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Bounded-Curvature Path Normalization
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Abstract

We present a new normal form for bounded-curvature
paths that admits a combinatorial discription of such
paths and a bound on the algebraic complexity of the
underlying geometry.

1 Introduction

We are interested in paths of bounded curvature be-
tween two configurations that avoid polygonal obsta-
cles. Such paths approximate the motion of vehicles
with a restricted turning radius such as cars and bicy-
cles. We assume that the vehicle’s turning radius is one
without loss of generality by scaling the obstacles. In
this case, a bounded-curvature path is a path that can
be sandwiched between two unit radius circles at every
point (see Figure 1(a)), which restricts how quickly the
path turns left or right. This restriction makes the in-
stantaneous configuration of a point tracing a bounded-
curvature path a combination of the point’s position and
orientation. It also complicates bounded-curvature mo-
tion planning because the only path between two similar
configurations may be arbitrarily long and complicated
(see Figure 1(b)).

(a) Wedged between circles. (b) Cycling behaviour.

Figure 1: Bounded-curvature paths.

Rather than trying to find the shortest bounded-
curvature path (optimization), we focus on finding any
bounded-curvature path (feasibility) because optimiza-
tion is NP-hard in general [9] and the best general fea-
sibility algorithm is exponential in time and space [7].
Despite the NP-hardness of optimization, there are effi-
cient incomplete approximation algorithms [8, 10]; these
algorithms are incomplete because they may not find
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a bounded-curvature path even if one exists. Unfor-
tunately, the NP-hardness of optimization reduction is
clearly feasible and highly structured; in particular, the
reduction construction prohibits path cycling and uses
infinitesimally small holes through which all paths must
pass as checkpoints.

The problem posed by cycling is that it may be re-
quired to incrementally change a vehicle’s orientation
(see Figure 1(b)) resulting in a long and complicated
path. Fortune and Wilfong resolve this problem with a
closure operation at the computational cost of exponen-
tial space and time. The normal form presented in this
paper is a first step towards an alternative approach:
finding a feasibility algorithm whose runtime is propor-
tional to the simplest description of any feasible path
(i.e. output sensitive).

2 Normal Forms

All of the complete bounded-curvature motion planning
results either analyze the structure that paths must
take (implicit normalization) [2, 4, 1, 3] or perturb a
given path to give it structure (explicit normalization)
[6, 7]. This normalization reduces the space of consid-
ered paths and allows a systematic exploration of the
path space.

Figure 2: Wedged between cones.

Dubins’ seminal work [6] characterizes shortest
bounded-curvature paths in the absence of obstacles.
He first notices that short bounded-curvature paths
are contained between two cones (see Figure 2); hence
shortest paths are made of arcs of unit radius circles
(C-segments) and straight line segments (S-segments).
Using length reducing perturbations, Dubins shows that
the structure of shortest paths (i.e. the sequence of
C- and S- segments of which it is made) must be ei-
ther CSC or CCC, where each segment may have zero
length. Wang and Agarwal [10] argue that the short-
est path amidst obstacles is a sequence of Dubins type
paths between obstacle contacts.

The normalization of Fortune and Wilfong [7] essen-
tially pushes a shortest path against obstacles so that
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Figure 3: Feasible contact intervals.

every C-segment touches the boundary. This allows us
to represent the space of feasible paths as intervals of
feasible obstacle contact (see Figure 3). It also allows us
to view a normal path as a sequence of jumps between
obstacle contacts, where a jump is a subpath whose
structure is CSC. By analyzing how jumps get from
one interval of contact to another, Fortune and Wilfong
polynomially upper bound the number of distinct inter-
vals of obstacle contact after merging overlapping inter-
vals. Fortune and Wilfong then reduce the feasibility
problem to the first-order theory of the reals by clos-
ing the set of intervals with respect to jumps. However,
the compact representation of merged intervals prevents
path recovery.

3 Normalization

Our path normalization eliminates degrees of freedom
from path segments until the path is completely fixed.
Each path segment has at most two degrees of freedom
because the path is C1continuous; that is, if we repre-
sent the path with underlying unit radius circles and
lines, each with only two degrees of freedom, the path
segment end-points are the points of tangency between
the lines and circles.

Fortune and Wilfong’s normalization eliminates a de-
gree of freedom from each C-segment by pushing it into
contact with an obstacle. We generalize their notion of
supporting a segment by an obstacle in order to remove
a degree of freedom from S-segments. Specifically, we
say that a C− or S−segment is supported by an obsta-
cle if it either touches the obstacle (see right Figure 6)
or reaches the obstacle with a length π C-segment (see
left Figure 6); we view the later as being tangent to the
Minkowski sum of the obstacle with a radius two cir-
cle. We take a Fortune and Wilfong path and cause S-
segments to become supported by using perturbations:
continuous path deformations that maintain the path’s
obstacle support, homotopy class, and structure.

Each perturbation rotates or translates a unit radius
circle underlying the path, which causes the path seg-
ments to stretch, shrink, or directly contact an object.
These effects eventually lead to increased support: when
a C-segment degenerates at length 0 or π, an adjacent
segment becomes supported; when a S-segment degen-
erates at length 0, we consider it trivially supported.

We call a maximal contiguous sequence of supported

Figure 4: Perturbing a chain.

segments a chain because perturbing one segment in the
chain perturbs the whole chain (see Figure 4). We call
a segment with two obstacle supports anchored because
it has no degree of freedom; we call a chain with at
least one anchored segment anchored because none of
the segments in the chain can be perturbed. After our
normalization, a path is a sequence of anchored chains
joined by unsupported S-segments.

3.1 Chains

An unanchored chain can be perturbed until either the
chain becomes anchored, the jump preceding the chain
becomes a hop, or the jump trailing the chain becomes
a hop. These events cause the chain to either become
anchored or merge with another chain, both of which re-
duce the number of unanchored chains. Our normaliza-
tion always shifts the first unanchored chain on the path
in the direction that extends the preceding S-segment.
This criterion was selected because the maximum S-
segment length is always achieved at anchored hops (i.e.
no local maxima) and bounded by the contact geometry.

3.2 Jumps

Our perturbations shift a C-segment about its support
by either rotating it about a corner or sliding it along
a wall. We examine the effects of these perturbations
at the jump level because we maintain the Fortune and
Wilfong property that a path is a sequence of jumps.

Figure 5: Shifting a C-segment.

Shifting a C-segment continuously deforms at least
two jumps: jumps that use part of the C-segment and
jumps that start or end at one of the C-segment’s end-
points (because we have to keep the path C1 contin-
uous). If the affected jump has an unsupported S-
segment, it can continuously deform until either a seg-
ment bumps into an obstacle or degenerates (see Figure
5). If the former happens, we simplify our analysis by
considering the jump a sequence of two jumps; if the

32                                       



CCCG 2006, Kingston, Ontario, August 14–16, 2006

Figure 6: Hops (omitting reflections).

latter happens, we end up with a jump where every seg-
ment is supported, which we call a hop (see Figure 6).

Hops have a functional relationship between initial
and final configuration, which causes perturbations to
ripple along the chains to which they belong. When a
hop is perturbed, it continuously deforms until either
a hop segment degenerates or bumps into an obstacle,
which results in an anchored hop completely determined
by the arrangement of obstacles (see Figure 7). The
continuous deformations of jump and hop perturbations
guarantee that the result is homotopic to the original.

Further than 2 away. Less than 2 away.

Figure 7: Anchored hops (omitting reflections).

3.3 Hops

We now illustrate ruler and compass constructions of
hops to show that they deform continuously and their
domain of definition is bounded by anchored hops. In
Figures 8 and 9, the obstacle contacts are marked with
crosses and C-segment centers are marked with discs.
Recall that S-segments can be supported by touching a
π length C-segment, passing through a corner, or being
degenerate. Figure 8 shows how the first two types of
hops are calculated geometrically by intersecting a circle
with a line tangent to another circle and parallel with
the hop S-segment; Figure 9 shows how the latter type
of hop is calculated by intersecting a circle with a circle.

4 Algebraic Complexity

Normal paths have a purely combinatorial description:
they are made of anchored chains joined by S-segments,
where anchored chains are completely determined by
the sequence of hops emanating from an anchored hop.
Fortune and Wilfong [7] represent corner co-ordinates as
quotients of integers, where each integer has absolute

Domain Construction

(a)

(b)

(c)

Figure 8: Hops with non-zero S-segments.

Domain Construction

Figure 9: Hops with degenerate S-segments.

value less than 2m. This and our combinatorial per-
spective of paths allows to answer the question of “How
close can two distinct paths be?” By addressing this
issue, we can approximate real arithmetic with floating-
point arithmetic of sufficient precision to compute the
relative order of configurations of different paths at a
contact. Such a basic calculation seems fundamental to
a feasibility algorithm.

Given an arithmetic expression composed of +, −, ×,
/, √ and integers, Burnikel et al. [5] describe how to
construct a quotient of irreducible polynomials with in-
teger coefficients such that the result of the arithmetic
expression corresponds to a root of the quotient; the
magnitude of a non-zero root is bounded above and be-
low by the polynomial’s degree and coefficients. Rather
than construct the polynomial, Burnikel et al. describe
how to recursively compute root bounds from the arith-
metic expression. Their technique shows that the cen-
ters of circles underlying C-segments of normal paths
must be at least 2Θ(−knm) apart for some constant k,
where n is the number of contacts on a path. What
makes the expression doubly exponential in n is that
every hop involves an intersection with a circle, but k is
a constant because we only intersect a fixed number of
circles per hop.
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5 Discussion

An advantage of our normalization is that a normal path
has a combinatorial description in terms of the anchored
hops that it contains, the sequence of obstacle contacts
that it passes through, and the type of hops it makes
between contacts. This contrasts with the Fortune and
Wilfong perspective where each obstacle contact is pa-
rameterized by a real number. Our combinatorial de-
scription allows us to consider extending a path with
a finite set of hops, whereas Fortune and Wilfong use
an algebraic description of the bounded-curvature and
obstacle constraints to consider continuous set of ex-
tensions. As such we move away from the continuous
intervals of contacts of Fortune and Wilfong to relevant
countable subsets. So in this sense, our normalization
provides a complete discretization of the path space.

By completely describing paths structurally, we are
able to analyze the algebraic complexity of the arith-
metic involved, which is essential if we want to maintain
completeness and use a Turing equivalent model of com-
putation. Specifically, it tells us to what precision we
would have to substitute arbitrary precision arithmetic
for real arithmetic.

One potential pitfall of our normalization is that it
may ill-condition the arithmetic underlying the geomet-
ric path description by pushing paths towards extremi-
ties. That is, such paths may be hard to represent with
floating-point approximations to real arithmetic. How-
ever, this is a danger faced by any constraint based nor-
malization, and any complete algorithm has to consider
these types of paths to ensure feasibility.
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