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On computing shortest external watchman routes for convex polygons

Rafa Absar∗ and Sue Whitesides†

Abstract

We study the relationship between the interior angles of
a convex polygon and the lengths of external watchman
routes.

1 Introduction

The external watchman route problem is to externally
inspect a polygon by finding the shortest closed route
from which each point on the boundary of the polygon
is visible from at least one point on the route. By a
closed route, we mean that the watchman returns to
the starting point, so that the route can be repeated
indefinitely.

In [5] Ntafos and Gewali give a linear-time algorithm
for the external watchman route problem for convex
polygons. In that case they show that a shortest exter-
nal watchman route W for a convex polygon P has one
of two types: i) W follows the boundary of P to make a
convex hull route, or ii) W is a two-leg route consisting
of three parts Wm, which follows the boundary of P ,
and two legs W1 and W2, which join Wm perpendicu-
larly to the extensions of two adjacent edges of P . See
Fig 1.

The algorithm of [5] computes the length of the 2-leg
route at each vertex and compares it with the length
of the convex hull route. Here, motivated primarily by
curiosity, we ask 1) whether the best 2-leg route occurs
at the smallest internal angle (as is true for triangles),
and 2) whether this is so when the convex hull route is
not optimal. Our main result is a no answer to both
conjectures 1 and 2, and a yes answer to a special case.
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Figure 1: Shortest two-leg route for polygon P

2 Related Work

Guarding problems, especially for the interior of poly-
gons, are often called “art gallery” problems and have an
extensive literature [6]. The external guarding problem
using mobile guards was mainly addressed in [5], where
linear-time algorithms for finding the shortest external
watchman route without a specified starting point were
provided for convex, star-shaped, monotone and spiral
polygons. The algorithm given for simple polygons has
the same computational complexity as that for the in-
ternal watchman route problem, which is proved in [5]
by converting the external problem to a set of internal
problems. For the shortest watchman route on sim-
ple polygons with n vertices, where a starting point is
specified, the algorithm with the lowest running time is
O(n3logn) [2].

Gewali and Stojmenovic [3] studied the computation
of shortest external watchman routes using parallel al-
gorithms. In [4] the same authors studied the problem
of finding the shortest external watchman route for a
pair of convex polygons, having a total of n vertices,
and they gave an O(n2) time solution.

The problem of external watchman routes on convex
and simple polygons is revisited in more detail in the
thesis of Absar [1].
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3 Routes on convex quadrilaterals

Clearly conjectures 1 and 2 are true for triangles. Next
we consider convex quadrilaterals, which are not only
the natural next case, but also the shape of many con-
ventional structures.

Theorem 1 Conjectures 1 and 2 hold for parallelo-
grams.

Proof. Consider a parallelogram with two acute inte-
rior angles. As can be seen in Figure 2, the shortest
2-leg routes Wa and Wc for the wedges with angles
greater than 90◦ have path length equal to (ad + ab)
(or (bc + cd)). The routes Wd and Wb for the wedges
with acute angles have path length equal to (dx + dy),
where dx is perpendicular to ab and dy is perpendicular
to bc. It can be seen that (dx + dy) < (ad + ab), since
dx < ad (ad is the hypotenuse of !adx) and dy < ab
(ab = dc from the rectangle, and dc is the hypotenuse
of !cdy). Thus in the case of parallelograms, smaller
angle wedges provide shorter routes. !
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Figure 2: A 2-leg external watchman route xdy for a
parallelogram Q

Next we give a method for constructing counterex-
amples to 1) and 2) by looking at convex quadrilaterals
with two equal acute angles placed at opposite vertices.

We take a wedge located at a point P and fix the in-
terior angle at θ. We place a point R somewhere within
this wedge, so that the line PR divides the angle θ into
θ1 and θ2 as shown in Figure 3(a). Now we place a
wedge of the same angle θ on point R. If the wedge is
placed in such away that ∠SRP = ∠RPQ = θ1 and
∠QRP = ∠SPR = θ2, we get a parallelogram (shown
in Figure 3(b) ). However if we keep the wedge at P
fixed, together with angles θ1 and θ2, by keeping point
R fixed, and we only rotate the wedge R about line PR,
we can create several convex quadrilaterals with acute
angles θ opposite each other. The wedge R can be ro-
tated anti-clockwise at angles within 0 ≤ φ < θ2 and
can be rotated clockwise at angles within −θ1 < φ ≤ 0,
where φ is the amount by which the wedge is rotated,
as can be seen in Figure 3(c).

(a) Wedge P

(b) Wedge P and R

(c) Rotating wedge R about PR

Figure 3: Generating convex quadrilaterals with two
equal opposite acute angles
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(a)

(b)

Figure 4: Illustration of rotating wedge R by angle φ

Figure 4(a) shows an example of the transformation
of the quadrilateral PQRS to the new quadrilateral
PQ1RS1 when the wedge R is rotated clockwise by an
angle φ. The corresponding 2-leg route for each wedge
is also illustrated. The 2-leg route WR for wedge R of
quadrilateral PQRS is (PM +PN), and WR for quadri-
lateral PQ1RS1 is (PM1 + PN1). The 2-leg route WP

for wedge P remains (RX +RY ) even through rotation,
as can be seen from the figure. Figure 4(b) similarly
shows the formation of the quadrilateral PQ1RS1 by
rotating the wedge R anti-clockwise by angle φ, and its
corresponding 2-leg route.

By straightforward analysis, the difference f(φ) be-
tween the path lengths of wedges P and R is:

f(φ) = x cosφ + y sinφ − x

where x = (sin θ1 + sin θ2) and y = (cos θ1 − cos θ2).
There should be a factor PR in the definition of f(φ)
but we leave it out for simplification, since it does not
affect the result.

The value of φ is restricted between −θ1 < φ < θ2

so that the sides do not pass the diagonals during rota-
tion. Also, if we do not want the sides to go beyond the
perpendicular legs RX and RY of wedge P , the value
of φ has to also be restricted within −90 + (θ1 + θ2) <
φ < 90 − (θ1 + θ2).

Using different data sets, the graph of this function
was plotted to see the form of the function within the
restricted values of φ. A generalized form of the function
f(φ) is shown in Fig 5. As can be seen, the function in
this form gives a relative maximum. This can be easily
proved using the second derivative test.

Figure 5: Form of the function f(φ)
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Figure 6: Counterexample to Conjecture 1

As Fig 5 shows, when φ lies between φ2 and φ3, then
the two-leg route for wedge P is shorter than that for
wedge R. Otherwise, when φ lies between φ1 and φ2 in
Figure 5, or between φ3 and φ4, then the two-leg route
for wedge R is shorter than that for wedge P . Exactly
when φ is equal to φ2 or φ3 are the two-leg route lengths
for wedges P and R equal.

Now looking at Figure 5 we can see that at certain
points, such as the relative maximum point of f(φ),
the difference between the route lengths is locally max-
imum. We used this information to create a counterex-
ample for conjecture 1.

Taking a data set where the wedges are of angle θ =
60◦, with θ1 = 45◦ and θ2 = 15◦, we found that the
relative maximum occurs at φ = −15◦. Thus at φ =
−15◦, the quadrilateral PQRS is such that routes for
wedges P and R are significantly unequal even though
∠P = ∠R. Now we reduce the angle of wedge R by
a small amount, e.g. by reducing (θ1 − φ) by 2◦, so
that the angle at wedge R is now 58◦ instead of 60◦.
The route for wedge P remains the same length, but
the route for wedge R consequently reduces in length.

For this particular example, shown in Figure 6, the
values found for a quadrilateral with a diagonal PR =
8.4 cm are as follows. When ∠P = ∠R, WP = RX +
RY = 8.114 and WR = PM1 + PN1 = 8.4. However,
when ∠P is 2 degrees greater than ∠R, WP = RX +
RY = 8.114 and WR = PM ′ + PN1 = 8.144. Thus
wedge P , whose angle is larger than that of wedge R
gives the shorter route.

Hence the conjectures are false. (For conjecture 2,
note that the convex-hull route is clearly longer than
the two 2-leg routes.)

4 Conclusion and an open problem

We investigated other conjectures and found counterex-
amples for them as well. However, the conjecture be-
low remains open. Neither theory nor our experimental
work (see [1]) has produced a counterexample.

Conjecture: All convex obtuse polygons (i.e. con-
vex and with no acute interior angles) have convex-hull
routes as their shortest external watchman routes.

References

[1] R. Absar. Inspection of the Exterior of Polygons under
Infinite and Limited Visibility Models. Master’s thesis,
School of Computer Science, McGill University, Mon-
treal, Canada, 2006.

[2] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Tour-
ing a sequence of polygons. In Proc. of the 35th Annual

ACM Symposium on Theory of Computing, pages 473 –
482, 2003.

[3] L. Gewali and I. Stojmenovic. Computing external
watchman routes on PRAM, BSR, and interconnection
models of parallel computation. Parallel Processing Let-
ters, 4(1):83–93, 1994.

[4] L. Gewali and I. Stojmenovic. Watchman routes in the
presence of a pair of convex polygons. In 7th Canadian

Conf. on Computational Geometry (CCCG), pages 127–
132, 1995.

[5] S. Ntafos and L. Gewali. External watchman routes. The

Visual Computer, 10:474–483, 1994.

[6] J. O. Rourke. Art Gallery Theorems and Algorithms.
Oxford University Press, 1987.

62                                       




