding connections are established automatically.

Convention: When we create optional capsules, we can control the time
when to create and destroy the capsule instances using the Frame service ports
in UML-RT. For example, assuming the availability of a capsule role called jam-
merRole for the specification of a capsule class called Jammer and an instance
of the Frame class named frame, the following code can be used to create a new
instance of the Jammer capsule:

frame.incarnate(jammerRole, java.lang.Class.forName(Jammer));

The created Jammer capsule instance can be destroyed anytime later using
the following action code:

frame.destroy(jammerRole, 0);

Here, the second parameter indicates the zero-based index within the asso-
ciated capsule role.

If there is no possibility of reusing an incarnated capsule instance, we should
destroy it immediately after its use. However, if there is a possibility that after
creating a capsule instance, it can be reused later, we should not destroy the
capsule instance because capsule instantiation can cause runtime performance
overhead [34]. As a capsule can contain a number of other capsules, the pro-
cessing time for instantiating a capsule would depend on the number of capsule
instances, ports and state machines it recursively contains. Compared to the
instantiation of new capsule instances, importing a capsule instance is much
faster. Therefore, if there is a possibility of reusing a capsule instance, instead
of destroying it, memory should be pre-allocated for the capsule and import
should be used whenever necessary.

Rationale

• Destroying a capsule instance which will not be used again in the model
help achieve better performance.

3. Removal of Unconnected Ports
Background: In UML-RT, ports are used for communicating messages

among capsule instances of a design model. Ports are strongly owned by the
associated capsule instance as their existence is depended on the existence of
the container capsule.

Convention: It is a good practice to get rid of the ports that are not
contributing to the functionality of the system. This kind of ports can be created
for several reasons. Sometimes ports are created in the structural diagram of a
UML-RT capsule, but never been used. Also, the removal of a connector from
a structural diagram may leave a port unconnected (See Figure 2).

14

Figure 2: Unconnected Ports

Rationale:

• Elimination of the unconnected capsule ports from the final model would
protect system resources from being used unnecessarily.

4. Removal of Redundant Artifacts
Background: If we consider the concept of redundancy in code-driven de-

velopment, terminologies exist in the current state of the art are dead code [86],
dead computation [1] and partial dead code [41].

Code that can never be executed at runtime are considered dead code. An
example of dead code is illustrated in Figure 3.

Figure 3: Dead Code

Similar to the concept of dead code, the modeling artifacts that will never be
reached during the execution of a UML-RT model can be considered unreach-
able. For example, in a UML-RT model behavior, if states have no incoming
transitions or transitions that can never be taken (due to triggers that will never
be matched by an incoming message or unsatisfiable guards), and if the missing
transitions are not added through specialization and inheritance, these states
can be treated as unreachable (See Figure 4).

If the model is still under development, the existence of such states will be
likely and acceptable as they can be updated as the model evolves. However,

15

Figure 4: Unreachable States (a) Isolated State (b) State without any triggered
transitions

existence of these states in the final deployed model can only be considered as
waste of modeling resources and an unnecessary complication of the model. The
same is true for unreachable capsules, i.e., capsules that do not have a single
port which is connected to any other capsules.

Figure 5: Dead Computation

In contrast to the concept of dead code, dead computation refers to a code
segment that is executed during runtime, but the produced values do not have
any effect in the code behavior (See Figure 5). In UML-RT, a similar scenario
can occur if a message signal is sent from a capsule X to another capsule Y
and if the signal is never used in Y to trigger any transition events. In this
scenario, the sending of the message signal in capsule X can be considered dead
computation as it is not actually affecting the modeling behavior.

Another form of redundancy in a UML-RT model is the existence of unused
state entry and exit points in the model behavior. Entry and exit points are
used for connecting transitions at different levels of a state machine hierarchy.
A composite state is entered via a transition chain formed by an incoming
transition to an entry point on the boundary of the composite state and a
second transition originating at that entry point. In contrast, a composite state
is exited if an outgoing transition from any of its substates targeting an exit
point of the composite state gets triggered. The use of these modeling artifacts
is encouraged as it makes the state machine more modular with the entry and
the exit points on the boundary of a composite state serving as ‘openings’,
connecting the inside with the outside of the state. IBM RSA RTE supports

16

entry and exit points by, e.g., creating them automatically whenever a simple
state with incoming or outgoing transitions is converted to a composite state.
Sometimes a number of entry and exit points can be left unused accidentally in
the final model (See Figure 4 (b)). This could happen if we change the target
of an incoming transition of a composite state from the entry point to the edge
of the composite state and the source of an outgoing transition of a composite
state from an exit point to the edge of the state.

Convention: In general, it is a good practice to remove these artifacts
from the final model as they do not have any influence on the model outcomes.
However, exceptions can be made if these redundant artifacts are planned to be
used as the model evolves.

Rationale

• Removal of redundant artifacts from a model would keep the model clean.
This would, in turn, improve the understandability of the model and ensure
better utilization of system resources.

3.1.2 UML-RT Transitions: Best Practices

A UML-RT transition is used for illustrating the relationship between a source
state and a destination state. When an object in the source state receives a
specific event and certain conditions are fulfilled, the execution follows the as-
sociated outgoing transition and moves to the destination state. This section
introduces two conventions regarding UML-RT transitions.

1. Proper Use of Initial Transitions

Background: In a state machine diagram, an initial state is a pseudo-state
which explicitly shows the beginning of the state machine. The transition that
connects the initial state with a sub-state is called the initial transition of the
state machine. The presence of an initial transition in a state is optional. But,
if it exists in a state, it is the first transition taken in that state. Only one
initial state and only one initial transition is allowed in each state diagram.
Developers are allowed to include action code in the initial transition of a state;
but, other features of a transition such as guard conditions and trigger events
are not allowed to be included.

Convention: It is a good practice to take special care while creating an
initial transition. If we have multiple capsules in a system design, during the
execution of the initial transition of a capsule it could be possible that other
capsules have not been created yet. This is especially true for the top level state
diagram design of a capsule. For instance, if operations are initiated that have
dependencies on other capsules, the operation might fail due to the absence of
receiver capsules. More concretely, if a signal is sent in the initial transition
and requires the creation and proper initialization of other capsules, it will get
lost if the receiver capsule has not been created yet. Therefore, the use of

17

operations that need a capsule to rely on other capsules should be avoided in
the initial transition. However, as an exception to this scenario, a capsule can
rely on its fixed contained capsules as their existence is guaranteed before the
execution of the initial transition in the parent capsule. In addition, if a proper
start coordination is implemented which ensures the creation of certain capsules
before the initialization of a capsule, the above mentioned restrictions do not
apply.

Rationale:

• Practice of this convention prevents potential erroneous situations that
can occur during the start-up process of a system.

2. Use of Internal Self-transitions Instead of External

Background: Self-transitions have identical source and target states. There
are mainly two types of self-transitions available in UML-RT: self-internal and
self-external. The difference between these two types lies in the execution be-
havior of the entry and exit code of the enclosing state. In case of external
self-transitions, entry and exit code associated with the enclosing state get ex-
ecuted. On the other hand, entry and exit code of self-internal transitions do
not get executed. This slight difference in their behavior makes these two types
of self-transitions to be used alternatively with minor changes in the design of
the associated state machine diagram.

Convention: It is a good practice to use internal self-transitions instead
of using external ones for achieving better performance. The code generator
automatically generates extra lines of code for entry and exit code if a self-
external transition is used (See Figure 6).

Figure 6: Generated code for a) internal self-transition and b) external self-
transition

Rationale:

• As the generated code for an internal self-transition does not contain any
dead computations [1], it would give us improved performance.

3.1.3 Conjugation of Server-side Ports in a Binary Protocol

Background: In UML-RT, instances of a port are used for communicating
messages between capsule instances. The type of a port is defined with a protocol

18

role which specifies the type of messages that can be sent to and from the
port. Depending on the view of the participants of a particular communication
scenario, the sets of sent and received messages are different. All the views
of a communication are specified by a protocol instance, and instances of a
protocol role represent each of these different views. During the creation of a
port, we must specify the protocol role the port is going to represent. For being
allowed to communicate with each other, two ports in a protocol must have to
be compatible; i.e., every signal in the set of outgoing signals in one protocol
role must be in the set of incoming signals of the protocol role in the other end.
Each protocol role can have additional signals for the incoming set.

There exist only two protocol roles in a binary protocol : base and conjugate.
The incoming and outgoing sets of signals of the base role in a binary protocol
are identical to the outgoing and incoming sets of the conjugate role respec-
tively. Therefore, binary protocols can be specified using only one role: i.e., the
base role; the conjugate can be derived from the base role just by inverting the
incoming and outgoing sets. This inversion operation is known as the conjuga-
tion. The MDE tools such as IBM RSA RTE and IBM Rose RT support only
binary protocols.

Figure 7: Server-side Conjugation

Convention: In a client-server communication pattern, the clients should
be initiating the interaction by sending requests towards the server which is
the port that is being published. Conjugation of client side ports will not lead
us to an erroneous state, rather it is a convention to conjugate the server side
port which guarantees that the naming of ports and protocols is consistent. In
addition to this benefit, conjugating the server side of a connection reduces the
modeling effort. By default, ports are not conjugated, and as there are usually

19

more client ports than server ports, it requires fewer steps in a client-server
pattern since only one server port needs to be conjugated (See Figure 7).

Rationale:

• The practice of server-side conjugation keeps the naming of protocols and
signals consistent throughout the model.

• Improvement of understandability and maintainability of the design model.

• Reduction in modeling effort.

3.1.4 Avoid Unnecessary Use of Active Classes

Background: An active class in UML-RT is a capsule which is the fundamental
modeling element of embedded real-time systems. A capsule is used to represent
independent flows of control in a system. A capsule and a passive class have
some common properties such as operations and attributes. Similar to a class,
a capsule can also participate in dependency, generalization and association
relationships. However, capsules can have some specialized properties such as
ports, capsule roles etc which distinguish them from passive classes. Ports and
capsule roles of an active class in UML-RT are mainly used for enhancing the
modeling capabilities of the structure of the classes. A capsule can also have
state machines for modeling the behavior of the classes. A passive class is an
ordinary class which does not need to have its own thread of execution. On the
other hand, each capsule instance has its own logical thread of control, though
it may share an actual processing thread, known as a physical thread, with other
instances.

Convention: Generally, passive classes are used to store and manipulate
information in the system, whereas capsules provide coordinating behavior in
the system. Therefore, some of the use cases which involve only the simple
manipulation of stored information can be implemented without using capsule
objects. The use of capsule objects is necessary for implementing more complex
use cases which require one or more capsule objects to coordinate the behavior
of other objects in the system.

Rationale:

• As function calls are much faster than signal communications, the replace-
ment of capsule classes with passive classes, wherever appropriate, would
increase the performance of the system.

• Also, passive classes require fewer resources.

3.1.5 Improvement of Visualization in UML-RT Diagrams

Background: In a UML-RT design model, it is possible to decompose a large
diagram into several smaller diagrams. For example, a number of class dia-
grams can be used instead of using a single one for showing relationships among
different modeling artifacts such as capsule classes, protocols, passive classes

20

etc. With the availability of hierarchical state machines in UML-RT, it is also
possible to decompose the behavioral design of a UML-RT capsule at multiple
levels of abstraction instead of putting all the states at a single level.

Another useful feature we have observed in well-known UML-RT develop-
ment tools such as IBM Rational Rose RT and IBM RSA RTE is the capability
of customizing the display of class diagrams without having any effects in the
actual model. To be precise, visualization may suppress model elements without
actually deleting them from the model. To understand a design model properly,
it is important to keep the diagrams of the design model as simple as possible.

Convention: If a large number of artifacts are placed in a single class
diagram while designing a real-time embedded system, the understandability of
that model would be highly affected. As it is pointed out in [10], if a diagram is
too large, the audience may find it difficult to see where to focus on and can lose
interest eventually. Therefore, it is a good idea to divide large class diagrams into
several smaller diagrams. For example, a separate class diagram can be used for
showing the inheritance relationships among different UML-RT artifacts such as
capsules, protocols, passive classes etc. Consequently, these relationships would
not be mixed up with other class diagrams which are mainly used to show the
communication relationships among different capsule classes. The same is true
for the behavioral design of a UML-RT model where we should utilize the feature
of hierarchical state machines to avoid a simple state to become too complex to
understand.

In addition, only important relations should be shown in a class diagram. As
a relation can be deleted from the visualization without actually deleting it from
the model, we can often reduce the visualization complexity associated with a
class diagram by hiding operations and attribute lists from the corresponding
active and passive classes. While this can make the view of a class diagram
inconsistent with respect to the actual model, careful use of this feature in ad-
dition to providing appropriate documentations can greatly improve the overall
understandability of the model. It is also worth mentioning that, as per our
observation in the above-mentioned UML-RT development tools, this feature is
not available in the structure diagram and the state diagram of a UML-RT cap-
sule: it is not possible to delete elements from these diagrams without changing
the actual model.

Some other ways to improve visualization include minimizing crossing lines
as much as we can, making the lines showing relationships among different
artifacts in a class diagram or in a state diagram either horizontal or vertical
and creating elements of similar sizes wherever possible [10]. In addition, in
all the inheritance and the containment relationships of a model, it would be a
good idea to follow a convention to put parents and owner elements of the model
in upward position of the diagram. It would enforce better understandability of
the inheritance and containment hierarchies of the corresponding model.

Rationale:

• Better visualization of a diagram can greatly improve the understandability
of the model.

21

3.2 Antipatterns

3.2.1 Incorrect Use of Group Transitions

Background: Group transitions are defined as transitions that originate from
composite states. They can be considered as common transitions from all the
sub-states within the composite state. Therefore, with the use of a group transi-
tion, any common behavior involving equivalent transitions from every sub-state
of a composite state can be represented by a single transition originating from
the containing hierarchical state.

General Form:

Figure 8: Misuse of Group Transition

Let us consider the scenario of a microwave oven introduced in Figure 8. In
this figure, with the triggering of the event warmUP, we can go to the composite
state Microwave from the Cold-Food state. Inside Microwave, three sub-states
are introduced to represent different states of the microwave oven such as Door-
Closed, Door-Opened and Operating. Once the food has been warmed up, a
group transition from the Microwave state named warmed can take us to the
Serve-Food state.

Now, in this design choice, according to the requirement specification, the
system can go to the Serve-Food state only when the microwave oven is in
the Door-Opened state. The design solution introduced in this figure would
not cause the system to fail, rather misuse of group transition in this figure
would allow the possibility of the system to go to the Serve-Food state directly
from any of the sub-states of the enclosing Microwave state. Therefore, the
understandability of this design choice is reduced and it can be considered to
have degraded quality.

Symptoms

• Unnecessary use of group transition while a normal transition can better

22

serve the purpose.

Consequences

• Negatively affect the understandability of the associated model.

• The antipattern solution allows for erroneous behavior as it does not elim-
inate the possibility of going to the Serve-Food state directly from the
Door-Closed and the Operating states.

Refactored Solution:

Figure 9: Refactor Solution for the Wrong Use of Group Transition

The understandability issue of the design solution in Figure 8 can be elim-
inated by replacing the group transition with a normal transition from the
Door-Opened state. As we can see in Figure 9, an outgoing transition warmed
is introduced from the Door-opened state which is responsible for taking the
system from the Microwave state to the Serve-Food state.

3.2.2 Incorrect Use of One-shot Timers

Background: There are two kinds of timers available in UML-RT: One shot
timer and periodic timer. The difference between these two types of timers
lies on their expiration behavior. One shot timers can expire only once, at any
absolute time, or once the specified time duration is over. In contrast, after
starting up a periodic timer, it times out repeatedly at the end of the specified
period until being cancelled explicitly.

23

General Form: One shot timers are designed to be used only once, for
triggering an event for a single time. However, as we can see in Figure 10, a one
shot timer can be used for implementing the functionality of a periodic timer
as well.

Figure 10: Use of a one-shot timer as a periodic timer

Figure 10 illustrates the top-level behavior of a Controller capsule which
is responsible for sending out status requests to other capsules of the system:
Receiver and Jammer. In this design choice, at first, a one shot timer named
statusTimer is set in the toOperate transition. Once this timer expires after
the specified time period, the self-transition ‘statusRequest’ will fire and the
Controller will send out status requests to the other capsules. However, before
sending out the status requests, the one shot timer statusTimer is set once
again in the first line of the action code of the statusRequest transition. The
intention is to get the statusTimer fired periodically for requesting statuses from
the other capsules of the system on a regular basis until the system transitions
to the Shutdown state. With a high-level look, everything seems quite fine with
this design and one may wonder, what could be possibly wrong with this design
choice that makes it an antipattern solution!

When a one-shot timer is used for serving the purpose of a periodic timer,
every time the timer expires, it must have to be reset before being employed
again. So, in the case of repeated timeouts, the amount of extra time that would
be needed to process each timeout and request a new timer could cause slight
delay in the intended timing of the associated behavior.

For exploring the effects of using one-shot timers as periodic timers we ran
an experiment using the model behavior depicted in Figure 10. Both one-shot
and periodic timers are used in two different phases of the experiment with the
intention to be fired on every 50 milliseconds. The total system time is set
to 600 milliseconds and the system will shutdown once the system timer fires.

24

The number of times the timers can fire within the system timer period is 12.
The experiment is done using the Rational RSA-RTE tool on a Windows 8.0
machine having Intel Quad Core 2.66 GHZ CPU and 4.00 GB of RAM.

Figure 11: Comparison of One-shot and Periodic Timers: Timeout interval is
50 milliseconds

As we can see in Figure 11, the average time period for firing the one-shot
timer is approximately 55.43 milliseconds. In contrast, the average time period
for firing the periodic timer is very close to 50 milliseconds. This is because if a
one-shot timer is used for implementing the functionality of a periodic timer, it
takes around 6 milliseconds on average for the timer to be created again after
its expiration. In Figure 11, a row labeled with step#n shows the actual time
elapsed between the (n-1)-th and the n-th timer expiration events for both types
of timers. The corresponding timeline diagram is shown in Figure 12 where rti
and ati represent the required timing point and the actual timing point during
the receipt of the i-th timer expiration event. As we can see in these figures,
due to the extra time taken to create the one-shot timer after its expiration, two
required timer expiration events have been missed within a total system time
of 600 milliseconds.

This deviation of actual timing from the timing requirement specification
could force any soft real time systems to have degraded quality. However, its
influence can be extremely significant in the design of a hard real time system
where it is very important to maintain real-time aspects of the system behavior
strictly for avoiding any potential system failures or health hazards.

Symptoms:

• Design of periodic timers using one-shot timers.

Consequences:

• Compromising the real-time aspects of the system behavior would result
in a system with degraded quality.

25

Figure 12: For a timeout interval of 50 milliseconds, the required and the actual
time taken by (a) One-shot timer (b) Periodic timer

Known Exceptions The effects of this timing requirement violation is re-
markably noticeable when the timer is required to be fired repeatedly on a
relatively smaller timeout period. However, if the required timeout interval is
significantly higher than the time it takes to reset a one-shot timer (around 6
milliseconds), the degradation in model quality would not be that much notice-
able.

Refactored Solution: The problem introduced in the antipattern solution
can be resolved by the use of a periodic timer in UML-RT. A periodic timer is
designed to be fired repeatedly after a specified time duration until it has been
cancelled explicitly. Therefore, in contrast to one-shot timers, periodic timers
are not required to be reset after each expiration. Consequently, using periodic
timers instead of one-shot timers for firing an event periodically would improve
the timing accuracy we would get (See Figure 11 and 12).

3.2.3 Misuse of Guard Conditions

Background: The relationship between a source and a target state is specified
using a transition. A transition can have three different parts: event triggers for
defining the associated interface and event pair that will cause the transition
to be fired; action code for, e.g., performing operation calls, create and destroy
other objects and send signals to other objects; and a guard condition which
will be evaluated once the transition is triggered.

A guard condition is a Boolean expression optionally associated with a tran-
sition which decides if the transition would be taken or not once it gets triggered.
If a guard is not specified, the default evaluation result would be true and the
transition can be taken immediately after getting triggered. However, if a guard

26

condition is set, it must evaluate to true in order for the transition to be fired.
General Form: Let us consider the scenario of Figure 13 which illustrates

the design of a microwave oven that takes user input for going to any of the
following modes of operation:Popcorn, Potato, Warm, Door-Opened. Once the
system receives user input for going to any particular operating mode while it is
in the Door-Closed state, the transition associated with a valid guard condition
will be executed for taking the system to the corresponding operational state.
From the model visualization of this design choice, it is impossible to understand
the execution behavior that would take the system from the Door-Closed state
to the other states.

Figure 13: Misuse of Guard Conditions

Symptoms and Consequences:

• Use of guard conditions in multiple outgoing transitions from a state.

• Reduces the understandability of the corresponding design model.

Refactored Solution: The problem associated with the antipattern solu-
tion can be refactored by employing a choice-point in the design model. As we
can see in Figure 14, due to the use of the choice-point CP, it is quite apparent
that the execution behavior would depend on user-input while the microwave is
in the Door-Closed state.

Known Exceptions: Guard conditions are very helpful if we want to check
the validity of a condition before executing a transition once the event trigger
associated with the transition is fired. However, when we have a choice to
use a choice-point instead of guard conditions, we should use choice-point as it
improves the understandability of the design model.

3.2.4 Hidden States

UML-RT state machine diagram supports two types of states: simple and com-
posite. A simple state is defined as a state that does not contain any other states
inside. In contrast, a composite state is defined as a state composed of other

27

Figure 14: Replacement of Guards with a Choice-point

states, called sub-states. Support of hierarchical state machines in UML-RT
allows us to model complex state machine behavior by describing a system at
multiple levels of abstraction.

The main advantage of using model-driven development over code-driven
development is the potential for significant improvement in understandability.
For example, a state represents a specific stage of the life-time of an object where
it is ready to handle specific events [11, 47, 4]. The use of states in the behavioral
diagram of UML-RT models allows us to capture the states an object is passing
through and how its potential for interacting with other objects changes as a
result.

A common problem regarding the behavioral design of a system is the ab-
sence of state elements where it is appropriate. This problem appears in two
forms: absence of appropriate super-states and absence of enough sub-states.
The following two subsections will discuss these two forms of hidden states in a
UML-RT design model.

1. Hidden Super States

General Form: Let us consider the scenario of Figure 15. This figure
illustrates the high level behavior of a personal computer (PC). A PC can be
in the Off state which represents the scenario when the PC is turned off. Once
the PC is turned on, it can be in any of the following states: Active, Inactive
and Crashed.

In the design of Figure 15, all the four states associated with the behavior
of the PC are placed in the same abstraction level. With the triggering of the
toActive event, we can move to the Active state. Once the system is in the
Active state, after a certain period of inactivity, the toInactive event will be
fired and the system will be in the Inactive state. The system can go to the
Crashed state if the system is crashed while it is in either the Active or the
Inactive state. The system can also come back to the Off state if the toOff
transition is fired while the system is in any of the Active or the Inactive states.

28

Figure 15: Wrong Use of State Abstraction

We note that the model contains duplicated model elements. For example,
the events that take the system from the Active and the Inactive states to the
Crashed state are identical. The same is true for the events that take the system
back to the Off state from the Active and the Inactive states. Presence of these
redundancies gives us the hint that the design can be improved by removing
redundancy and explicitly showing the relationship between UML states by
grouping them.

Symptoms:

• Presence of duplication in the behavioral design of a UML-RT model. The
duplication typically involves outgoing transitions from multiple states in
the same level of abstraction having identical event triggers, guards and
action code.

• Little or no use of state nesting.

• If being in a state has to do with a certain property being true and the sys-
tem behaving in a certain way, then affected states would share properties
and behavior.

Consequences:

• Unnecessary duplication can make the system hard to maintain as any fu-
ture changes in the duplicated elements would require to make the changes
separately in all the elements.

• Wrong use of state abstraction would make the system harder to under-
stand because the fact that a group of states share invariants and the
ability to respond to the same set of messages in the same way, is not
captured explicitly.

Refactored Solution: The existence of identical outgoing behaviors from
both of the Active and the Inactive states gives us the indication that these
two states actually belong to the same phase in the lifecycle of the object: the
phase in which the system is ‘on’. Consequently, the antipattern solution can
be improved by nesting these two states inside a composite state. In Figure

29

Figure 16: Proper Use of State Abstraction

16, a new composite state On is created in the top level behavior of PC which
is composed of Active and Inactive states. Now, instead of having redundant
outgoing transitions in the state diagram, two outgoing group transitions from
the On state are used for taking the system to the Off and the Crashed state.

Consequences:

• The enforcement of the refactored solution would greatly improve the
maintainability and the understandability of the design model.

• Unnecessary redundancy is eliminated from the design model.

2. Hidden Sub States
General Form: Let us consider the behavioral design choice of an adaptive

cruise control software presented in Figure 17.

Figure 17: Existence of Hidden States in a Model

To be precise, this design choice is responsible for activating different states
of a cruise control such as accelerate, brake and idle depending on the value of
the following two variables: speed and distance. The conditions for activating
these states are as follows:

30

Accelerate: g1 = (Speed < 80 km and Distance > 10 m)
Brake: g2 = (Speed > 120 km or Distance < 3 m)
Idle: g3 = ¬(g1 ∨ g2)

Now, as we can see in Figure 17, instead of using the actual state elements,
all the above mentioned states are represented using self-transitions and flag
variables. Consequently, some crucial properties of the design remain hidden in
this design choice, i.e., the opportunity to explicitly show circumstances where
state changes occur and what properties the attribute values must satisfy in
each state is lost.

Symptoms:

• Attributes are used to encode important phases during the execution of
an object.

Consequences:

• The design becomes more complex because the determination if the ob-
ject is in a hidden substate may require the use of complex constraints
on attributes. Together with the fact that important information about
the object and its behavior is hidden, this complexity impacts the under-
standability and maintainability of the model negatively.

Figure 18: Refactoring Hidden States

Refactored Solution: The antipattern solution can be improved by mak-
ing the hidden states visible. As we can see in Figure 18, the understandability
issue of the antipattern solution is resolved by representing the hidden states
explicitly. The attached note to each of the state elements having state invari-
ants illustrates the crucial system properties represented by the state elements.
More precisely, the explicit interactions among these states make this design
choice easier to understand and maintain.

31

3.2.5 Pitfalls of Using Promote/Demote Operations in UML-RT In-
heritance

Background: UML-RT supports features of promoting and demoting proto-
col signals, capsule and protocol state machine elements and capsule structure
elements such as ports, capsule roles etc. As an example, demoting a port
from a capsule would remove it from the generalizing capsule class structure
and would move it into each of its sub-capsule classes. Consequently, the port
becomes part of the sub-capsule structure and would no longer be inherited by
the sub-capsules from the super-capsule class. In contrast, promoting a state in
a sub-capsule behavior moves it into the super-capsule state machine and as a
result, it is inherited by all the sub-capsules of the super-capsule.

General Form: Let us consider the example of Figure 19. Here, we have
a super capsule which is inherited by two sub-capsule classes: Sub1 and Sub2.
Sub1 has two integer attributes defined within its definition: yVal (=10) and
zVal(=20), whereas the only attribute defined in Sub2 is zVal (=11). Now,
if we promote the zVal attribute of Sub1, it will become an attribute of the
SuperCapsule. As a result, as Sub2 is inheriting from the SuperCapsule, it will
have two instances of zVal and thus the understandability of this design model
will be affected.

Figure 19: Inheritance in UML-RT

In addition, if we try to promote zVal attribute from the Sub2 capsule, the
system will allow us to do that. But as there is already a variable defined with
the same name in SuperCapsule, it will throw errors during compilation. There-
fore, special care should be taken while using promote or demote operations in
the UML-RT inheritance hierarchy.

Symptoms and Consequences

32

• Promotion and demotion of elements of the same type with the same name
in different places of the same inheritance hierarchy.

• Affects the understandability of the design model.

• If we end up with two identical elements inside the same artifact, the
model will not be well formed anymore.

3.2.6 Inappropriate Modeling Scope

Background: In code-driven development, the term scope mainly refers to the
code region in which declared entities are visible. For instance, the scope of a
variable defines the part of a computer program where the variable is visible.
Variables can have any of the following two scopes: global and local [69]. While
declaring a variable once with the global scope makes it accessible in the entire
program, a local variable can be accessed only in the block where it is declared.

If global scope is used in code, the code can become hard to understand
because the corresponding variables can be used and updated anywhere in the
program. In addition, the use of global scope makes the code error-prone as
global variables are accessible to all threads of execution and consequently, the
code will not remain thread-safe [16, 63]. Considering the lack of understand-
ability in code where global variables are used, the authors in [85] suggested
the removal of global variables from all higher level programming languages.
Similar to this convention, it is a good design choice to avoid unnecessary use
of global scope in model-driven development as well.

General Form: Let us consider the example of Figure 20 where two cap-
sules Second and GrandChild 1 are communicating with each other using the
protocol Pro Second GC1. The Second capsule is contained by the Container
capsule and the only capsule it is communicating with is the GrandChild 1. On
the other hand, the GrandChild 1 is located three levels deep from the Con-
tainer capsule. To be precise, the Container capsule contains the Parent capsule
which is the owner of the capsule Child 1 that contains GrandChild 1. Conse-
quently, for the communication to happen between Second and GrandChild 1,
the message signals will have to go through ports in three different levels before
reaching the destination.

Symptoms:

• Existence of capsules unnecessarily defined with larger scopes.

Consequences

• Real time aspects would be affected as travelling through multiple ports
would require extra time.

• Unnecessary use of system resources.

Known Exception: Although it is a good practice to avoid using global
variables in code-driven development, in situations where global variables rep-
resent facilities that truly need to be available in the entire program, use of

33

Figure 20: Global Capsule Scope in UML-RT

the global scope simplifies the code [16]. Similarly, in the above example, if
the Second capsule needs to communicate with other capsules as per design
requirement, it would be better to have the antipattern solution.

Refactor Solution:
The antipattern solution can be refactored by changing the scope of the

Second capsule. This can be done by changing the owner of this capsule (See
Figure 21).

Consequences:

• Improves understandability.

• Performance would be improved.

3.3 Patterns

3.3.1 Status Monitoring Scenario

Intent: This pattern illustrates a general reusable solution for monitoring sta-
tuses of a set of systems.

Problem: In a design model, it is very common to use a system monitor
which sends out status requests to different components of the system. Once
the system monitor receives responses from the components, generally, it reports
these responses to the system controller.

Let us consider the status monitoring scenario in an Electronic Warfare Sys-
tem which has four capsules: Controller, Receiver, Jammer and State-Monitor.

34

Figure 21: Refactored Capsule Scope

Figure 22: State Monitoring - Wrong approach

According to the requirement specification, the Controller capsule would request
the State-Monitor capsule to monitor the status information of the Receiver and
the Jammer capsules periodically. After receiving the status information, the
Status-Monitor capsule should report this information to the Controller.

One possible realization of this capability is illustrated in Figure 22. As we
can see in this figure, we have three states in the top level behavior of the State-
monitor capsule: Idle, ObtainSubsystemState and ReportSubsystemState. As
the name implies, ObtainSubsystemState is focused on retrieving statuses from
all the subsystems associated with this system design: Receiver and Jammer ;
and ReportSubsystemState is focused on reporting this status information to

35

the Controller. As we can see in this design choice, for retrieving statuses from
these subsystems two other states are created inside the ObtainSubsystemState:
ObtainRxState and ObtainJxState (See Figure 23).

Figure 23: Obtaining Statuses from Receiver and Jammer

After sending out status requests to the Receiver subsystem, the system
waits in the ObtainRxState for retrieving a response from the Receiver. Once
it gets response from the Receiver, it sends out a status request to the Jammer
and waits in the ObtainJxState for getting response from the Jammer. Finally,
after retrieving status information from both of the subsystems, the system
goes to the ReportSubsystem state for reporting this status information to the
Controller and once it gets an acknowledgement from the Controller, the system
goes back to the Idle state where it waits for the next status request timer to
be fired.

Figure 24: Pattern Solution for State Monitoring

One major problem with this solution is the large number of extra states
required. For example, if Status-Monitor is used for monitoring 50 system
components, the use of this solution would force us to use 50 extra states un-
necessarily.

36

In addition, although the ordering of signal communication is not impor-
tant here, this particular design solution enforces some ordering in the signal
communication and this enforcement is done with the use of some extra states
inside the ObtainSubsystemState.

Symptoms

• The number of extra states needed for implementing the status monitoring
mechanism following the approaches illustrated in this solution is equal to
number of system components intended to be monitored.

• The order in which requests are sent and responses are received is unnec-
essarily specific and restrictive.

• Wait time for getting a response is unbounded.

Consequences

• Use of extra state elements and unnecessary ordering in signal communi-
cation would have a negative impact on system performance.

• Unbounded wait time for getting responses from other capsules would
increase the level of coupling in the design model. Consequently, the
robustness of the system could be compromised.

Solution: The main problem associated with the problematic solution is the
enforcement of signal ordering even if it is not needed. Therefore, the refactored
solution to this problem, which is depicted by Figure 24, focuses on eliminating
this issue by using a self-transition.

Figure 24 illustrates the top level behavior of the Status-Monitor capsule. As
we can see in this figure, the Status-Monitor capsule sends out status requests to
all the components from the reqStatus transition. Now, once the system is in the
ObtainSubsystemState state, it waits there for a certain amount of time which
is controlled by a timer to retrieve status information from all the associated
components. Once the timer fires, the system transitions to the ReportSub-
systemState state where it reports the status information to the Controller. If
status information from any of the component is missing, the Controller would
take actions accordingly for fixing the problem.

Consequences:

• The refactored solution increases simplicity as we can send out status
requests to all the components from a single state.

• The refactored solution eliminates the problem introduced by unnecessary
ordering in signal communication by sending all the status requests from
a single state.

• One trade-off associated with the pattern solution is the necessity for some
extra implementation in the Controller side for resolving potential issues
regarding missing responses.

37

• Another trade-off is the requirement for selecting an appropriate value
for the extra timer used in the refactored solution. This would include
possibly some extra maintenance effort.

3.3.2 Proper Use of System Timers

Intent: This pattern discusses the proper use of a system timer for controlling
the operating period of a system.

Problem: Let us consider a system which is intended to run for 60 sec-
onds as per the requirement specifications. One possible design of this system is
depicted in Figure 25 which represents the top level behavior of the System Con-
troller. In this design choice two timers are used in the system design: startup
timer and shutdown timer. The Startup timer gives the System Controller some
time (5 seconds) for starting up other components before going to the Operating
state, whereas the shutdown timer controls the actual system operating time.

Figure 25: Wrong Placement of System Timer

In the design of Figure 25, both of these timers are placed in the action code
of the Initial transition. Consequently, once the startup timer fires, the system
reaches the Operating state and instead of having an operating period of 60
seconds, which is part of the requirements, it actually runs for 55 seconds and
thus violates the requirement specifications.

Symptoms:

• Instantiation of system timers that control the system runtime before the
system actually starts operating.

Consequences:

• This design choice may cause the violation of timing requirements.

Solution:
The problems associated with the problematic solution can be eliminated

by moving the instantiation of the shutdown timer from the action code of the
Initial transition to the action code of the toOperate transition (See Figure 26).

Consequences:

• The system will follow the timing requirement specifications and would
actually run for the time period it is supposed to be run.

38

Figure 26: Proper Placement of System Timer

3.3.3 Separation of Responsibilities

Intent: This pattern represents an approach to distribute responsibilities among
multiple ports, which in turn allows the protocols to be cohesive and thin.

Problem: It is a common practice to define multiple roles in a single port
of a capsule. Let us consider the example of Figure 27 where the Controller is
communicating with two other capsules using a single port controllerR1. Conse-
quently, this Controller port has dual responsibilities which may affect the size
and structure of the associated protocol. In addition, the potentially low cohe-
sive nature of the protocol roles may make the model difficult to understand,
maintain, test and reuse.

Figure 27: Multiple Roles in a Single Port

Solution: This problem can be resolved by decomposing and distributing
the responsibilities among different ports (See Figure 28).

Figure 28: Distribution of Responsibilities among Different Ports

Consequences:

• Makes the model easier to understand and maintain.

39

• Allows the associated protocols to be cohesive and thin.

• Tradeoff: The Controller capsule would have to listen to multiple ports
now.

3.4 Clones in UML-RT Models

This section will discuss several examples of duplication smell in UML-RT and
refactor suggestions for eliminating the redundancies. First, we will discuss
duplications in UML-RT behavioral diagrams. This will be followed by the
discussion of duplications in UML-RT class diagrams. The examples shown
here in this section are inspired by the anonymous student model repository we
analyzed.

1. Duplication in Behavioral Diagram: Example 1
Background: Let us consider the design of an Electronic Warfare System

which has three capsules: Controller, Receiver and Jammer. According to the
design requirement, the Controller capsule should perform a Built-In Test (BIT)
on the two other systems on a regular interval.

Figure 29: Duplication in Self-transitions

General Form: An example of the Controller capsule behavior is illus-
trated in Figure 29. The Controller capsule sends out the BITRequest signals
to the Receiver and the Jammer capsules using a self-transition. Once it re-
ceives responses from these capsules, the BITReceiver and the BITJammer
self-transitions will be triggered respectively. Action code associated with the
BITReceiver and the BITJammer transitions assigns the status information to
a local variable. Both transitions are structurally identical.

Consequences:

• Duplicated modeling elements can lead to increased maintenance efforts.

Refactor Solution: The unnecessary duplication in this example can be
eliminated in two ways. We can either replace the two self-transitions, BITRe-
ceiver and BITJammer with a single self-transition which will have both of the
triggers on its interface. Alternatively, we can create a function that will contain

40

the code common to both of the transitions and the function can be called in
the action code of both BITReceiver and BITJammer transitions.

1. Duplication in Behavioral Diagram: Example 2
Background: This example also involves the behavioral diagram of a Con-

troller capsule in the design of an Electronic Warfare System. Upon getting
instruction from the Controller, the Receiver capsule would scan the environ-
ment for emitters and if it detects an emitter, it would send a message to the
Controller capsule. The Controller would then evaluate the emitter and if it
considers the emitter to be a threat, it would assign a Jammer to jam the emit-
ter. Before the Jammer starts jamming, the Controller would have to make
sure that the Receiver is in not-scanning mode to prevent damage. In a jam-
ming period, the Jammer can switch between jamming and look-through mode
so that the Receiver can start scanning for new emitters while the Jammer is
in look-through mode.

Figure 30: Duplication in State Diagram

General Form: In Figure 30, the Controller sends out a scan request
signal to the Receiver from the Scan state. When the Receiver reports an
emitter, the execution follows the contactReported transition for going to the
EvaluateContact state. After evaluating the emitter if the Controller finds a
threat, in the action code of RxInSafeState it makes sure that the Receiver goes
to the not-scanning mode and then travels to the Jam state. In a jam cycle, the
execution can switch between the Jam and the Scan state and before travelling
from Scan to Jam, it makes sure again that the Receiver transitions to the
not-scanning mode in the action code of jamDuty transition.

Now, duplication exists in this design model as the two incoming transitions
in the Jam state are triggered by the same event and they have identical action
code as well.

Refactor Solution: One way to eliminate the duplication present in Figure

41

30 is to replace the incoming transitions to the Jam state having identical event
and action code with a single transition from the border of the enclosing state.
But, doing so would change the model behavior as the refactored model would
be able to handle the goToJam event while it is already in the Jam state. So,
the best way to remove duplication in this model is to create a function using
the identical action code from both of the incoming transitions to the Jam state
and make the function call whenever necessary.

2. Duplication in Class Diagrams
Duplicated artifacts can be found in class diagrams if the feature of inher-

itance is not utilized fully while designing models in UML-RT. An example of
this scenario is illustrated in Figure 31.

Figure 31: Duplication in UML-RT Protocols

Figure 31(a) illustrates two protocols which have some common in- and out-
signals. This duplication can be eliminated by putting the common signals in
another protocol and letting it be inherited by the protocols which had dupli-
cations among them (See Figure 31(b)).

4 Related Work

4.1 Coding and Design Conventions

The practice of following coding conventions can improve the maintainability
of a software system significantly. In [52], a number of reasons for following
coding conventions is pointed out while introducing coding conventions for the
Java programming language. Common coding conventions that are followed
in modern programming languages include naming conventions [81], comment
conventions [79], indent style conventions [80], etc.

The effectiveness of coding conventions inspire the model driven development
community to define and follow conventions for improving the understandability
and maintainability of a particular design model. During a research visit to
Ericsson, we have observed that a set of design conventions is followed strictly by
the developers of Ericsson models. This set mainly includes naming conventions

42

for different modeling constructs such as capsules, classes, states, transitions,
protocols etc.

4.2 Patterns in Models

In a fashion similar to object oriented (OO) patterns, the concept of state pat-
terns began to appear in the literature in [21]. On the contrary to the OO pat-
terns which are focused on demonstrating optimal ways of structuring classes
and objects, the state patterns try to capture general solutions to common prob-
lems of structuring primitive statechart constructs. The patterns can then lead
to efficient and effective solutions to different scenarios by being instantiated
and specialized for specific problems. In [21], the author presents a set of twelve
behavioral patterns which include the collaboration of states that are general
enough to solve one or more common design problems and optimize one or more
criteria. An important feature of many of the state patterns in this catalog is
the use of orthogonal state components for distinguishing independent aspects
of the state machine.

A mini-catalog of five basic state patterns is introduced in [64]. Each of
these patterns is discussed with five components: the pattern name, problem
definition, proven solution, sample code and the consequences. In contrast to
the state patterns discussed on [21], which revolve primarily around orthogonal
regions, the state patterns defined in [64] focus on reusing behavior through
hierarchical state nesting. Another feature which makes this pattern collection
unique is that patterns are illustrated with executable code. As it is suggested in
this paper, to be genuinely useful, a pattern must be accompanied by a specific
working example that will help the developers to truly comprehend and evaluate
the pattern and give them a good starting point for their own implementation.

For avoiding complexity that can be caused by highly coupled control and
service-providing aspects of a real-time system, an architectural design pattern
has been introduced in [67]. Realizing the fact that a system cannot start
performing its service-level functionalities before reaching an operational state,
this pattern allows encapsulation of the system service functionality within the
control functionality which improves reliability and maintainability of the sys-
tem. This pattern can be applied from the highest architectural level to the
lowest-level individual components.

Stateflow is an environment for modeling and simulating combinatorial and
sequential decision logic based on state machines and flowcharts. For achiev-
ing understandable presentation, and reusable and readable models, a set of
guidelines for developing models using Stateflow is presented in [48]. This set
includes, but is not limited to, guidelines for creating states and transitions in
state machines, use of patterns for flowcharts, transitions in flowcharts, place-
ment of default transitions, state machine patterns for conditions and transition
actions etc. Each of these guidelines is presented with the impact it has on dif-
ferent properties of the final model such as readability, verification, validation,
workflow, code generation and simulation.

43

4.3 Antipatterns in Models

A performance antipattern identifies a practice that badly affects performance,
and it may involve static and dynamic aspects of software as well as deployment
features. Some work has been done considering the detection and refactoring of
performance antipatterns. The authors in [68] specify a set of 14 performance
antipatterns. In subsequent work, they propose several techniques for the detec-
tion of performance antipatterns in software architectural models [15, 74]. The
authors in [15] show how performance antipatterns can be defined and detected
in UML models using OCL. They show with an example that the removal of
a certain antipattern actually allows overcoming a specific performance prob-
lem by presenting a case study in UML annotated with the MARTE profile.
For identifying performance antipatterns in architectural models and removing
them, an approach is presented on the basis of rules and actions in [74]. This
approach is based on the formal definition of some performance antipatterns
that had not been formalized before. In [6], the authors address the problem of
removing performance antipatterns detected in an architectural model. They
use a Role-Based Modeling Language to represent antipattern problems and
solutions. Solutions include Source Role Models (SRMs) and Target Role Mod-
els (TRMs). In their procedure, model refactoring for removing antipatterns is
done by replacing an SRM with the corresponding TRM.

For exploring the educational role of anti-patterns in improving modeling
skills in UML class diagrams, a catalog of 43 correctness and quality anti-
patterns for class diagrams is introduced in [7]. This catalog analyzes the causes
of correctness and quality problems and provides suggestions for rectifying these
problems. On the basis of conducting two experiments the authors conclude that
learning the anti-patterns helps students improve their awareness of modeling
problems in class diagrams.

With the intention of exploring bad design choices in the behavioral design
of UML-RT, we present a set of seven state machine anti-patterns in [17]. In
addition to discussing the associated problems, each of these anti-patterns is
introduced with a refactor solution for improving the problematic solution.

4.4 Clone Detection: the Current State-of-Art

4.4.1 Clone Detection Research in Code Driven Development

The process of updating a software system for improving the internal struc-
ture without altering its external behavior is called software refactoring. With
the intention of demonstrating refactoring in a controlled and efficient manner,
Martin Fowler introduces 22 code smells in [26]. The number one smell he has
in this list is Duplicated Code. If the same code structure exists in two or more
places, we can improve the code structure by finding a way of unifying them.
The main problem associated with duplication appears during software main-
tenance: if a change needs to be made in one place, most probably the change
needs to be made in all the other duplicated places and it is very easy to forget
to make changes in one of those places, thus possibly introducing errors.

44

Reasons of Clone Detection: Reuse of code, logic, design or an entire
system is the primary reason for code duplication in [61]. The forms of reuse in-
clude utilizing existing implementation by just copying and pasting with minor
or without any modification [40], copying existing implementation considering
that it would be changed significantly in future (Forking) [39]. In addition,
clones can be introduced in a system while merging two similar systems into
a single one. Clones can also be incorporated in a system due to the unwill-
ingness of a development community to write new code as the existing code is
already well tested [13], language limitations [8, 57], time constrained software
development etc. Sometimes clones can be created accidentally as well if mul-
tiple developers are involved in designing similar functionalities or due to the
cognitive limitations of developers [61].

Consequences of Code Duplication: Negative impact of duplication in-
cludes the propagation of bugs by cloning an error-prone code segment [37, 46],
the introduction of errors in the newer system by adapting existing implementa-
tion wrongly [9, 38], the incorporation of inappropriate inheritance structure or
abstraction [53], an increased maintenance effort and risk of error-prone design
[53, 51] and the unnecessary use of system resources [61].

Code Clone Classification: According to the current state of the art
[61, 43, 73], code clones can be categorized into four types:

• Type I (Exact Clone): Identical code blocks ignoring any variations in
comments and white-spaces.

• Type II (Renamed Clone): Code duplication with consistent changes
to identifiers, literals, types, layouts and comments.

• Type III (Parameterized Clone): Duplication with the allowance of
more changes (i.e., addition or removal of code fragments). These kinds
of clones are also called near-miss code clones.

• Type IV (Semantic Clone): Multiple code fragments with significant
syntactic variations having similar pre- and post-conditions.

As we can see, this categorization is made with the increasing level of varia-
tions between compared code blocks. The effort required to detect these clones
also follows this order.

Importance of Scope in Clone Definition: Redundancy is more like
coupled text, changing one copy would suggest us to make the same changes in
other copies as well. However, if the duplicated code segments do not have the
same scope, it could be possible that they are not coupled and changing code in
one section would not suggest making the changes in the other segment as well
[43].

45

4.4.2 Clone Detection Research in Model Driven Development

At present, the importance of model driven development in many industrial
development activities of many organizations is significant, and similar to the
classical code-oriented development, the size of the models can become quite
large [71, 72]. Based on the experiences of dealing with large scale domain
models, it is concluded that the concept of clones in model driven development
appears in almost the same way it appears in source code [19] and therefore,
the importance of detecting clones in MDD is similarly valuable [58].

Approaches to model clone detection to date mainly utilized graph-based
techniques [20, 59, 2]. Models are represented in these techniques as nodes
and edges and variations of subgraph matching techniques are used for finding
clones in the model. Although these techniques are natural and efficient for
exact matching in visual models, their success in near-miss clone detection is
not remarkable [59]. In addition, these techniques suffer from decreased perfor-
mance when applied to graphs with many cycles, which can appear in data-flow
and behavioral models. For avoiding these consequences of using graph-based
techniques, recent research has used text-based code clone detection techniques
to identify model clones.

In [62], a parser-based language-sensitive code clone detection tool NICAD
is introduced on the basis of the TXL parser [14] and text-comparing syntactic
fragments. This tool allows for unexpected differences in near-miss clones up to a
given difference threshold. The NICAD tool is adapted for introducing SIMONE
(SIMulink clONE detector) [3] to identify structurally meaningful near-miss
subsystem clones in Simulink [49] models. The authors in [3] use the textual
representation of Simulink models as the text input to SIMONE. Thereafter,
they utilize grammar inference techniques for deriving a formal TXL grammar
from a large set of example Simulink models in the public domain. The authors
in [18] extended the approach used in SIMONE and applied clone detection
techniques to the textual representation of Stateflow [50] models.

In [70], the authors discuss the possibility of detecting pattern and antipat-
tern instances in models using model clone detection. One of their immediate
plans is to realize Simulink antipattern detection by constructing Simulink an-
tipattern representations. Thereafter, they would like to configure and execute
the Simulink MCD tool [3, 18] for evaluating both their proposed process and
the results. In [5], with the goal of identifying patterns of interactions in the
run-time behavior of web applications and other interactive systems, the au-
thors present an approach for detecting near-miss interaction clones in reverse-
engineered UML sequence diagrams. They work on the level of XMI [56], the
standard interchange serialization for UML, for using the near-miss code clone
detector NICAD.

Based on analysis of practical scenarios, a formal definition of model clones
along with the specification of a clone detection algorithm for UML domain
models is given in [72]. Following the code-clone categorization [61, 43, 73], the
authors in [72] also propose a classification for model clones. The detection of
clones in UML models can become a difficult task due to the inconsistency that

46

can be created between different views of the same model. For example, most
of the popular UML development tools support a containment tree view of the
model elements along with other model diagram views. Removal of a model
element from a diagram view usually does not remove it from the actual model,
and thus inconsistencies can occur in a UML model [72].

Importance of Tool-Specific Analysis: In contrast to programs in tra-
ditional programming languages, which can be easily transferred from one tool
to another in the form of text files, using model data from one tool in another
can be a difficult task due to the tight coupling of models with the development
tool [72]. Therefore, the tool specific representation of the model should also be
taken into consideration [72].

5 Conclusion

According to some statistics, nearly one-third of all software projects are can-
celled, two-thirds of software projects suffer from cost overruns in excess of 200%
and more than 80% of all software projects are considered failures [12]. One of
the prominent reasons for the massive software failure rate is poor software de-
sign quality [54]. Following a set of software development guidelines can play an
effective role in achieving and maintaining good software quality. It is especially
important in the development of real-time embedded software systems where the
software complexity is extremely high. Although a good number of work has
been done on investigating the quality of different kinds of models including
the UML models, no prior work focuses on finding good and bad design choices
in UML-RT models. The UML-RT profile uses some terminology and features
which are different from the UML standards [65, 29] and these differences make
most of the proposed guidelines in the current state of art regarding the UML
standards inapplicable for UML-RT development. For addressing this research
issue, based on analyzing a set of UML-RT models from industry and academia,
this paper introduces a set of design conventions, patterns and antipatterns for
developing model-based real-time embedded software systems. For improving
the understandability and enhancing the clarification of our discussion, the most
of these guidelines are described with examples.

The next step of this research is the development of tool support for the
proposed guidelines. This tool support is motivated by the success of different
code-oriented analyzers [30, 75, 36] and would allow developers to detect the
presence of bad design choices automatically and refactor them accordingly.

Acknowledgment

We would like to thank Dr. Ron Smith from Royal Military College of Canada
for giving us access to a student repository of UML-RT models. We would like to
express our gratitude to Bran Selic from Malina Software Corp. for his valueable
feedback on our work. We would also like to thank our industrial research

47

partner Ericsson Inc. for giving us access to some of their models. In addition,
this work is supported in part by NSERC, as part of the NECSIS Automotive
Partnership with General Motors, IBM Canada and Malina Software Corp.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986.

[2] Bakr Al-Batran, Bernhard Schätz, and Benjamin Hummel. Semantic Clone
Detection for Model-based Development of Embedded Systems. In MOD-
ELS ’11, pages 258–272, 2011.

[3] M.H. Alalfi, J.R. Cordy, T.R. Dean, M. Stephan, and A. Stevenson. Models
are code too: Near-miss clone detection for Simulink models. In ICSM ’12,
pages 295–304, Sept 2012.

[4] S. W. Ambler. UML 2 State Machine Diagrams: An Agile Introduction.
http://www.agilemodeling.com/artifacts/stateMachineDiagram.

htm/. [Online; accessed 20-January-2016].

[5] Elizabeth P. Antony, Manar H. Alalfi, and James R. Cordy. An approach
to clone detection in behavioural models. In WCRE ’13, pages 472–476.
IEEE Computer Society, 2013.

[6] D. Arcelli, V. Cortellessa, and C. Trubiani. Antipattern-based model refac-
toring for software performance improvement. In (QoSA ’12), pages 33–42.
ACM, 2012.

[7] M. Balaban, A. Maraee, A. Sturm, and P. Jelnov. A pattern-based approach
for improving model quality. Software and Systems Modeling (SoSyM),
14(4):1527–1555, 2015.

[8] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. Beyond templates: A study
of clones in the STL and some general implications. In Proceedings of the
27th International Conference on Software Engineering, ICSE ’05, pages
451–459, New York, NY, USA, 2005. ACM.

[9] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone de-
tection using abstract syntax trees. In Proceedings of the International
Conference on Software Maintenance, ICSM ’98, pages 368–377, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[10] G. Bellekens. UML Best Practice: 5 rules for bet-
ter UML diagrams. http://bellekens.com/2012/02/21/

uml-best-practice-5-rules-for-better-uml-diagrams/. [Online;
accessed 20-January-2016].

48

[11] R. B’far. Mobile Computing Principles: Designing and Developing Mobile
Applications with UML and XML. Cambridge University Press, New York,
NY, USA, 2004.

[12] W. J. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
John Wiley & Sons, Inc., New York, NY, USA, 1998.

[13] J. R. Cordy. Comprehending reality - practical barriers to industrial adop-
tion of software maintenance automation. In Proceedings of the 11th IEEE
International Workshop on Program Comprehension, IWPC ’03, pages
196–205, Washington, DC, USA, 2003. IEEE Computer Society.

[14] James R. Cordy. The TXL source transformation language. Sci. Comput.
Program., 61(3):190–210, August 2006.

[15] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani.
Digging into uml models to remove performance antipatterns. In Proceed-
ings of the 2010 ICSE Workshop on Quantitative Stochastic Models in the
Verification and Design of Software Systems, QUOVADIS ’10, pages 9–16,
New York, NY, USA, 2010. ACM.

[16] Cunningham and Cunningham Inc. Global Variables Are Bad. http://c2.
com/cgi/wiki?GlobalVariablesAreBad. [Online; accessed 20-January-
2016].

[17] T.K. Das and J. Dingel. State machine antipatterns for UML-RT. In
ACM/IEEE 18th International Conference on Model Driven Engineering
Languages and Systems (MODELS’15), pages 54–63, 2015.

[18] T. R. Dean, J. Chen, and M. H. Alalfi. Clone detection in Matlab Stateflow
models. ECEASST, 63, 2014.

[19] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and B. Schaetz.
Model clone detection in practice. In Proceedings of the 4th International
Workshop on Software Clones, IWSC ’10, pages 57–64, New York, NY,
USA, 2010. ACM.

[20] Florian Deissenboeck, Benjamin Hummel, Elmar Jürgens, Bernhard
Schätz, Stefan Wagner, Jean-François Girard, and Stefan Teuchert. Clone
detection in automotive model-based development. In ICSE ’08, pages
603–612, 2008.

[21] B. P. Douglass. Doing hard time: developing real-time systems with UML,
objects, frameworks, and patterns. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 1999.

[22] Eclipse. Papyrus for Real Time (Papyrus-RT). https://projects.

eclipse.org/proposals/papyrus-real-time-papyrus-rt. [Online; ac-
cessed 20-January-2016].

49

[23] M. D. P. Emilio. Embedded Systems Design for High-Speed Data Acquisition
and Control. Springer Publishing Company, Incorporated, 2014.

[24] F. A. Fontana, E. Mariani, A. Mornioli, R. Sormani, and A. Tonello. An
experience report on using code smells detection tools. In Proceedings of the
2011 IEEE Fourth International Conference on Software Testing, Verifica-
tion and Validation Workshops, ICSTW ’11, pages 450–457, Washington,
DC, USA, 2011. IEEE Computer Society.

[25] International Organization for Standardization. ISO/IEC 25000:2005, Soft-
ware Engineering – Software product Quality Requirements and Evaluation
(SQuaRE) – Guide to SQuaRE. http://www.iso.org/iso/catalogue_

detail.htm?csnumber=35683. [Online; accessed 20-January-2016].

[26] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[27] R. France and B. Rumpe. Model-driven development of complex software:
A research roadmap. In Future of Software Engineering(FOSE ’07), pages
37–54, Washington, DC, USA, 2007. IEEE Computer Society.

[28] A. Gherbi and F. Khendek. UML profiles for real-time systems and their
applications. JOURNAL OF OBJECT TECHNOLOGY, 5:149–169, 2006.

[29] S. Gopinath. Real-Time UML to XMI Conversion. Master’s thesis, KTH
Computer Science and Communication, Stockholm, Sweden, 2006.

[30] GrammaTech. FDA Recommends Static Analysis for Medical De-
vices. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.194.293&rep=rep1&type=pdf, 2010. [Online; accessed 20-January-
2016].

[31] Z. Gu and K. G. Shin. Synthesis of real-time implementation from UML-
RT models. In 2nd RTAS Workshop on Model-Driven Embedded Systems
(MoDES 04), 2004.

[32] T. A. Henzinger and J. Sifakis. The embedded systems design challenge.
In Proceedings of the 14th international conference on Formal Methods
(FM’06), pages 1–15. Springer-Verlag Berlin, Heidelberg, 2006.

[33] IBM. Modeling Real-Time Applications in RSARTE. https:

//www.ibm.com/developerworks/community/wikis/home?lang=en#

!/wiki/W0c4a14ff363e_436c_9962_2254bb5cbc60/page/Modeling%

20Real-Time%20Applications%20in%20RSARTE. [Online; accessed
20-January-2016].

[34] IBM. Rational Rose Real Time (RT) Documentation: Capsule Instances
and Capsule Behavior. ftp://ftp.software.ibm.com/software/

rational/docs/v2003/win_solutions/rational_rosert/rosert_

java_ref_guide.pdf. [Online; accessed 20-January-2016].

50

[35] IBM. Rational Rose RealTime. ftp://ftp.software.ibm.com/

software/rational/docs/documentation/manuals/rosert.html. [On-
line; accessed 20-January-2016].

[36] R. P. Jetley, P. L. Jones, and P. Anderson. Static analysis of medical device
software using codesonar. In Proceedings of the 2008 Workshop on Static
Analysis, SAW ’08, pages 22–29, New York, NY, USA, 2008. ACM.

[37] J. H. Johnson. Identifying redundancy in source code using fingerprints. In
Proceedings of the 1993 Conference of the Centre for Advanced Studies on
Collaborative Research: Software Engineering - Volume 1, CASCON ’93,
pages 171–183. IBM Press, 1993.

[38] J. H. Johnson. Navigating the textual redundancy web in legacy source.
In Proceedings of the 1996 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’96, pages 16–. IBM Press, 1996.

[39] C. J. Kapser and M. W. Godfrey. ”Cloning considered harmful” consid-
ered harmful: Patterns of cloning in software. Empirical Softw. Engg.,
13(6):645–692, December 2008.

[40] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of
copy and paste programming practices in oopl. In Proceedings of the 2004
International Symposium on Empirical Software Engineering, ISESE ’04,
pages 83–92, Washington, DC, USA, 2004. IEEE Computer Society.

[41] J. Knoop, O. Rüthing, and B. Steffen. Partial dead code elimination.
SIGPLAN Not., 29(6):147–158, June 1994.

[42] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1st
edition, 1997.

[43] R. Koschke. Survey of research on software clones. In Rainer Koschke, Et-
tore Merlo, and Andrew Walenstein, editors, Duplication, Redundancy, and
Similarity in Software, number 06301 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2007. Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[44] M. Lanza, R. Marinescu, and S. Ducasse. Object-Oriented Metrics in Prac-
tice. Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2005.

[45] Nancy Leveson. Medical Devices: The Therac-25. http://sunnyday.mit.
edu/papers/therac.pdf. [Online; accessed 20-January-2016].

[46] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-paste
and related bugs in large-scale software code. IEEE Trans. Softw. Eng.,
32(3):176–192, March 2006.

51

[47] Sparx Systems Pty Ltd. UML 2 State Machine Diagram.
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_

statediagram.html/. [Online; accessed 20-January-2016].

[48] MathWorks Automotive Advisory Board (MAAB). Control Algorithm
Modeling Guidelines Using MATLAB Simulink and Stateflow Version
2.0. http://www.idsc.ethz.ch/Courses/embedded_control_systems/

Exercises/Maab_styleguide_v_2_0.pdf/, 2007. [Online; accessed 20-
January-2016].

[49] MathWorks. SIMULINK: Simulation and Model-Based Design. http://

www.mathworks.com/products/simulink/. [Online; accessed 20-January-
2016].

[50] MathWorks. Stateflow: Model and simulate decision logic using state ma-
chines and flow charts. http://www.mathworks.com/help/stateflow/.
[Online; accessed 20-January-2016].

[51] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic de-
tection of function clones in a software system using metrics. In Proceedings
of the 1996 International Conference on Software Maintenance, ICSM ’96,
pages 244–, Washington, DC, USA, 1996. IEEE Computer Society.

[52] Sun Microsystems. Code Conventions for the Java Programming Language.
http://www.oracle.com/technetwork/java/codeconvtoc-136057.

html, 1999. [Online; accessed 20-January-2016].

[53] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software
quality analysis by code clones in industrial legacy software. In Proceedings
of the 8th International Symposium on Software Metrics, METRICS ’02,
pages 87–94, Washington, DC, USA, 2002. IEEE Computer Society.

[54] E. E. Ogheneovo. Software dysfunction: Why do software fail? Journal of
Computer and Communications, 2:25–35, 2014.

[55] Object Management Group (OMG). How to Deliver Resilient, Secure,
Efficient, and Easily Changed IT Systems in Line with CISQ Recommen-
dations. http://www.omg.org/CISQ_compliant_IT_Systemsv.4-3.pdf.
[Online; accessed 20-January-2016].

[56] Object Management Group (OMG). XML Metadata Interchange (XMI).
http://www.omg.org/spec/XMI/. [Online; accessed 20-January-2016].

[57] J.F. Patenaude, E. Merlo, M. Dagenais, and B. Lague. Extending software
quality assessment techniques to java systems. In Proceedings of the 7th
International Workshop on Program Comprehension, pages 49–56, 1999.

[58] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N.
Nguyen. Complete and accurate clone detection in graph-based models. In
Proceedings of the 31st International Conference on Software Engineering,

52

ICSE ’09, pages 276–286, Washington, DC, USA, 2009. IEEE Computer
Society.

[59] Nam H. Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Complete and accurate clone detection in
graph-based models. In ICSE ’09, pages 276–286, 2009.

[60] Kepler Project. Software Development Guidelines.
https://kepler-project.org/developers/reference/

software-development-guidelines. [Online; accessed 20-January-
2016].

[61] C. K. Roy and J. R. Cordy. A survey on software clone detection research.
Technical report, Queen’s University, 2007.

[62] C.K. Roy and J.R. Cordy. Nicad: Accurate detection of near-miss inten-
tional clones using flexible pretty-printing and code normalization. In ICPC
’08, pages 172–181, 2008.

[63] Michael Safyan. Avoid Global Variables, Environ-
ment Variables, and Singletons. https://sites.

google.com/site/michaelsafyan/software-engineering/

avoid-global-variables-environment-variables-and-singletons.
[Online; accessed 20-January-2016].

[64] M. Samek. Practical UML Statecharts in C/C++, Second Edition: Event-
Driven Programming for Embedded Systems. Newnes Newton, MA, USA,
2008.

[65] B. Selic. Using UML for modeling complex real-time systems. In Pro-
ceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems (LCTES ’98), pages 250–260, London, UK,
1998. Springer-Verlag.

[66] B. Selic, G. Gullekson, J. McGee, and I. Engelberg. ROOM: an object-
oriented methodology for developing real-time systems. In Computer-Aided
Software Engineering, 1992. Proceedings., Fifth International Workshop,
pages 230–240, July 1992.

[67] Bran Selic. An architectural pattern for real-time control software. In
Pattern Languages of Program Design 2, pages 4–6. Addison-Wesley, 1996.

[68] C. U. Smith and L. G. Williams. More new software performance antipat-
terns: Even more ways to shoot yourself in the foot. In CMG Conference,
pages 717–725, 2011.

[69] Thunderstone Software. Variable Scope: Global vs. Local.
https://www.thunderstone.com/site/vortexman/variable_scope_

global_vs_local.html. [Online; accessed 20-January-2016].

53

[70] Matthew Stephan and James R Cordy. Identifying instances of model
design patterns and antipatterns using model clone detection. In MISE
’15, pages 48–53. IEEE, 2015.

[71] H. Störrle. Large scale modeling efforts: A survey on challenges and best
practices. In Proceedings of the 25th Conference on IASTED International
Multi-Conference: Software Engineering, SE’07, pages 382–389, Anaheim,
CA, USA, 2007. ACTA Press.

[72] H. Störrle. Structuring very large domain models: Experiences from indus-
trial mdsd projects. In Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, ECSA ’10, pages 49–54, New
York, NY, USA, 2010. ACM.

[73] R. Tiarks, R. Koschke, and R. Falke. An assessment of type-3 clones as
detected by state-of-the-art tools. In Source Code Analysis and Manipula-
tion, 2009. SCAM ’09. Ninth IEEE International Working Conference on,
pages 67–76, Sept 2009.

[74] C. Trubiani and A. Koziolek. Detection and solution of software perfor-
mance antipatterns in palladio architectural models. In (ICPE ’11), pages
19–30. ACM, 2011.

[75] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. Jdeodorant: Identifica-
tion and removal of type-checking bad smells. In Proceedings of the 2008
12th European Conference on Software Maintenance and Reengineering,
CSMR ’08, pages 329–331, Washington, DC, USA, 2008. IEEE Computer
Society.

[76] WEBster. Software Development Guidelines. http://www.

literateprogramming.com/sdg.pdf. [Online; accessed 20-January-
2016].

[77] Wikipedia. Anti-pattern. http://en.wikipedia.org/wiki/

Anti-pattern. [Online; accessed 20-January-2016].

[78] Wikipedia. Code smell. http://en.wikipedia.org/wiki/Code_smell.
[Online; accessed 20-January-2016].

[79] Wikipedia. Comment (computer programming). http://en.wikipedia.

org/wiki/Comment_(computer_programming). [Online; accessed 20-
January-2016].

[80] Wikipedia. Indent style. http://en.wikipedia.org/wiki/Indent_style.
[Online; accessed 20-January-2016].

[81] Wikipedia. Naming convention (programming). http://en.wikipedia.

org/wiki/Naming_convention_(programming). [Online; accessed 20-
January-2016].

54

[82] Wikipedia. Software design pattern. http://en.wikipedia.org/wiki/

Software_design_pattern. [Online; accessed 20-January-2016].

[83] Wikipedia. Software quality. http://en.wikipedia.org/wiki/Software_
quality. [Online; accessed 20-January-2016].

[84] S. Wong, S. Vassiliadis, S. Vassiliadis, and S. Cotofana. Embedded proces-
sors: Characteristics and trends. Technical report, in Proceedings of the
2001 ASCI Conference, 2004.

[85] W. Wulf and M. Shaw. Global variable considered harmful. SIGPLAN
Not., 8(2):28–34, February 1973.

[86] H. Xi. Dead code elimination through dependent types. In Proceedings
of the First International Workshop on Practical Aspects of Declarative
Languages, PADL ’99, pages 228–242, London, UK, UK, 1998. Springer-
Verlag.

55

