
CCCG 2006, Kingston, Ontario, August 14–16, 2006

K-Nearest Neighbor Search using the Pyramid Technique

Bradford G. Nickerson Qingxiu Shi ∗

Abstract

A k-nearest neighbor search algorithm for the Pyramid
technique is presented. The Pyramid technique divides
d-dimensional data space into 2d pyramids. Given a
query point q, we initialize the radius of a range query
to be the furthest distance of the k candidate nearest
neighbors from q in the pyramid which q is in, then
examine the rest of the pyramids one by one. After
one pyramid is checked, the radius of the range query
decreases or remains the same. We compared the k-
nearest neighbor performance of the Pyramid technique
with the k-d tree, the R∗-tree and naive search. Experi-
mental results show that our decreasing radius Pyramid
k-nearest neighbor search algorithm is efficient when
d ≤ log2 n.

1 Introduction

K-nearest neighbor search is an important problem in
computational geometry. Given a set S of n data points
and a query point q, find a subset S′ ⊆ S of k≤ n data
points such that for any data point u ∈ S′ and v ∈
S − S′, dist(u,q)≤dist(v,q). K-nearest neighbor search
is used in many applications, such as computer graphics,
multimedia databases, geographic information systems,
knowledge discovery and data mining, and computer
aided design systems [5]. Several k-nearest neighbor
algorithms have been proposed [3].

To find the k nearest neighbors of a query point q,
the maximum distance of the k-nearest neighbors from
q defines the minimum radius required for searching k-
nearest neighbors. Such a distance can’t be determined
in advance. Zhang et al. [7] employed an increasing
radius approach: the search starts with a query sphere
centering at q with a small initial radius. They maintain
a candidate answer set which contains data points that
could be the k nearest neighbors of q. Then the query
sphere is enlarged gradually and the candidate answer
set is updated accordingly until the k candidate answers
are the true k nearest neighbors of q.

In contrast to the k-nearest neighbor search approach
with increasing radius (IR) for the Pyramid technique
explored in [7], we present a k-nearest neighbor search
algorithm with decreasing radius (DR) in this paper.

∗University of New Brunswick, Fredericton, NB, E3B 5A3,
Canada {bgn,l749u}@unb.ca

The Pyramid technique divides the data space [0, 1]d
into 2d pyramids. The radius r of a range query is ini-
tialized to be the distance of the furthest data point
in the k candidate nearest neighbors after examining
the data points in the pyramid the query point q in. A
query square W centered at q with side length 2r is gen-
erated, then an orthogonal range search is performed in
one of the remaining 2d-1 pyramids. If the search finds
some data points closer to q than r, the k candidate
nearest neighbors answer set is updated, and r is reset
to be the current furthest distance of the k candidates.
The search continues to examine one of the unexplored
pyramids, and the radius r decreases if at least one new
candidate is found. The process is repeated until all
pyramids are examined. Though the algorithm is de-
signed for the Pyramid technique, it is applicable to
other mapping-based indexing schemes [7].

2 The Pyramid Technique

The basic idea of the Pyramid technique [2] is to trans-
form the d-dimensional (d-d) data points into 1-d values,
and then store and access 1-d values using a B+-tree.
The data space is divided in two steps: firstly, the data
space is split into 2d pyramids having the center point of
data space (0.5, 0.5, · · · , 0.5) as their top and a (d−1)-d
surface of the data space as their base. Secondly, each of
the 2d pyramids is divided into several partitions, each
corresponding to one data block of the B+-tree.

Assume a data point v = (v0, v1, · · · , vd−1) is in pyra-
mid i. The height hv of the point is defined to be the
distance between v and the center in dimension i mod d,
i.e. hv = |0.5−vi mod d| ∈ [0, 0.5]. As shown in Fig.1(a),
the data space [0, 1]2 is divided into 4 triangles, sharing
the center point (0.5, 0.5) as their top and one edge as
base. Each triangle is assigned a number between 0 and
3. The pyramid value pvv of v is defined as the sum of
its pyramid number i and its height hv: pvv = i + hv.
The algorithm for calculating pvv is given in Fig.2. The
pyramid i covers an interval of [i, i + 0.5] pyramid val-
ues and the sets of pyramid values covered by any two
different pyramids are disjoint. After determining the
pyramid value of v, we insert v into a B+-tree using pvv

as a key, and store v in the corresponding leaf node of
the B+-tree (See Fig.1(b)).

Given a query rectangle W , an orthogonal range
search finds the points intersecting W . The Pyramid
technique maps a d-d range query into a union of 1-

 155

18th Canadian Conference on Computational Geometry, 2006

d range queries. First we determine which pyramids
are intersected by W . Then we determine which pyra-
mid values inside an intersected pyramid pi intersect W .
When we reach the leaf level of the B+-tree, we exam-
ine if the data points storing in the leaf nodes intersect
W . Fig.3 shows the region visited when an orthogonal
range search is performed.

The internal nodes of a B+-tree of order M contain
between M and 2M keys. An internal node of the B+-
tree with m keys has m+1 child pointers. The leaf node
with m keys has one left pointer, one right pointer and
m data point pointers. The left (right) pointer points to
the immediate left (right) sibling node at the leaf level
in the B+-tree.

v

1

0
1

3

0

1

2

hv

(a)

(0.1,0.3) (0.6,0.3)(0.3,0.4) (0.2,0.7)

(0.4,0.2) (0.2,0.1)

0.2 0.3 0.4 1.2 1.3 1.4 2.2 2.3 2.4 3.3 3.4

(0.5,0.3)

0.4 1.3 2.2 2.4

(0.7,0.6) (0.8,0.4) (0.9,0.7) (0.7,0.8) (0.5,0.9)

(b)

Figure 1: (a) A set of points in 2-d data space [0, 1]2
(the numbers in the triangles are the pyramid num-
bers i), and (b) the corresponding B+-tree (the max-
imum number of keys is 4, and the point insertion or-
der is (0.2,0.7), (0.1,0.3), (0.3,0.4), (0.2,0.1), (0.4,0.2),
(0.5,0.3), (0.6,0.3), (0.8,0.4), (0.7,0.6), (0.9,0.7),
(0.7,0.8), (0.5,0.9)).

3 K-Nearest Neighbor Search Algorithm

Given a query point q, a k-nearest neighbor search finds
the k data points in the data set closest in distance to q.
We use a list A to contain the k current candidate near-
est neighbors sorted by their distance from q in decreas-
ing order. Without loss of generality, we use the Eu-
clidean distance. Let D(v, q) be the Euclidean distance
between point v and point q in d-d space, and Dmax

be the maximum distance between the data points in A
and q. Moreover, let C(q, r) be a circle centered at q
with a radius r.

In the first step, we initialize A to be empty, and de-
termine which pyramid q is in and its pyramid value
pvq, using the algorithm in Fig.2. Assume q is in
pyramid pi, we search the B+-tree to locate the leaf
node which has the key value = pvq, or the largest

PyramidValue(Point v)
1 jmax ← 0
2 hv ← |0.5− v0|
3 for (j = 1; j < d; j ← j + 1)
4 do if (hv < |0.5− vj |)
5 then jmax ← j
6 hv ← |0.5− vj |
7 if (vjmax < 0.5)
8 then i← jmax

9 else i← d + jmax

10 pvv ← i + hv

11 return pvv

Figure 2: Algorithm for calculating the pyramid value
pvv of a point v, adapted from [2].

h
ig
h

hhigh

lowh

h
lo
w

h
Figure 3: The data space and the query rectangle W
(the black area is the region of W , and the cross-hatched
area is the region needed to be visited during range
search in addition to W) .

key value less than pvq (using function LocateLeaf).
After locating the leaf node, we use function Search-
Left (SearchRight) to check the data points of the
node towards to the left (right) to determine if they
are among the k nearest neighbors, and update A ac-
cordingly. Note that if a point v is in the same pyra-
mid as q, the difference between their pyramid val-
ues is no greater than their Euclidean distance, i.e.
|pvq − pvv| ≤ D(q, v). SearchLeft (SearchRight)
stops when the key value of the leaf node is less (greater)
than i (i+0.5), or there are k data points in A and the
difference between the current key value in the node and
the pyramid value of q is greater than Dmax.

In the second step, we generate a query square W
of side length ∆=2r enclosing C(q, r) to perform an or-
thogonal range search, which guarantees the correctness
of the query results. If there are k data points in A, the
radius r is initialized to be Dmax; otherwise r=

√
d such

that C(q, r) covers the whole data space [0, 1]d (the max-
imum Euclidean distance between point v and point q in
space [0, 1]d is

√
d). For simplicity, we assume there are

k data points in A after the first step. We examine the
rest of the pyramids one by one in any order. If the pyra-
mid intersects W (using the Intersection algorithm

156

CCCG 2006, Kingston, Ontario, August 14–16, 2006

KNN(Point q , int k)
1 A← empty set
2 i← pyramid number of the pyramid q is in
3 node← LocateLeaf(T, q)
4 SearchLeft(node,A, q, i)
5 SearchRight(node,A, q, i + 0.5)
6 Dmax ← D(A0, q)
7 Generate W centered at q with ∆← 2Dmax

8 for (j = 0; j < 2d; j ← j + 1)
9 do if (j '= i) and (W intersects pyramid j)

10 then RangeSearch(T, hlow, hhigh,W, q,A)
11 Update W with updated ∆← 2Dmax

12 return A

Figure 4: The decreasing radius Pyramid k-nearest
neighbor search algorithm. T is the root of the B+-
tree. hlow=j+hj

low and hhigh=j+hj
high (hj

low and hj
high

are determined by the Interval algorithm [6]).

in [6]), after determining hlow and hhigh using the In-
terval algorithm [6], we perform a RangeSearch to
check if the data points in this pyramid intersecting W
are among the k nearest neighbors. The center of W is
fixed, but its side length ∆ is updated every time after
a pyramid is examined. If the pyramid doesn’t inter-
sect W , we can prune the search in this pyramid. The
k-nearest neighbor search stops when all the pyramids
are checked. The k-nearest neighbor algorithm is given
in Fig.4.

Fig.5 shows a k-nearest neighbor search example in
2-d data space. In this case, the number of the near-
est neighbors k=4, and the data point q denoted as an
unfilled circle is the query point. Firstly, we can de-
termine that q is in pyramid p0, then we search the
B+-tree using interval [0, 0.5] to find the k candidate
nearest neighbors of q in p0, and store them in the list
A, i.e. the data points in C(q, r) as shown in Fig.5(a),
where r is the distance of the furthest data point from
q in A (we assume there are k data points in A). Sec-
ondly, a query square W enclosing C(q, r) is generated.
We examine the rest of the pyramids in counterclock-
wise order. The cross-hatched area in pyramid p1 in
Fig.5(b) is the search region when we perform a 1-d
range search on the B+-tree. One candidate is found
and A is updated, and so is r. The query square W
is updated to enclose the updated C(q, r). As a closer
data point to q is found, we search with smaller radius
and the search becomes cheaper. Because there is no
intersection between W and pyramid p2 (See Fig.5(c)),
we don’t need to check the data points in this pyramid.
When we reach pyramid p3, we examine the data points
in cross-hatched region in Fig.5(d), and find that none
of them is among the k-nearest neighbors. After check-
ing 4 pyramids, we get the result, i.e. the data points
except q in C(q, r) in Fig.5(d).

(b)

0

3

qq

3
0

2

1

q

(d)

1

3

q

(c)

1

1

3

2

2 2

0

0

(a)

Figure 5: An illustration of a 2-d k-nearest neighbor
query processing. The union of cross-hatched region in
these four figures is the total search region for the k-
nearest neighbor query.

4 Experimental Evaluation

We conducted experiments to demonstrate the efficiency
of our approach. We examined the behavior of our algo-
rithm by varying the number of neighbors, the dimen-
sion of data space and the input data set size using syn-
thetic data. Data points were drawn from a uniformly
and randomly distributed space [0, 1]d. We compared
the k-nearest neighbor search performance of the Pyra-
mid technique to the k-d tree, the R∗-tree using the
k-nearest neighbor algorithm in [4] and naive search.
Naive search is a simple brute-force search. In the fol-
lowing figures, the DR Pyramid technique uses the algo-
rithm in Fig.4 to perform the k-nearest neighbor search,
and the IR Pyramid technique and the k-d tree use the
increasing radius approach [3]. The radius of a range
query is initialized to be (kΓ(1

2 d+1)

nπd/2)1/d, which is the ra-
dius of the query ball expected to contain k points, and
increased gradually until the k nearest neighbors are
found.

To determine the influence of the dimension d on k-
nearest neighbor search performance, we varied d from
2 to 20. We fixed the data set size n=1,000,000, and
the number of the nearest neighbors k=10. In terms
of search time spent, the experimental results in Fig.6
show that the DR Pyramid technique has a speed-up
factor up to 2.7 over the IR Pyramid technique, 2.9
over the k-d tree, and 3.8 over the R∗-tree. Fig.7 shows
the effect of k on the performance. k is varied from 5
to 50 stepping by 5. In Fig.7, d=16, the DR Pyramid
technique is up to 2.1 over the IR Pyramid technique,
1.8 over the k-d tree and 3.2 times over the R∗-tree.

 157

18th Canadian Conference on Computational Geometry, 2006

In the experiment of Fig.8, we examined the corre-
lation between the input data size with the k-nearest
neighbor search time. We varied the number n of the
data points from 100,000 to 1,000,000. The experimen-
tal results are shown in Fig.8, where k=20 and d=16.
The k-nearest neighbor search time of the DR Pyra-
mid technique, the IR Pyramid technique, the k-d tree,
the R∗-tree and naive search increases linearly as n in-
creases, but the rate of increment for the DR Pyramid
technique is slowest. The Pyramid technique DR has
a speed-up factor 1.9 over the IR Pyramid technique,
1.6 over the k-d tree and 2.4 over the R∗-tree. The
programs were written in C++, and run on a Sun Mi-
crosystems V60 with two 2.8 GHz Intel Xeon processors
and 3 GB main memory. Each experimental point in the
graphs was done with an average of 300 test cases.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 18 16 14 12 10 8 6 4 2

S
e

a
rc

h
 t

im
e

 (
m

s
)

d

R*-tree
k-d tree

DR Pyramid technique
IR Pyramid technique

Naive search

Figure 6: n=1,000,000, 2≤ d ≤20, and k=10.

 500

 1000

 1500

 2000

 2500

 3000

 50 45 40 35 30 25 20 15 10 5

S
e

a
rc

h
 t

im
e

 (
m

s
)

k

R*-tree
k-d tree

DR Pyramid technique
IR Pyramid technique

Naive search

Figure 7: n=1,000,000, d=16, and 5≤k≤ 50.

 500

 1000

 1500

 2000

 2500

 3000

 10 9 8 7 6 5 4 3 2 1

S
e

a
rc

h
 t

im
e

 (
m

s
)

n (100 thousand)

R*-tree
k-d tree

DR Pyramid technique
IR Pyramid technique

Naive search

Figure 8: 100,000≤ n ≤1,000,000, d=16, and k=20.

5 Conclusions

In this paper, we present a decreasing radius k-nearest
neighbor algorithm for the Pyramid technique. We im-
plemented our DR Pyramid algorithm and conducted
an extensive experimental evaluation to study the k-
nearest neighbor search performance of the DR Pyramid
technique. The experiments show that the algorithm
scales up well with both the number of nearest neigh-
bors requested and the size of the data sets. For uni-
form random data points, the k-nearest neighbor per-
formance of the DR Pyramid technique is faster than
the k-d tree, the R∗-tree and naive search. The Pyra-
mid technique [2] has been shown to work well in high
dimensional data spaces; can our DR Pyramid algo-
rithm be improved to support efficient k-nearest neigh-
bor search for large d (d > log2 n)? We somehow need
to overcome the unnecessary space searched due to ex-
panding the d-d query ball of radius r to a d-d query
square of side length 2r. The ratio between the vol-
ume ((2r)d) of d-d square with side length 2r and the
volume (πd/2rd/Γ(1

2d + 1)) of d-d ball with radius r is
Γ(1

2 d+1)

(
√

π/2)d , which increases rapidly with the increment of
d. For example, for d=2, the ratio≈1.27; for d=12, the
ratio≈3067.48. What is the expected time Q(k, d, n) for
the k-nearest neighbor search using the DR Pyramid ap-
proach? Is the DR Pyramid approach competitive for
approximate k-nearest neighbor search [1]?

References

[1] S. Arya, D. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate near-
est neighbor searching fixed dimensions. Journal of the
ACM, 45(6):891–923, 1998.

[2] S. Berchtold, C. Böhm, and H.-P. Kriegel. The Pyramid-
technique: Towards breaking the curse of dimensional-
ity. In Proceedings of the 1998 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 142–
153, Seattle, Washington, USA, June 2-4 1998.

[3] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L.
Marroquín. Searching in metric spaces. ACM Com-
puting Surveys, 33(3):273–321, September 2001.

[4] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data,
pages 71–79, San Jose, California, USA, May 22-25 1995.

[5] S. Shekhar, S. Chawla, S. Ravada, and A. Fetterer. Spa-
tial databases - accomplishments and research needs.
IEEE transactions on knowledge and data engineering,
11(1):45–55, 1999.

[6] Q. Shi and B. G. Nickerson. On k-d range search with
large k. Technical report, TR06-176, Faculty of Com-
puter Science, University of New Brunswick, May 2006,
25 pages.

[7] R. Zhang, P. Kalnis, B. C. Ooi, and K.-L. Tan. General-
ized multidimensional data mapping and query process-
ing. ACM Transactions on Database Systems, 30(3):661–
697, September 2005.

158

