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Open Problems from CCCG 2005

Erik D. Demaine*

The following is a list of the problems presented on
August 10, 2005 at the open-problem session of the 17th
Canadian Conference on Computational Geometry held
in Windsor, Ontario, Canada.

Point Location in an Arrangement
Pat Morin

Carleton University
morin@scs.carleton.ca

Consider the following special case of planar point
location: preprocess k sets of lines, where each set
consists of parallel lines, to support queries of the
form “given a point p, what is the line immediately
above or below p?” What is the fastest possible
query time as a function of k and the total number
n of lines? In other words, the n given lines have
k distinct orientations. See Figure 1. In this prob-
lem, the data structure must use O(npolylogn)
space, preventing us from simply constructing the
arrangement of ©(n?) cells and preprocessing with
standard point location. An obvious O(klogn)
algorithm—search for p in each set of parallel lines
separately, and then combine the answers—is so far
the best solution to this problem.

Figure 1: Preprocess these n = 12 lines with k = 3
orientations to support querying for the line above or below
a given point.

The problem remains interesting even for small
values of k. For k = 1, a simple binary search solves
the problem in lgn + O(1) probes, and this bound
matches the information-theoretic lower bound:
the arrangement has n cells. For k = 2, the obvious
algorithm solves the problem in 21g n+O(1) probes,
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and again this bound matches the information-
theoretic lower bound because the arrangement has
O(n?) cells. But once k = 3, the two bounds di-
verge: the obvious algorithm solves the problem in
31gn+0(1) probes, while the information-theoretic
lower bound remains 21gn + O(1) because the ar-
rangement has ©(n?) cells. Is the right bound
21gn 4+ O(1), 3lgn + O(1), or something in be-
tween?

Update: At the conference, Stefan Langerman
obtained a data structure that uses O(r? + (n/r)?)
space and with O(logr+klog(n/r)) query time, for
any parameter r, using (1/r)-cuttings. In particu-
lar, choosing r = n'~*/* for any constant s gives
a data structure of size O(n?~2%/F) that answers
queries in O(k + slogn) = O(k + logn) time.

Monotone Chain Visibility
Boaz Ben-Moshe
Ben-Gurion University
benmoshe@cs.bgu.ac.il

Consider an z-monotone chain in the plane, i.e., a
planar polygonal chain that is met by any vertical
line in at most one point. Imagine the chain as the
ground, with the region below the chain the earth
(an obstacle), and the region above the air (free
space). Call two vertices of the chain wvisible if the
line segment connecting them does not go below the
chain (what might be called “top-side” visibility).
A guard set is a set of chain vertices (guards) such
that every point along the chain vertex is visible to
at least one guard. Equivalently, a guard set is a
dominating set in the visibility graph. See Figure 2.

Figure 2: Guarding an z-monotone terrain with two
guards.

What is the complexity of computing the guard
set of minimum size for a given x-monotone chain in
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the plane? According to the poser, “most tenured
professors think the problem is NP-hard.”

This problem in fact goes back to 1995, when
Chen et al. [CEU96] claimed an NP-hardness re-
sult, but “the proof, whose details were omit-
ted, was never completed successfully” [Kin06].
The best approximation algorithm so far is a 4-
approximation by King [Kin06]; see that paper for
references to earlier approximation algorithms.
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Unique Ham-Sandwich Cut
Stefan Langerman

Université Libre de Bruxelles
stefan.langerman@ulb.ac.be

How quickly can you determine whether a given set
of red and blue points in the plane have a unique
ham-sandwich cut? A ham-sandwich cut—a line
that divides each color class in half—always exists
and one can be found in O(n) time [LMS94]. See
Figure 3. A point set has a unique ham-sandwich
cut if all ham-sandwich cuts are combinatorially
equivalent, i.e., induce the same partition of the
point set. In particular, if the numbers of red and
blue points are both odd, the ham-sandwich cut
must pass through a red point and a blue point,
so this notion of uniqueness means that there is
exactly one ham-sandwich cut.

Chien and Steiger [CS95] proved a lower bound
of Q(nlgn) on any algorithm in the linear decision
tree model that determines whether a point set has
a unique ham-sandwich cut, by a reduction from el-
ement uniqueness. So testing uniqueness is strictly
harder than finding a ham-sandwich cut. But how
much harder?

One approach to solving the problem is comput-
ing the intersection of the red median level and the
blue median level in the dual line arrangement. We
can walk those median levels and find intersections
in time proportional to the total size of those me-
dian levels. The current best upper bound on this
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Figure 3: A ham-sandwich cut.

size is O(n*/3) [Dey98], while Erd6s conjectured an
upper bound O(n'*¢)). Can you do better than
this approach? Or are there lower bounds in some
model?

The general weighted version of this prob-
lem, where points can have positive and negative
weights, is essentially solved in [BS04]: determining
uniqueness is 3SUM-hard, so likely requires Q(n?)
time in any algebraic computation tree, and there
is a simple O(n?)-time algorithm. In contrast, a
ham-sandwich cut can be found in O(nlgn) time
in this scenario.
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Rigid Components of Planar Graph
Ileana Streinu

Smith College
streinu@cs.smith.edu

How quickly can you decompose a planar graph into
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its generically rigid components? A graph is generi-
cally rigid in the plane if almost all embeddings into
the plane are rigid, i.e., cannot flex while preserving
the edge lengths. Equivalently, Laman’s character-
ization says that an n-vertex graph is generically
rigid in the plane precisely if it has 2n — 3 edges on
which every induced subgraph of k vertices has at
most 2k — 3 edges. The problem asks to decompose
a graph into maximal subgraphs each of which is
generically rigid in the plane. See Figure 4.

Figure 4: Decomposing a graph into generically rigid
components. (Each uncolored edge also belongs to its
own component.)

This problem can be solved on general graphs
in O(n?) time [LSTO5] and on pseudotriangulation
mechanisms in O(n) time [SS05]. What about pla-
nar graphs? Can we at least test rigidity of planar
graphs in subquadratic time? Both problems are
posed explicitly in [SS05].
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Invertible Turbulence Function for Ray Tracing
Robert Dawson

St. Mary’s University
rdawson@huskyl.stmarys.ca

This problem arose some years ago in the con-
text of shader functions for ray tracing and sim-
ilar applications. To make a texture look natu-
ral, it is often perturbed with a 3D “vector fractal
noise function”: the texture at Z is taken to be
t(Z + kf(Z)) where t is the basic shader function
and k the amount of perturbation. For instance,
an unperturbed wood grain texture consists of per-
fect concentric cylinders of light and dark brown.

A slighty perturbed version will have slight wob-
bles in the grain; a heavily perturbed version will
be “wild” like burl walnut. The exact nature of the
vector noise is not terribly important.

However, this method of randomizing has lim-
itations. One can ask “what gets moved to the
point I'm looking at?” but not “where does this
feature get moved to?” This makes certain desir-
able types of shader difficult; I found that this was
a problems while attempting to create a “random
rectangular masonry” shader and, on another oc-
casion, a “snowflake shader” that would give the
effect of a particle cloud without having to create
and store individual particles (an important con-
sideration on standard-issue hardware). A useful
mathematical tool would be an invertible turbu-
lence function such that # — & + f(Z) is easily in-
verted. The exact nature of the function is still not
too crucual, although it should be smooth and con-
tinuous. Piecewise-quadratic functions are proba-
bly a good place to start looking.

Omnidirectional Visibility Representations
Therese Biedl

University of Waterloo

biedl@waterloo.ca

This problem is motivated by (one-directional) visi-
bility representations of triangulated planar graphs,
in which each vertex is represented by a horizontal
line segment, and edges are represented by verti-
cal visibility between line segments. See Figure 5
(left). Any triangulated planar graph can be rep-
resented in this way—see, e.g., [LLS03]—and every
graph represented in this way must be planar and
triangulated (treating distinct visibilities between
two segments as multiple edges). (Similar prob-
lems have also been considered in 3D [FM99] with
one- or two-directional orthogonal visibility.)

- ~
~

- A T
' AR ~
. A& --A--A
| N/ \//
| \ \,\ A /
| \ /] N7 \ /
| \ //\\ /
. &N

Figure 5: Representing K4 with vertical visibility among
horizontal segments, and representing K5 with omnidirec-
tional visibility among polygons.

What if the shapes are simple polygons instead of
line segments, and the visiblity is omnidirectional
instead of just vertical? What graphs can be so

77



18th Canadian Conference on Computational Geometry, 2006

represented? Now the graph need not be planar;
for example, we can represent any complete graph
by n points (or tiny triangles) in general position.
See Figure 5 (right). With very general, noncon-
vex shapes, it is possible to represent an arbitrary
triangulated planar graph. The question is to de-
termine the simplest possible shapes for which ei-
ther triangulated planar graphs or general graphs
can be represented. For example, what graphs can
be represented by rectangles? By convex shapes?
Also, for each of these scenarios, it is interesting
to determine the grid of smallest resolution that
enables representation.

Update: At the conference, several participants
focused on visibility representations of planar
graphs by unit disks (instead of polygons). This
case seems interesting and nontrivial, but it is not
yet resolved.
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eliminates more complex foldings possible for
some convex polygons. Smooth shapes only admit
perimeter-halving foldings.

Figure 6: The empirally largest-volume convex polyhe-
dron foldable from a square.
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Ribbon Curves
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Volume-Maximizing Convex Shape
Joseph O’Rourke

Smith College
orourke@cs.smith.edu

TOPP
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This problem is a rephrasing and generalization
of a question posed by Joseph Malkevitch in
2002. Let C be a convex piece of paper; it may
be smooth, or a polygon. A perimeter-halving
folding is a folding of C obtained by identifying
two points z and y on the boundary of C that
halve the perimeter, and then folding C' by “glu-
ing” xy to yx. This gluing always produces a
unique convex shape in 3D, a polyhedron if C is
a convex polygon [DOO06]. What unit-area shape
C achieves the maximum volume possible via a
perimeter-halving folding? The answer is only
known empirically for the single case of C being
a square [ADOO03|, which achieves about 60% of
the volume of a sphere of unit surface area. See
Figure 6. The restriction to perimeter halving
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I first posed a version of this problem at the 14th
Fall Workshop on Computational Geometry held at
MIT, Nov. 2004. Characterize the C? space curves
that are ribbon curves: curves that are the edge of
some uncreased paper “ribbon,” a rectangle. The
motivation here is to understand D-forms, the sub-
ject of a problem posed earlier [DOO03]. Stephanie
Jakus and I showed that it is easy to find C! curves
that are not ribbon curves. We also constructed a
closed C? curve that is not a ribbon curve, and be-
lieve that this example leads to an open C? curve
that is not a ribbon curve.

Update: Robert Dawson immediately came up
with an open C'*° curve that is not a ribbon curve.
So the answer to the posed question cannot be, “all
sufficiently smooth curves.”

The poser of the problem conjectures that the fol-
lowing constitute necessary conditions (a key part
of the reasoning was in collaboration with Satyan
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Devadoss). Parametrize the curve C' by ¢, and let
B(t) be the (unit) binormal vector to the curve.
B(t) is the cross product of the tangent and the
normal vectors at C'(t). Then C(¢) is a ribbon curve
only if (a) B(t) is continuous in ¢, and (b) for every
interval of ¢ over which |B(t)] = 0 (e.g., a straight
section of C(t)), the binormals just before and just
after the interval are parallel. It seems unlikely that
these conditions are sufficient.
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Illuminating with True Lightbulbs
Joseph O’Rourke

Smith College
orourke@cs.smith.edu

In physics, a point light source illuminates ac-
cording to an inverse-square law, so that a unit-
irradiance light at x illuminates a point at a dis-
tance r from z with intensity 1/72. Also, if multi-
ple point light sources illuminate a common point,
the intensity sums. For a polygon of n vertices and
of diameter d, what is the largest number of lights
ever needed to illuminate all points to intensity I7
To be specific, set I = 1; in this case, points within
a radius of 1 around a bulb recieve radiance > 1
from that bulb.

As an example, a disk of diameter d = 2 needs
just one bulb at it center, but a disk of d = 22 ~
2.83 needs three bulbs; see Figure 7. As Sandor
Fekete observed at the conference, in fact, these
three bulbs suffice to illuminate a larger disk as
well.

Figure 7: Three bulbs illuminate a disk of diameter 24/2.

Update: It was pointed out that these types
of problems were posed two months earlier
in [EFKMO05], which addresses the stage-
illumination version. Robert Dawson showed
that any density of lightbulbs in 3D illuminates
all points with divergent intensity (a version of
Olber’s Paradox), but in 2D this does not hold.
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Rolling a Die

Joseph O’Rourke
Smith College
orourke@cs.smith.edu

This problem is inspired by van Deventer’s “Rolling
block mazes” [vD04]. Label the faces of a unit cube
with numbers 1-6 as in a die. (There are actually
two standard labelings, with all opposite pairs of
face labels summing to 7; pick one.) Place the cube
to sit on an integer lattice grid, with one corner at
the origin and sides aligned with the axes. Label
some finite subset S of n lattice squares with num-
bers in {1,2,3,4,5,6}. The problem is to roll the
cube over its edges so that, for each square s € S
labeled A, the cube lands on s precisely once, and
when it does so, the top face of the cube has label A.
See Figure 8.

6
= 5|5

1|4

Figure 8: A dice-rolling puzzle with specified start con-
figuration. Although you can roll the die anywhere in the
plane, it suffices to stay in the finite board shown. One
solution: ESENEESSWWWWN.

What is the computational complexity of solving
an instance of this problem? I conjectured that it
is NP-complete.

Update: At the conference, Erik Demaine and
Sandor Fekete independently developed arguments
showing that the problem as posed is NP-complete,
by reduction from Hamiltonian paths in grid
graphs. Many other variants of the problem were
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posed, and are under active investigation. For ex-
ample, Martin Demaine designed a CCCG puzzle
with multiple rolling cubes; see Figure 9.

C — O
C — O
C — O
G mi

Figure 9: Roll the cubes from the left configuration to
the right configuration, at all times remaining in the 2 x 4
board. Each cube has a label on exactly one face.
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Polyhedral 3SUM

Jeff Erickson

University of Illinois Urbana Champaign
jeffe@cs.uiuc.edu

Consider the following min-convolution problem:
given two arrays A[0..n] and B[0..n|, compute
min,; (Aff] + Blk —1]) for all k = 0,1,...,2n. Alter-
natively, we can think of this problem as computing
the min of every antidiagonal of the X + Y matrix
Cli, j] = Ali]+ BJj]. It is easy to solve this problem
in O(n?) time. Can it be solved in o(n?) time? Is
there a lower bound in some model? This problem
came out of Godfried’s Music Information Retrieval
Workshop in Jan.—Feb. 2005, but it turns out to be
much older; see [BCDT06].

I do not believe that the min-convolution prob-
lem is 3SUM-hard. But in the algebraic deci-
sion tree model, both this problem and 3SUM are
harder than the following polyhedral 3SUM prob-
lem: given three arrays A[0..n], B[0..n]|, and
C10..2n], where A[i] + B[j] > C[i + j] for all 4, j,
does A[i] + B[j] = C[i + j] for some %, j pair? This
problem has two main differences from 3SUM: the
question is about pairs i, j, not triples i, j, k, and
there is an extra assumption about the input. A
simple iteration solves this problem in O(n?) time.
There is also an (n?) lower bound when the algo-
rithm is limited to looking at three items at once.
But this lower bound is not useful for the min-
convolution problem described above, because any
algorithm needs to look at at least four items at
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once. So min-convolution is just over the boundary
of where we know how to prove lower bounds. Is
there a stronger lower bound for polyhedral 3SUM?

Polyhedral 3SUM is equivalent to, given a point
in the 4n-dimensional polyhedron defined by the
inequalities Afi] + B[j] > C[i+ j] for all 4, j, decide
whether the point is on the boundary. This poly-
hedron has n? facets, suggesting an Q(n?) lower
bound. If we are allowed to preprocess n (the only
parameter defining the polytope), we may be able
to solve this problem faster using hyperplane ar-
rangement data structures.

Update: After the conference, Timothy Chan
found a subquadratic solution to min-convolution.

Details can be found in the forthcoming pa-
per [BCD106].
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