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Local Overlaps In Special Unfoldings Of Convex Polyhedra
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Abstract

We define a notion of local overlaps in polyhedron un-
foldings. We use this concept to construct convex poly-
hedra for which certain classes of edge unfoldings con-
tain overlaps, thereby negatively resolving some open
conjectures. In particular, we construct a convex poly-
hedron for which every shortest path unfolding contains
an overlap. We also present a convex polyhedron for
which every steepest edge unfolding contains an over-
lap. We conclude by analyzing a broad class of unfold-
ings and again find a convex polyhedron for which they
all contain overlaps.

1 Introduction

An edge unfolding of a polyhedron is obtained by cutting
some edges and unfolding the resulting surface into a
connected planar piece. The edges that are cut in this
process will form a spanning tree of the vertices called a
cut tree. The dual of the cut tree is the adjacency tree,
in which two faces are connected if their common edge
is not cut. A simple edge unfolding is one that lies in
the plane without overlap.

Shephard conjectured that every convex polyhedron
has a simple edge unfolding [6]. In attempts to re-
solve this conjecture, researchers have proposed numer-
ous classes of unfoldings that are conjectured to be sim-
ple for convex polyhedra [2, 5].

In this paper we consider a particular type of over-
lap. In a 2-local overlap, there is an edge (v, w) in the
unfolding where the overlapping faces are incident with
vertices v and w, respectively; see Figure 1(b). We shall
develop conditions on an unfolding that imply a 2-local
overlap. We then use this result to construct convex
polyhedra for which every unfolding in given classes con-
tains an overlap, negatively resolving some open conjec-
tures.

2 2-Local Overlaps

The following Lemma presents a set of conditions that
guarantees a 2-local overlap for convex polyhedra.

Lemma 1 Let P be a convex polyhedron with cut tree
C. Suppose w ∈ V (P ) has degree 1 in C, and is adjacent
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to v ∈ V (P ) in C. Suppose further that there is an
unfolding angle φ0 at v bounded by (v, w) with φ0 > 3π

2 .
Then there exists an angle θ0 that depends on C and
φ0 such that the unfolding implied by C will contain a
2-local overlap if the curvature at w is less than θ0.

See Figure 1 for an illustration of the statement of
this lemma. The core idea is (informally) that the face
incident with w fits tightly into the space around vertex
v. Thus, if the curvature at w is small, the face incident
with w cannot “swing out” enough to clear the faces
incident with v. Note that this unfolding pattern is
similar to Schlickenrieder’s unfolding of hanging facets
[5] and to the unfolding of polyhedral bands studied by
Aloupis et al. [1].
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Figure 1: The conditions of Lemma 1. (a) Part of the
surface of a polyhedron with cut edges in bold and φ0 >
3π
2 . (b) The resulting 2-local overlap.

3 Shortest Path Unfoldings

We now apply Lemma 1 to a particular class of unfold-
ings. Given a polyhedron P and a vertex v ∈ V (P ), the
shortest path tree at v, SPT (v), is the tree formed by
taking the union of the shortest paths from each vertex
w ∈ V (P ) to v along the edges of P .

Fukuda made the following conjecture [2]:

Conjecture 1 (Fukuda) For every convex polyhedron
P and every vertex v ∈ V (P ), the cut tree SPT (v)
forms a simple unfolding of P .

Schlickenrieder has already given empirical evidence
that this conjecture is false [5]. We disprove this conjec-
ture formally by constructing a counterexample. While
the gap filled by this counterexample is admittedly
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small, it serves as an introduction to the methodology
used throughout this paper.
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Figure 2: The planar figure used to disprove Conjecture
1. (a) The underlying structure. All line segments are
of length 1 and angles are shown in degrees. (b) The
completed figure. The bold line segments form SPT (b).

Theorem 2 There exists a convex polyhedron P with
vertex v ∈ V (P ) such that the unfolding corresponding
to cut tree SPT (v) contains a 2-local overlap.

Proof. (Sketch) Consider the graph shown in Figure
2(b). The tree SPT (b) is illustrated in that figure. We
can turn this graph into a convex polyhedron by raising
vertices c, d, and e off the plane, say by a maximum
distance α. This forms a convex terrain, to which we
add a bottom face to close the polyhedron. Call this
polyhedron P (α).

Note that if α is sufficiently small, then the result-
ing polyhedron has edge lengths and face angles arbi-
trarily close to that of the planar figure. In particular,
SPT (b) remains the same as in Figure 2(b), and faces
(b, c, g) and (c, d, g) together form a component with an-
gle greater than 3π

2 at c. Further, the curvature at d is
made arbitrarily small as α → 0.

We therefore conclude that if α is sufficiently small,
the conditions of Lemma 1 are satisfied. Thus, for suffi-
ciently small α, cutting P (α) along SPT (b) will create
an unfolding with a 2-local overlap. Thus there exists
α > 0 such that P (α) is the desired counterexample.

!

4 Steepest Edge Unfoldings

We now consider a more complex class of unfoldings,
the steepest edge unfoldings. This class of unfoldings
was proposed by Schlickenrieder [5].

4.1 Definition

Choose a direction vector ζ. Without loss of generality
ζ = (0, 0, 1) by reorienting space. Then for every vertex
v in P , let the steepest edge for v be (v, w) such that
w−v
|w−v| has maximal z-coordinate. That is, the steepest
edge is the edge directed most toward ζ from v. The
steepest edge cut tree contains the steepest edges of all

vertices, except the vertex with maximal z-coordinate.
A steepest edge unfolding is formed by cutting along a
steepest edge cut tree.

Conjecture 2 (Schlickenrieder) Every convex poly-
hedron P has a simple steepest edge unfolding.

This conjecture was motivated by empirical tests,
where Schlickenrieder found that a convex polyhedron
would unfold without overlap with probability 0.93
when ζ was chosen at random [5]. Nevertheless, we shall
construct a polyhedron for which every steepest edge cut
tree generates an unfolding with a 2-local overlap.

4.2 Outline

We begin by constructing a convex terrain for which
the steepest edge cut tree generates an overlap when ζ
lies in some open set. Furthermore, the size of this set
is independent of scaling, translation, and rotation of
the terrain. We then construct a convex polyhedron by
gluing together many copies of this terrain in various
orientations. The result will be that for every possible
choice of ζ, there is a copy of our terrain that contains
an overlap in the corresponding steepest edge unfolding.

4.3 The Terrain

Consider the planar graph M1 illustrated in Figure 3(a).
As before, we can convert this graph into a convex ter-
rain by raising the interior vertices a and b. In partic-
ular, given parameter α > 0, we denote by M1(α) the
convex terrain formed by raising the vertices a and b to
a height of α. Also, as α → 0, the curvatures at a and
b become arbitrarily small.

b = (4,0,2)

a = (2,0,3)

c = (8,0,2)

d = (4,0,4)

e = (0,0,3)

f g = (8,0,0) = (0,0,0)
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Figure 3: (a) The planar graph M1. (b) The steepest
edge unfolding of M1(α) for small α and direction vector
ζ = (0, 0, 1).

Lemma 3 Suppose α is sufficiently small. Then there
exists φ > 0 such that if M1(α) forms part of convex
polyhedron P and ζ is a unit vector within an angle of
φ from vector e−f

|e−f | , the steepest edge unfolding of P
with direction ζ will contain a 2-local overlap. This is
true regardless of any scaling, translation, or rotation
of M1(α).
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Proof. (Sketch) This is very similar to Theorem 2.
See Figure 3(b) for an illustration of the steepest edge
unfolding of M1(α) when ζ = e−f

|e−f | = (0, 0, 1). This
overlap is implied by Lemma 1 (since ∠dab < π

2 and
α is sufficiently small). Since the overlap occurs in the
unfolding of M1(α), it will occur in the unfolding of P
as well.

Note that the steepest edge cut tree of M1(α) re-
mains the same given minute perturbations of the ter-
rain. This observation allows us to introduce φ. We
describe ζ with respect to e and f , rather than (0, 0, 1),
to make clear the independence of φ from rotation and
scale of the terrain. !

4.4 The Polyhedron

We now construct our final polyhedron by covering the
surface of the sphere with many copies of M1(α). We
can do this in such a way that for any choice of direc-
tion ζ there is a corresponding copy of M1(α) such that
e−f
|e−f | is within φ of ζ [3]. Then Lemma 3 implies that
the steepest edge unfolding with direction ζ contains an
overlap. This implies the following theorem.

Theorem 4 There exists a convex polyhedron P such
that every steepest edge unfolding of P contains a 2-local
overlap.

5 Normal Order Unfoldings

We now consider a broad class of unfoldings: the Normal
Order unfoldings. This class was motivated as a gener-
alization of steepest edge unfoldings. We then construct
a polyhedron P such that every normal order unfolding
of P contains an overlap.

5.1 Definition

Let P be a convex polyhedron. Choose a direction vec-
tor ζ; without loss of generality ζ = (0, 0, 1). Given
f ∈ F (P ), let nf be the outward-facing unit normal for
f . Denote by z(f) the z-coordinate of nf . Informally,
z(f) is a measure of the “height” of f with respect to
P .

Now consider a cut tree C of P , with corresponding
adjacency tree A and unfolding P ′. We say that the
unfolding P ′ is a normal order unfolding if, for all δ ∈
[−1, 1], the set {f ∈ F (P ) : z(f) ≤ δ} is connected in
A. In other words, if face f of P does not have minimal
z(f) then f must be adjacent to a face g along an edge
that is not cut, where z(g) ≤ z(f). Any face f that
does not satisfy this property is said to be a dangling
face. For example, for the polyhedron shown in Figure
1(a), if ζ faces the top of the page then the overlapping
face incident with w in Figure 1(b) is a dangling face.

5.2 Motivation

Our definition of normal order unfoldings is motivated
by the steepest edge unfoldings. In Schlickenrieder’s
paper, there are examples of complex convex polyhedra
with simple steepest edge unfoldings [5]. As an infor-
mal intuition, the success of these unfoldings appears to
derive from their tendancy to “expand outward” from
a central point. See Figure 4. The definition of normal
order unfoldings attempts to capture this property, by
preventing dangling faces.

Figure 4: A simple steepest edge unfolding of a convex
polyhedron. Image due to Schlickenrieder [5].

Unfortunately, as we shall show, it is not the case
that every convex polyhedron has a simple normal order
unfolding.

5.3 Construction

We shall now construct a polyhedron for which every
normal order unfolding contains an overlap. The
method of construction is very similar to that for steep-
est edge unfoldings. We simply modify the terrain M1

to generate overlaps for normal order unfoldings.
Consider the planar graph M2 illustrated in Figure

5(a). The important thing to notice about this graph is
that certain angles, illustrated in the figure, are all less
than π

2 .
Consider raising the interior vertices of M2 by at most

α in such a way that each face of M2 remains planar.
Call the resulting convex terrain M2(α). Suppose that
vector (0, 0, 1) points towards the top of the page in
Figure 5(a). Then if we take ζ = (0, 0, 1), all normal
order unfoldings of M2(α) are shown in Figure 5. In
each case, Lemma 1 applies if α is sufficiently small, so
an overlap occurs. The exception is Figure 5(d), where a
3-local overlap occurs. However, the conditions leading
to this overlap are very similar to those in Lemma 1, so
its existence can be proven without too much additional
work [3].
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Lemma 5 Suppose ζ is a unit vector that has angle at
most φ from (0, 0, 1). Then any normal order unfolding
of M2(α) with respect to ζ contains an overlap, when α
and φ are sufficiently small.
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Figure 5: (a) The planar graph M2. The marked edges
are not cut in a normal order unfolding, and the marked
angles are less than π

2 . (b,c,d) Portions of the normal
order unfoldings of M2(α)

We can now construct a convex polyhedron by gluing
together many copies of M2(α), in the same way as for
Theorem 4. This implies the following theorem.

Theorem 6 There exists a convex polyhedron P such
that every normal order unfolding of P contains an
overlap.

A simple generalization of Theorem 6 yields the fol-
lowing property for any algorithm that would positively
resolve Shephard’s conjecture.

Theorem 7 Any unfolding algorithm that generates
simple unfoldings for all convex polyhedra must allow
an arbitrary number of dangling faces.

Proof. (Sketch) We can increase the number of copies
of M2(α) used in constructing the polyhedron for The-
orem 6, so that an arbitrary number of copies will gen-
erate overlaps for any chosen direction vector ζ. !

6 Conclusion

We have developed a methodology for constructing con-
vex polyhedra for which a given class of unfoldings con-
tains no simple unfoldings. This was used to negatively
resolve conjectures by Fukuda and Schlickenrieder. Fur-
ther, we applied this method to a broad class of un-
foldings – the normal order unfoldings – to develop a
property of any unfolding algorithm that generates only
simple unfoldings for convex polyhedra. This last coun-
terexample also serves to break the intuition that one

can always construct a simple unfolding that “expands
outwards” monotonically from a point.

This work leaves open a number of questions for fu-
ture research. First, our definition of normal order un-
foldings could be altered in subtle ways. It is possible
that a slightly different definition could preserve the in-
formal notion of creating starlike unfoldings, yet not fall
to the type of counterexample presented in this paper.

Also, Lemma 1 gives only a set of sufficient conditions
for a limited type of overlap. We could strengthen our
ability to construct counterexamples by considering the
more general notion of k-local overlaps [3]. One could
imagine generalizing Lemma 1 to a full characterization
of necessary and sufficient conditions leading to k-local
overlaps. Such a characterization would be a power-
ful tool and significant progress towards resolving Shep-
hard’s conjecture. However, even extending Lemma 1
to 3-local overlaps could prove enlightening in the study
of convex polyhedra unfoldings.
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