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Two-Guard Art Gallery Problem

Junqgiang Zhou *

Abstract

We define and study the two-guard art gallery problem,
i.e. guarding a gallery so that each point is visible to
at least two guards. We prove that this problem i1s NP-
hard for vertex guards. We present a polynomial time
approximation algorithm that produces solutions within
O(log n) of optimum.

1 Introduction

More than three decades ago, Klee and Chvatal defined
the following problem: Given a polygon with n vertices,
determine the smallest number of gquards necessary to
cover it. This problem is known as the art gallery prob-
lem, and has become one of the central problems about
visibility in computational geometry. This problem has
a wide range of applications in the real world, such as
building security, motion capture, robot path planning,
to name a few. The two-guard art gallery problem is a
new variant of the traditional art gallery problem men-
tioned above, and we define it as follows:

Given a polygon with n vertices, determine the
smallest number of gquards necessary to cover
it such that any point in this polygon is seen
by at least two guards.

The two-guard art gallery problem is motivated by real
applications in motion capture experiments. Under cer-
tain situations, people use two cameras to locate some
moving object’s position in the guarding area (surveil-
lance region) as the intersection of rays from these cam-
eras. A practical limitation of this approach is that the
object’s position can not be determined when the rays
are collinear.

The outline of this paper is as follows. In section 2
we study the computational complexity of finding min-
imum vertex guard covers for the two-guard art gallery
problem. In section 3 we present a polynomial time ap-
proximation algorithm that produces solutions within
O(log n) of the optimum. In section 4 we discuss the
co-linearity issue.
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1.1 Previous Work

After Chvatal’s art gallery theorem was proposed in
1975 [3], researchers came up with many important re-
sults (please see O'Rouke’s book[11] and Shermer’s sum-
mary [14]). Several variants of the traditional art gallery
problem have been studied. Researchers investigated
different types of polygons (such as polygons with holes,
orthogonal polygons [7], [4], [9], [12], [13], histograms
[2], spiral polygons [10], etc), and also different types of
guards (e.g., point guards, vertex guards, edge guards,
moving guards, etc). The computational complexity of
the classic art gallery problem was studied in [8] where
it was shown to be NP-hard for vertex guards; the re-
sult was extended to point guards in [1]. Most variants
of the classic problem were proven to be NP-hard. An
approximation algorithm for finding a minimum vertex
guard cover was given in [5].

1.2 Preliminaries

In this paper, we study simple polygons without holes.
Guarding means covering the interior space. We present
results for only vertex guards, which means restricting
guards to be on vertices. Each vertex can have at most
one guard on it.

2 Computational Complexity

Since finding an optimal set of vertex guards for the tra-
ditional art gallery problem is known to be NP-hard [8],
it is natural to ask if this new variant is also NP-hard.
The answer is yes. However, the trivial approach of
proving NP-hardness by doubling vertices in the poly-
gon of Lee and Lin’s proof (split every possible vertex
guard to two distinct vertices such that they are ex-
tremely close and have same visibility) does not solve
the problem because it is hard to deal with concave ver-
tices. Check the visibility of vertex ¢ and ¢’ in Figure
1 as an example.

Theorem 1 Finding the minimum number of vertexr
guards such that any point of the polygon s covered by
at least two guards is NP-hard.

Proof. The proofis by polynomial time reduction from
3-SAT to the two-guard art gallery problem. Let a 3-
SAT instance have k clauses and n variables. We modify
the proof by Lee and Lin for the traditional art gallery
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Figure 1: Doubling vertices of literal pattern in Lee and
Lin’s proof

problem with vertex guards [8]. In this paper, we refer
to [8] for the complete construction of the proof, and
show only the modifications and differences which have
to be made.

We use the “fork-shaped” gadget shown in Figure 2
extensively in the proof. The function of this gadget
is to force a particular vertex to be selected as the lo-
cation of a guard. For example, in Figure 2, in order
to guard the two rectangular spikes in the “fork”  the
bottom point (suppose it is a vertex) must be chosen in
order to minimize the number of guards. The rectangu-
lar spikes can be tuned so that only one vertex in the
overall structure can cover both spikes. Then, one ad-
ditional vertex in the interior of each rectangular spike
will need to be chosen to make this fork shape two-guard
coverable. Therefore, for each fork-shaped structure, we
need a minimum of 3 guards.

Figure 2: Small “fork-shaped” gadget

We design the literal pattern and one 3-CNF clause
as in Figure 3(a) and (b) respectively. Given a fixed
vertex guard e, each literal pattern structure needs one
additional vertex to cover the ditch in the upper area.
As in Lee and Lin’s proof [8], there are only two fea-
sible vertices (a and b) which can be chosen as guard
locations. Selecting the inner vertex & corresponds to
an assignment of “False” to the literal while selection
of the outer vertex a corresponds to assigning “True”
to the literal. These two special vertices have visibili-
ties to some ”well-shaped” area in the variable pattern
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structures. There are 10 distinguished points in each
clause structure as marked in part (b) of Figure 3. A
minimum vertex guard set uses 7 of them to cover each
clause structure. The main body of the clause structur
must be guarded by one of 2, 4, 6 as well as 8(check the
lower right corner as an example).

e(fixed)

Figure 3: (a) literal pattern(b) one clause structure

The treatment of each variable and its negation is
similar to that in Lee and Lin’s proof.

If a variable occurs in [ clauses, we add 2{ + 1 “fork-
shaped” gadgets in its corresponding variable pattern
structure as in Figure 4, in which [ =1. Spike p and
spike ¢ are visible to two distinguished vertices in one
literal pattern respectively.

Figure 4: One modified variable pattern

Figure 5 shows that each variable pattern structure
has 21 + 1 “fork-shaped” gadgets in it (when k£ = 3 and
[ =3).

The overall structure is shown in Figure 6, for the
corresponding 3-SAT formula (w1 + vz + usz)(ug + w2 +
ug)(uy + U2 + uz).

The whole polygon has 28k + 5n + 2 distinguished
points so that a minimum vertex guard set uses 25k +
4n 4+ 2 of them as guard locations. It is a minimum
vertex guard set if and only if the corresponding 3-CNF
formula is satisfiable; check Figure 6 for an example. O
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Figure 6: Modified structure for reduction from 3-SAT
to two-guard art gallery problem. The corresponding 3-
SAT formulais (ug +uz+us)(u1 + 2+ us)(ug +uz + uz)

3 Approximation Algorithm

Since finding an optimum solution for the two-guard
art gallery problem is NP-hard, we turn our attention
to finding a polynomial-time approximation algorithm
for the problem. Our approach is similar to Ghosh’s
approximation algorithm [5] for minimum vertex guard
for the traditional art gallery problem. We reduce the
two-guard problem to a modified minimum set cover
problem, which is then solved by a greedy algorithm

[6].

Lemma 2 Any simple polygon can be partitioned into
conver parts in polynomial time such that each part is

completely visible or completely invisible to each verter.

Proof. Given a polygon with n vertices, the most
straightforward method to generate such a partition is
to draw lines through any pair of vertices of the polygon.
The total number of such lines is O(n?). Each line can
intersect at most all other lines. Therefore, it creates
O(n*) convex parts. Since we use lines to partition the
interior of polygon, the resulting parts must be convex.
It can also be easily proven by contradiction that each
part is completely visible or invisible to each vertex. [0

Lemma 3 The problem of finding a minimum vertex
guard cover for the two-guard art gallery problem can
be reduced to the modified minimum set cover problem
wmn polynomaial time.

Proof. Each part of the partition from Lemma 2 is an
element. Each tuple (v;,v;)is a subset. The elements
in each such subset are those convex parts completely
visible to both vertices (v;, vj). Totally, there are O(n?)
such subsets (tuples). The subsets can be built in poly-
nomial time. The original problem now is reduced to the
problem of finding the set of subsets with minimum car-
dinality of distinct vertices such that the selected sub-
sets contain all elements. d

The approximation algorithm to be presented in this
paper is based on Lemma 2 and Lemma 3. The descrip-
tion of the algorithm is as follows.

Step I Partition the whole polygon P into many con-
vex parts {p1, p2, p3...ps } (by the method mentioned
in the proof of Lemma 2).

Step II For each convex part p;, which is completely
visible or invisible to each vertex, record the list of
visible vertices.

Step III Make a set of tuples {T},T5,...T,,} of ver-
tices. In each tuple (v;, v;), attach a list of all parts
{p1,p2,...px} such that both v;, and v; can cover
them. The total number of tuples is O(n?).

Step IV Apply the modified greedy set cover algo-
rithm. [6]

a) Select the tuple, which can cover the largest
number of convex parts.

b) Select each tuple with no new vertex. Then,
select the tuple, which can cover the largest
number of uncovered convex parts. The selec-
tion here depends on the cardinality of new
vertices in the tuples: if the tuple contains
only one new vertex, then its covering num-
ber will be multiplied by two. Otherwise, we
keep the same covering number.
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¢) Run step b recursively until no more uncovered
convex parts are left.

Step V Extract distinct vertices from selected tuples.
This is the set of vertex guards in the solution.

Theorem 4 There exists a polynomial approrimation
algorithm which can solve the minimum verter two-
guard art gallery problem with approzimation bound of

O(log n)

Proof. The algorithm we present contains four major
steps: partioning the polygon, reducing to a modified
minimum set cover problem, running a greedy algorithm
for the modified minimum set cover problem, and ex-
tracting a set of vertices (as guards). Since the proof for
the polynomial running time in each step is not compli-
cated, we leave out the details.

It is known that the greedy set cover algorithm can
approximate the minimum set cover problem with an
approximation ratio which is logarithmic in the num-
ber of elements of the minimum set cover instance [6].
By using the convex parts from the partition as ele-
ments, and tuples as subsets, we can modify the proof
to show that the approximation ratio is still logarith-
mic for our algorithm, because we have O(n*) number
of elements in the instance, which is polynomial. There-
fore, a polynomial time approximation algorithm with
approximation ratio bound of O(log n) exists. O

4 Collinear Problem

In real applications, we may encounter the collinear
problem, which is defined as the follows: Two distinct
guards cannot locate the object’s position if the object is
exactly on the line which goes through these two guards.
Figure 7 shows a situation in which the collinear prob-
lem arises; both guards can “see” the object, however,
they cannot determine its position by angles because
both rays will be collinear.

Figure 7: The object is on the line through two guards

However, the approximation algorithm can be modi-
fied slightly to deal with this limitation as follows: If a
convex part is visible to a tuple (v;, v;), but v;, v; have
collinear problem with one of its edge, delete this convex
part from the list of the tuple (v;, v;).
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5 Conclusion

In this paper, we showed that finding a minimum set of
vertex guards for a simple polygon such that every point
is seen by at least two guards is NP-hard. We presented
a polynomial time approximation algorithm with ratio
bound O(log n). The algorithm reduces this problem to
a minimum set cover problem, and then solves it by a
greedy approach. We also extended the approximation
algorithm to handle situations where coverage by guards
that are collinear with the object is not allowed.
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