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ABSTRACT
This paper addresses the task of functional annotation
of genes from biomedical literature. We view this task
as a hierarchical text categorization problem with Gene
Ontology as a class hierarchy. We present a novel global
hierarchical learning approach that takes into account
the semantics of a class hierarchy. This algorithm with
AdaBoost as the underlying learning procedure signifi-
cantly outperforms the corresponding “flat” approach,
i.e. the approach that does not consider any hierarchi-
cal information. In addition, we propose a novel hierar-
chical evaluation measure that gives credit to partially
correct classification and discriminates errors by both
distance and depth in a class hierarchy.

1. INTRODUCTION
In many genomics studies one of the major steps is the

gene expression analysis using high-throughput DNA
microarrays. Traditionally, most computational research
on analyzing gene expression data has focused on work-
ing with microarray data alone, using statistical or data
mining tools. However, raw gene expression data are
very hard to analyze even for an experienced scientist.
On the other hand, there exists a wealth of information
pertaining to the function and behavior of genes, de-
scribed in papers and reports. This information could
potentially be useful in the analysis of gene expression,
if we had a way of combining it synergistically with
the knowledge acquired from the microarray data ex-
periments. Specifically, our research is aimed at pro-
viding molecular biologists with known functional in-
formation on genes used in the experiments in order to
make microarray results and their analysis more bio-
logically meaningful. At the same time, this functional
information can also be used to partially validate the
new findings.

Even though many genes for well-studied organisms,
such as Escherichia coli or Saccharomyces cerevisiae,
have been already annotated in specialized databases
(EcoCyc, SGD), information on many other genes cur-
rently can be found only in scientific publications. Pub-
lic databases are created and curated manually; thus,
they cannot keep up with an overwhelming number of

new discoveries published on a daily basis. Further-
more, these databases often use different vocabularies to
describe gene functionality, which raises an additional
challenge for integrating the results. Consequently, ge-
nomics databases are not always adequate to find the
requisite information. Therefore, we need to apply text
mining and categorization techniques to retrieve up-to-
date information from biomedical literature and trans-
late it into a standardized vocabulary to help life sci-
entists in their everyday activities. Moreover, the same
process can be used as a tool to assist in updating and
curating databases.

In this work, we view the functional annotation task
as a text categorization task where we classify biomed-
ical articles describing the functionality of a given gene
into one or several functional classes from Gene Ontol-
ogy (GO) [1]. Since GO is not just a flat set of cate-
gories, but a hierarchy by its nature, we must turn to the
hierarchical text categorization framework to realize the
goal of this research. An immediate observation is that
unlike the most used, “flat” text classification frame-
work, the area of hierarchical classification has received
little attention. We would like to fill in this gap and
bring the benefits of hierarchical text categorization to
genomics in general and gene function identification in
particular.

2. FUNCTIONAL ANNOTATION
USING TEXT CATEGORIZATION

We propose a system to classify genes/gene products
into Gene Ontology codes based on the classification of
documents from the Medline library that describe the
genes. The purpose of this task is to retrieve the known
functionality of a group of genes from the literature and
translate it into a controlled vocabulary. Our system re-
alizes a statistical approach to the problem, which does
not require immense effort from domain experts. For
training, we collect data making use of gene annota-
tions available from genomics databases, such as SGD,
MGD, etc. (for more details see [2]).

For the past few years, the functional annotation from
texts has been the focus of several studies. Raychaud-
huri et al. [4] proposed a straightforward technique of



applying standard machine learning algorithms to this
problem and showed promising results. Last year, the
BioCreative competition had a similar task (task 2)1,
where a number of NLP as well as machine learning
systems participated. However, none of the mentioned
works, except [6], addressed this problem as a hierar-
chical one. We believe that hierarchical techniques are
more appropriate for these settings. They can explore
the semantics of a class hierarchy improving the per-
formance of learning systems. At the same time, they
allow a trade off between classification precision and the
required level of details on gene functionality.

3. HIERARCHICAL TEXT
CATEGORIZATION

3.1 Hierarchical consistency
We begin the description of the hierarchical catego-

rization techniques employed to address the functional
annotation task with the introduction of a new notion of
hierarchical consistency. Hierarchical consistency takes
into account the semantics of a class hierarchy (such as
GO) and is intended to make the classification results
more comprehensible for end users. Since hierarchies
are mostly designed in the way that lower level cate-
gories are specialization of higher level categories, which
is represented by transitive relations, such as “is-a” and
“part-of”, we can assume that an instance belonging to
a category also belongs to all ancestor nodes of that
category. Therefore, we would like a classifier explic-
itly assign all the relevant labels, including the ancestor
labels, to a given instance. In this way, the assigned la-
bels would clearly indicate the position of an instance in
a category hierarchy. Thus, we expect any hierarchical
classification algorithm to produce labeling consistent
with a given class hierarchy.

Definition (Hierarchical consistency). A label
set Ci assigned to an instance di is called consistent
with a given hierarchy if Ci forms a connected “proper”
subgraph of the hierarchy graph rooted in the top node,
i.e. if ck ∈ Ci and cj ∈ Ancestors(ck), then cj ∈ Ci.

We assume that every instance belongs to the root of
a class hierarchy; therefore, from now on we will always
exclude the root node from any ancestor set since in-
cluding it does not provide any additional information
on the instance.

3.2 Hierarchical global learning algorithm
Hierarchical classification methods can be divided in

two types: local (or top-down level-based) and global (or
big-bang). A local approach builds separate classifiers
for each internal node of a hierarchy. A local classi-
fier usually proceeds in a top-down fashion first picking
1http://www.pdg.cnb.uam.es/BioLINK/
workshop BioCreative 04/handout/index.html

the most relevant categories of the top level and then
recursively making the choice among the low-level cate-
gories, children of the relevant top-level categories. This
method naturally produces consistent labeling, since we
classify an instance into a category only if we have al-
ready classified it into the parent category at the pre-
vious classification step. In a global approach only one
classifier is built to discriminate all categories in a hi-
erarchy simultaneously. It is similar to the “flat” ap-
proach except it somehow takes into account the re-
lationships between the categories in a hierarchy. In
many situations, one classifier produced by a global ap-
proach is easier to maintain and to interpret by end
users than a bunch of classifiers produced by a local
method. Moreover, a global approach is capable of
avoiding uninformed decisions on categories with a very
small number of training instances while a local method
is basically forced to make a decision at every level of
a hierarchy as far as leaf classes. Unlike the local ap-
proach, a global learning algorithm has to be specifically
designed to produce consistent classification.

We propose such a hierarchical global approach to
learn classifiers that produce consistent labeling on un-
seen instances. We use this approach in combination
with a state-of-the-art learning algorithm AdaBoost.MH
[5], a boosting method designed for multi-class multi-
label problems. The new hierarchical method is simple
and effective and can be applied to any categorization
task with a class hierarchy represented as a directed
acyclic graph (DAG). The main idea of the algorithm is
to transform an initial (possibly single-label) task into
a multi-label task by expanding the label set of each
training example with the corresponding ancestor la-
bels. This data modification forces a learning algorithm
to focus on high level categories by providing a large
number of training examples for those categories. The
correct classification of unseen instances into high level
categories is very important in hierarchical categoriza-
tion since high level categories define the most general
functional classes for genes.

Overall, the algorithm consists of three steps:
1. Transformation of training data making them

consistent with a given class hierarchy;
2. Application of a regular learning algorithm on a

multi-label dataset;
3. Re-labeling of inconsistently classified test in-

stances.
On the first step, we replace each example (di, Ci),

di ∈ D, Ci ⊆ C, with (di, Ĉi), where Ĉi = {⋃ck∈Ci

Ancestors(ck)}. Then, we apply a regular learning al-
gorithm, in our case AdaBoost.MH, on the modified
multi-label dataset. Since we train a classifier on the
consistent data, we expect that most test instances
would be labeled consistently as well. However, it is not
guaranteed. Some of the test instances can end up with
inconsistent labels. This happens if we assign some class



A to an instance, but do not assign one of its ancestor
classes. For such instances we need to do the third post-
processing step. At this step we re-label the instances
in a consistent manner by considering the confidence in
the predictions for class A and all its ancestor classes.
For example, if the average of these confidences is high
enough, then we would label the instance with class A
and all its ancestor classes; if it is not, we do not assign
class A to the instance.

3.3 Hierarchical evaluation measure
Most researchers evaluate hierarchical classification

systems based on standard “flat” measures: accuracy/
error and precision/recall. However, these measures are
not suitable for hierarchical categorization since they
do not differentiate among different kinds of misclas-
sification errors. A widely-used hierarchical measure
based on the notion of distance overcomes this prob-
lem. However, it has some drawbacks. First, it is not
easily extendable to DAG hierarchies (where multiple
paths between two categories can exist) and multi-label
tasks. Second, it does not change with depth. Mis-
classification into a sibling category of a top level node
and misclassification into a sibling of the node 10-level
deep are considered the same type of error (distance of
2). However, an error at the 10th level seems a lot less
harmful than an error at the top level.

Recently, a new measure of semantic similarity specif-
ically designed for Gene Ontology has been introduced
[3]. It takes into account the specificity of a GO term,
which is estimated through its probability of usage in
gene annotations. The similarity of two terms is calcu-
lated as the minimum of the probabilities of their com-
mon ancestors. Since many pairs of terms would share
the same ancestor nodes and, therefore, have the same
semantic similarity, this measure has little discrimina-
tive power to be used as an evaluation measure.

To express the desired properties of a hierarchical
evaluation measure (HM), we formulate the following
requirements:

1. The measure gives credit to partially correct clas-
sification, e.g. misclassification into node I when the
correct category is G (Figure 1) should be penalized
less than misclassification into node D since I is in the
same subgraph as G and D is not.

2. The measure punishes distant errors more heavily:
a) the measure gives higher evaluation for correctly

classifying one level down comparing to staying at the
parent node, e.g. classification into node E is better
than classification into its parent C since E is closer to
the correct category G ;

b) the measure gives lower evaluation for incorrectly
classifying one level down comparing to staying at the
parent node, e.g. classification into node F is worse
than classification into its parent C since F is farther
away from G.
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D E

H I KJ

F

G

Figure 1: A sample DAG class hierarchy. The solid ellipse G
represents the real category of an instance.

3. The measure punishes errors at higher levels of a
hierarchy more heavily, e.g. misclassification into node
I when the correct category is its sibling G is less se-
vere than misclassification into node C when the correct
category is its sibling A.

Seeing that previous measures do not satisfy all of the
requirements, we propose a new hierarchical evaluation
measure. The new measure is the pair precision and
recall with the following addition: each example belongs
not only to its class, but also to all ancestors of the class
in a hierarchical graph, except the root (we exclude the
root of the graph, since all examples belong to the root
by default). We call the new measures hP (hierarchical
precision) and hR (hierarchical recall).

Formally, in the multi-label settings, for any instance
(di, Ci) classified into subset C ′i we extend sets Ci and
C ′i with the corresponding ancestor labels: Ĉi =
{⋃ck∈Ci

Ancestors(ck)}, Ĉ ′i = {⋃ck∈C′i
Ancestors(ck)}.

Then, we calculate (micro-averaged) hP and hR as fol-
lows:

hP =
∑

i |Ĉi∩Ĉ′i|∑
i |Ĉ′i|

hR =
∑

i |Ĉi∩Ĉ′i|∑
i |Ĉi|

For example, suppose an instance is classified into
class F while it really belongs to class G (Figure 1). To
calculate our hierarchical measure, we extend the set
of real classes Ci = {G} with all ancestors of class G :
Ĉi = {B, C, E, G}. We also extend the set of predicted
classes C ′i = {F} with all ancestors of class F : Ĉ ′i =
{C, F}. So, class C is the only correctly assigned label
from the extended set: |Ĉi∩Ĉ ′i| = 1. There are |Ĉ ′i| = 2
assigned labels and |Ĉi| = 4 real classes. Therefore, we

get hP = |Ĉi∩Ĉ′i|
|Ĉ′i|

= 1
2 and hR = |Ĉi∩Ĉ′i|

|Ĉi| = 1
4 .

We also can combine the two values hP and hR into
one hF-measure:

hFβ =
(β2 + 1) · hP · hR

(β2 · hP + hR)
, β ∈ [0, +∞)

In our experiments we used β = 1, giving precision and
recall equal weights.

The new hierarchical measure satisfies all three re-
quirements for hierarchical evaluation measures listed
above. In addition, the measure is easy to compute; it
is based solely on a given hierarchy, so no parameter
tuning is required. Furthermore, it is formulated for



Table 1: Comparison of “flat”, hierarchical local, and hierarchi-
cal global AdaBoost. Numbers in bold are significantly better
with 99% confidence.

dataset depth out- boost. hF1 measure
degree iter. “flat” local global

medline P 12 5.41 500 15.06 59.27 59.31
medline F 10 10.29 500 8.78 43.36 38.17
medline C 8 6.45 500 44.18 72.07 73.35

a general case of multi-label classification with a DAG
class hierarchy.

4. RESULTS
We have composed 3 datasets for a task of predict-

ing gene functions from biomedical literature. These
datasets correspond to three aspects of Gene Ontol-
ogy: biological process (P), molecular function (F), and
cellular component (C). We used the Saccharomyces
Genome Database (SGD) to collect training instances
on yeast genes. All articles were pre-processed: stop
words were removed, remaining words were stemmed
and converted into binary attributes (a stem is present
or not). “medline P” dataset contains 3305 documents,
2793 attributes, and 1025 categories organized in a 12-
level hierarchy. “medline F” dataset contains 2468 doc-
uments, 2448 attributes, and 1078 categories organized
in a 10-level hierarchy. “medline C” dataset contains
2284 documents, 2957 attributes, and 331 categories
organized in a 8-level hierarchy. Experiments were run
on 10 random training/test splits (in proportion 2:1) for
each dataset.

We compare the performance of the new hierarchi-
cal global AdaBoost with the corresponding “flat” ap-
proach as well as the hierarchical local method (Ta-
ble 1). The “flat” algorithm, i.e. standard AdaBoost,
does not take into account any hierarchical informa-
tion. Evidently, both hierarchical approaches signifi-
cantly outperform standard AdaBoost. The differences
are more pronounced for larger hierarchies. On these
biological data, where the number of classes is very
large and the number of training instances per class
is very small, the “flat” algorithm suffers a lot produc-
ing very poor results. At the same time, the hierarchi-
cal methods benefit from assembling more training data
and therefore learning more accurate classifiers for high
level categories, which are favored by the hierarchical
evaluation measure.

Both hierarchical local and hierarchical global algo-
rithms show comparable performances. The global ap-
proach explores all the categories simultaneously pre-
dicting only labels with high confidence scores. The
local method, on the other hand, is forced to make clas-
sification decisions at each internal node of a hierarchy,
in general, pushing all instances deep down. On the
biological data, where instances can belong to inter-

mediate nodes, this means additional errors for the lo-
cal method. Increase in depth (d) of a hierarchy raises
exponentially the number of classes (∼ kd) and, as a
result, the difficulty of the classification task for the
global approach. Moreover, increase in out-degree (k)
only slightly (linearly) complicates the task for the local
method while adding a significant number of categories
(∼ kd−1) to the global method. This is reflected in
the loss of the global algorithm on the highly “bushy”
“medline F” data.

5. FUTURE WORK
In this paper, we present a novel approach to auto-

matic gene annotation from biomedical literature us-
ing hierarchical text categorization. This work will be
continued by conducting experiments on other species
(mice, human, etc.), by extending the training data
with similar articles from Medline, and by including
background knowledge, such as gene aliases, MeSH
terms, etc.

Another direction for future research is incorporat-
ing assigned GO codes into gene clustering. One of the
main challenges in the gene expression analysis is in-
cluding background knowledge to produce more mean-
ingful clusters of genes not only with similar expression
profiles, but also with common functionalities. We can
include the gene function information that we get at the
classification step as such background knowledge in the
clustering process.
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