
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Algorithms for Minimizing the Movements of Spreading Points in Linear
Domains

Shimin Li∗ Haitao Wang†

Abstract

We study a problem on spreading points. Given a set
P of n points sorted on a line L and a distance value δ,
we wish to move the points of P along L such that the
distance of any two points of P is at least δ and the max-
imum movement of all points is minimized. We present
an O(n) time algorithm for this problem. Further, we
extend our algorithm to solve (in O(n) time) the cycle
version of the problem where all points of P are on a
cycle C. Previously, only weakly polynomial-time algo-
rithms were known for these problems based on linear
programming. In addition, we present a linear-time al-
gorithm for a similar facility-location moving problem,
which improves the previous work.

1 Introduction

We consider the following points-spreading problem.
Given a set P of n points sorted on a line L and a
distance value δ ≥ 0, we wish to move the points of P
along L such that the distance of any two points of P
is at least δ and the maximum movement of all points
of P is minimized. The above is the line version. We
also consider the cycle version of the problem, where
all points of P are given sorted cyclically on a cycle
(one may view C as a simple closed curve). We wish to
move the points of P on C such that the distance of any
two points of P along C is at least δ and the maximum
movement of all points of P along C is minimized. Note
that since C is a cycle, the distance of any two points
of C is defined to be the length of the shortest path on
C between the two points.

Both versions of the problem have been studied be-
fore. By modeling them as linear programming prob-
lems (with n variables and Θ(n) constraints), Du-
mitrescu and Jiang [4] gave the first-known polynomial-
time algorithms for both problems. Since there only
exist weakly polynomial-time algorithms for linear pro-
gramming [8, 9], it would be interesting to design
strongly polynomial-time algorithms for the points-
spreading problem. In this paper, we solve both versions

∗Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA. shiminli@aggiemail.usu.edu
†Department of Computer Science, Utah State University, Lo-

gan, UT 84322, USA. haitao.wang@usu.edu

of the problem not only in strongly polynomial time but
also in O(n) time (which is optimal). Our algorithms
are based on a greedy strategy.

In addition, we consider a somewhat related prob-
lem, called the facility-location movement problem, de-
fined as follows. Suppose we have a set of k “server”
points and another set of n “client” points sorted on
L. We wish to move all servers and all clients on L
such that each client co-locates with a server and the
maximum moving distance of all servers and clients is
minimized. Dumitrescu and Jiang [4] solved this prob-
lem in O((n+k) log(n+k)) time. We present an O(n+k)
time algorithm based on their approach.

1.1 Related Work

The points-spreading problem in 2D was proposed by
Demaine et al. [3] (called “movement to independence”
problem in [3, 4]). The problem in 2D is NP-hard and an
approximation algorithm was given in [3]; the algorithm
was improved later by Dumitrescu and Jiang [4].

The points-spreading problem is related to the points
dispersion problems which involve arranging a set of
points as far away from each other as possible subject to
certain constraints. For example, Fiala et al. in [6] stud-
ied such a problem in which one wants to place n given
points, each inside its own, prespecified disk, with the
objective of maximizing the distance between the closest
pair of these points. The problem was shown to be NP-
hard [6]. Approximation algorithms were proposed by
Cabello [1]. Dumitrescu and Jiang [5] gave improvement
on the approximation algorithms and also presented al-
gorithms for the problem in high-dimensional spaces. In
fact, Fiala et al. [6] studied the dispersion problems on a
more general problem settings. Another variation of the
dispersion problems is to select a subset of facilities from
a set of given facilities to maximize the minimum dis-
tance (or some other distance function) among all pairs
of selected facilities [10, 11]. The problem is generally
NP-hard (e.g., in 2D) but polynomial time algorithms
are available in the one-dimensional space [10, 11]. In
addition, Chandra and Halldórsson [2] studied disper-
sion problems on other problem settings.

The facility-location movement problem was first in-
troduced by Demaine et al. [3] in graphs, which was
proved to be NP-hard. A 2-approximation algorithm



27th Canadian Conference on Computational Geometry, 2015

was presented in [3] for this problem in graphs, and later
it was shown that the 2-approximation ratio cannot be
improved unless P=NP [7]. Dumitrescu and Jiang [4]
studied the geometric version of this problem in the
plane, and they showed that the problem is NP-hard
to approximate within 1.8279. Fixed parameter algo-
rithms (with k as the parameter) were also given in [4].

1.2 Our Approaches

For solving the line version of the points-spreading prob-
lem, essentially we first solve a “one-direction” case of
the problem in which points are only allowed to move
rightwards, by using a simple greedy algorithm. Sup-
pose d is the maximum movement in the solution of the
above one-direction case. Then, we show that an opti-
mal solution to the original problem can be obtained by
shifting each point of P leftwards by the distance d/2.

For solving the cycle version of the problem, essen-
tially we also first solve a one-direction case in which
points are only allowed to move counterclockwise on
C. If d is the maximum movement in the solution of
the one-direction case, then we also show that an op-
timal solution to the original problem can be obtained
by shifting each point of P clockwise by d/2. How-
ever, unlike the line version, the one-direction case of
the problem becomes more difficult on the cycle. One
straightforward idea is to cut the cycle C at a point of P
(and extend C as a line) and then apply the algorithm
for the one-direction case of the line version. However,
the issue is that the last point may be too close to or
even “cross” the first point if we put all points back on
C. By observations, we show that if such a case hap-
pens, we can run the line-version algorithm for another
round and the second round is guaranteed to find an
optimal solution. Overall, the algorithm is still simple,
but it is challenging to show the correctness.

For solving the facility-location movement prob-
lem, Dumitrescu and Jiang [4] presented an O((m +
n) log(m+ n)) time algorithm using dynamic program-
ming. By discovering a monotonicity property on the
dynamic programming, we improve Dumitrescu and
Jiang’s algorithm to O(n+ k) time.

The rest of the paper is organized as follows. In Sec-
tion 2, we present our algorithm for the line version of
the points-spreading problem. The cycle version of the
problem is solved in Section 3. Section 4 discusses our
solution for the facility-location movement problem.

Due to the space limit, proofs of all lemmas and ob-
servations in Section 3 are in the appendix.

2 The Points-Spreading Problem on a Line

In the line version, the points of P are given sorted on
the line L. Without loss of generality, we assume L is
the x-axis and P = {p1, p2, . . . , pn} are sorted by their

x-coordinates from left to right. For each i ∈ [1, n], let
xi denote the location (or x-coordinate) of pi on L. For
any two locations x and x′ of L, denote by |xx′| the
distance between x and x′, i.e., |xx′| = |x− x′|.

Our goal is to move each point pi ∈ P to a new loca-
tion x′i on L such that the distance of any pair of two
points of P is at least δ and the maximum moving dis-
tance, i.e., max1≤i≤n |xix′i|, is minimized. For simplic-
ity of discussion, we make a general position assumption
that no two points of P are at the same location in the
input. The degenerate case can also be handled by our
techniques but the discussions would be more tedious.

We refer to a configuration as a specification of the
location of each point pi of P on L. For example, in the
input configuration each pi is at xi. Let F0 denote the
input configuration. A configuration is feasible if the
distance between any pair of points of P is at least δ.

Denote by dopt the maximum moving distance in any
optimal solution. If the input configuration F0 is feasi-
ble, then we do not need to move any point, implying
that dopt = 0. Since the points of P are sorted, we can
check whether F0 is feasible in O(n) time by checking
the distance between every adjacent pair of points of P .
Below, we assume F0 is not feasible, and thus dopt > 0.

We first present some observations, based on which
our algorithm will be developed.

2.1 Observations

For any two indices i < j in [1, n], define

w(i, j) = (j − i) · δ − |xixj |.

As discussed in [4], there exists an optimal solution
in which the order of all points of P is the same as that
in the input configuration F0. Based on this property,
we prove Lemma 1 regarding the value dopt.

Lemma 1 dopt ≥ max1≤i<j≤n
w(i,j)

2 .

Proof. Consider any optimal solution OPT in which
the order of all points of P is the same as that in F0.
For each 1 ≤ i ≤ n, let x∗i be the location of pi in OPT .

Consider any i and j with 1 ≤ i < j ≤ n. Our goal
is to prove dopt ≥ w(i, j)/2. Since the points of P in
OPT have the same order as in F0, for each k with i <
k ≤ j, we have |x∗k−1x∗k| ≥ δ because OPT is a feasible

solution. Hence, |x∗i x∗j | =
∑j

k=i+1 |x∗k−1x∗k| ≥ (j− i) · δ.
If |x∗i x∗j |− |xixj | ≤ 0, then |xixj | ≥ |x∗i x∗j | ≥ (j− i) ·δ

and w(i, j) ≤ 0. Since dopt > 0, dopt ≥ w(i, j)/2 holds.
If |x∗i x∗j | − |xixj | > 0, then the difference of |x∗i x∗j |

and |xixj | are due to the moving of pi and pj . It is
not difficult to see that max{|xix∗i |, |xjx∗j |} ≥ (|x∗i x∗j | −
|xixj |)/2 (the equality happens when pi moves leftwards
by distance (|x∗i x∗j |− |xixj |)/2 and pj moves rightwards
by the same distance). Since dopt ≥ max{|xix∗i |, |xjx∗j |},



CCCG 2015, Kingston, Ontario, August 10–12, 2015

x1 x2 x3 x4 x6 x7

x′1 x′2 x′3 x′5 x′6x′4 x′7

x5F0

F ′

Figure 1: Illustrating our algorithm for computing the configuration F .

it holds that dopt ≥ (|x∗i x∗j |−|xixj |)/2. Due to |x∗i x∗j | ≥
(j − i) · δ, we obtain that dopt ≥ w(i, j)/2. �

Lemma 2 If there exist i and j with 1 ≤ i < j ≤ n
and a feasible configuration F ′ in which each point
pk ∈ P moves rightwards to x′k (i.e., xk ≤ x′k) such
that w(i, j) = max1≤k≤n |xkx′k|, then we can obtain an
optimal solution by shifting each point of P in F ′ left-
wards by distance w(i, j)/2.

Proof. Let F ′′ be the configuration obtained by shift-
ing each point of P in F ′ leftwards by distance w(i, j)/2.

Consider any point pk ∈ P . Let x′′k denote the loca-
tion of pk in F ′′, i.e., x′′k = x′k − w(i, j)/2. In order to
prove that F ′′ is an optimal solution, by Lemma 1, it is
sufficient to show that |xkx′′k | ≤ w(i, j)/2, as follows.

Indeed, since 0 ≤ x′k − xk ≤ w(i, j), i.e., x′k is to the
right of xk at most w(i, j), after pk is moved leftwards
by w(i, j)/2 to x′′k , x′′k must be within distance w(i, j)/2
from xk. Hence, |xkx′′k | ≤ w(i, j)/2. �

We call a feasible configuration that satisfies the con-
dition in Lemma 2 a canonical configuration (such as
F ′ in Lemma 2). Due to Lemma 2, to solve the prob-
lem in linear time, it is sufficient to find a canonical
configuration in linear time, which is our focus below.

2.2 Computing a Canonical Configuration

We present a linear-time algorithm for finding a canoni-
cal configuration. Comparing with the original problem,
now we only need to consider the rightward movements.

Initially, we set x′1 = x1. Then we consider the
points p2, p3, . . . , pn from left to right. For each i with
2 ≤ i ≤ n, suppose we have already moved pi−1 to x′i−1.
Then, we set x′i = max{xi, x′i−1 +δ}, and move pi to x′i.
Refer to Fig. 1 for an example. The algorithm finishes
after all points of P have been considered. Clearly, the
algorithm runs in O(n) time. Let F ′ denote the result-
ing configuration (i.e., each pi is at x′i).

Lemma 3 F ′ is a canonical configuration.

Proof. First of all, based on our way of setting x′i for
i = 1, 2, . . . , n, every two points of P in F ′ are at least
δ away from each other. Thus, F ′ is a feasible configu-
ration. Note that x′i ≥ xi for any i ∈ [1, n]. Next, we
show that there exist i and j with 1 ≤ i < j ≤ n such
that w(i, j) = dmax, where dmax = max1≤k≤n |xkx′k|.

Recall that dmax > 0. Suppose the moving distance
of pj is the maximum, i.e., dmax = |xjx′j |. Let i be the
largest index such that i < j and pi does not move in

the algorithm (i.e., xi = x′i). Note that such a point pi
must exist as x1 = x′1 and x′j > xj .

For any point pk ∈ P , if pk is moved (rightwards) in
F ′ (i.e., xk < x′k), then according to our way of setting
x′k, it must hold that x′k − x′k−1 = δ. By the definition
of i, for each point pk with k ∈ [i + 1, j], pk is moved
in F ′, and thus x′k − x′k−1 = δ. Therefore, we obtain
|x′ix′j | = x′j − x′i =

∑
i+1≤k≤j(x

′
k − x′k−1) = (j − i) · δ.

Since x′i = xi and xj < x′j , we have |xix′j | = |xixj |+
|xjx′j |. Hence, dmax = |xjx′j | = |xix′j | − |xixj | = (j −
i) · δ − |xixj | = w(i, j). This proves the lemma. �

Lemmas 2 and 3 together lead to Theorem 4.

Theorem 4 The line version of the points-spreading
problem is solvable in O(n) time.

Remark: One may verify that our algorithm for com-
puting the canonical configuration F ′ essentially solves
a one-direction case of the line version problem: Move
the points of P rightwards such that any pair of points
of P are at least δ away from each other and the maxi-
mum moving distance of all points of P is minimized.

3 The Points-Spreading Problem on a Cycle

In the cycle version, the points of P = {p1, . . . , pn} are
on a cycle C sorted cyclically, say, in the counterclock-
wise order. We use |C| to denote the length of C. For
any two locations x and x′ on C, the distance between
x and x′, denoted by |xx′|, is the length of the shortest
path between x and x′ on C. Clearly, |xx′| ≤ |C|/2. For
each i ∈ [1, n], we use xi denote the location of pi on
C in the input. Our goal is to move each point pi ∈ P
to a new location x′i such that the distance of any pair
of two points of P on C is at least δ and the maximum
moving distance, i.e., max1≤i≤n |xix′i|, is minimized.

We assume |C| ≥ δ · n since otherwise there would
be no solution. Again, for simplicity of discussion, we
make a general position assumption that no two points
of P are at the same location on C in the input.

As before, we refer to a configuration as a specification
of the location of each point of P on C. A configuration
is feasible if the distance between any pair of points of
P is at least δ. Let F0 denote the input configuration.

Denote by dopt the maximum moving distance in any
optimal solution. If F0 is feasible, then dopt = 0. We can
also check whether F0 is feasible in O(n) time. Below,
we assume F0 is not feasible, and thus dopt > 0.

To solve the problem, we extend our algorithm (and
observations) for the line version in Section 2. Namely,



27th Canadian Conference on Computational Geometry, 2015

we first move all points of P on C counterclockwise to
obtain a “canonical configuration”, and then shift all
points clockwise. However, as will be seen later, the
problem becomes much more difficult on the cycle.

Consider any two locations x and x′ on C. We define
C(x, x′) as the portion of C from x to x′ counterclock-
wise. We use |C(x, x′)| to denote the length of C(x, x′).
Note that |xx′| = min{|C(x, x′)|, |C(x′, x)|}.

As in the line version, we first give some observations,
based on which our algorithms will be developed.

3.1 Observations

For any two indices i 6= j in [1, n], define

w(i, j) =
[
(n+ j − i) mod n

]
· δ − |C(xi, xj)|.

In words, if i < j, then w(i, j) = (j−i)·δ−|C(xi, xj)|;
otherwise, w(i, j) = (n + j − i) · δ − |C(xi, xj)|. Since
|C| ≥ δ · n, it can be verified that w(i, j) ≤ |C|.

As discussed in [4], there exists an optimal solution
in which the order of all points of P is the same as that
in the input configuration F0. Using this property, we
can prove Lemma 5, which is analogous to Lemma 2.

Lemma 5 dopt ≥ max1≤i,j≤n
w(i,j)

2 .

Based on Lemma 5, we obtain the following lemma,
which is analogous to Lemma 3 for the line version.

Lemma 6 If there exist i 6= j in [1, n] and a feasible
configuration F ′ in which each point pk ∈ P is at loca-
tion x′k such that w(i, j) = max1≤k≤n |C(xk, x

′
k)|, then

we can obtain an optimal solution by shifting every point
of P in F ′ clockwise by distance w(i, j)/2.

We call a feasible configuration that satisfies the con-
dition in Lemma 6 a canonical configuration. In light of
Lemma 6, to solve the problem in linear time, it is suf-
ficient to find a canonical configuration in linear time,
which is our focus below.

3.2 Computing a Canonical Configuration

We present a linear-time algorithm for finding a canon-
ical configuration. Now we only need to consider the
counterclockwise movements.

Recall that the points p1, p2, . . . , pn are ordered on
C counterclockwise in the input configuration F0. For
convenience of discussion, we define coordinates for lo-
cations on C in the following way. Define x1 as the ori-
gin with coordinate zero. For any other location x ∈ C,
the coordinate of x is defined to be |C(x1, x)|. Hence
each location of C has a coordinate no greater than |C|.

Our algorithm has two rounds. In the first round, we
will use the same approach as for the line version of the
problem, and let F1 denote the resulting configuration.

However, the issue is that in F1 the new location of pn
may be too close to p1 or pn may even “cross” p1, which
might make F1 not feasible. If pn does not cross p1 and
pn is at least δ away from p1 in F1, then we will show
that F1 is a canonical configuration. Otherwise, we will
proceed on the second round, which is to consider all
points again from p1 and use the same strategy to set
the new locations of the points. We will show that the
configuration F2 obtained after the second round is a
canonical configuration. The details are given below.

3.2.1 The first round

In the first round, we will move each point pi ∈ P from
xi along C counterclockwise to a new location x′i. The
way we set x′i here is similar to that in the line version
and the difference is that we have to take care of the
cycle situation. Specifically, x′1 = x1, i.e., p1 does not
move. For each i ∈ [2, n], suppose we have already
moved pi−1 to x′i−1, then we define x′i as follows:

x′i =

{
xi if xi ≥ x′i−1 + δ

(x′i−1 + δ) mod |C| if xi < x′i−1 + δ.
(1)

This finishes the first round of our algorithm. Denote
by F1 the resulting configuration.

Note that if x′i−1 + δ > |C|, then since xi ≤ |C|,
by Equation (1), x′i = (x′i−1 + δ) mod |C|, which is
equal to x′i−1 + δ − |C|; in this case, we say that the
counterclockwise movement of pi crosses the origin x1.

Lemma 7 If pn does not cross x1 (= x′1) in the first
round of the algorithm and |C(x′n, x

′
1)| ≥ δ, then F1 is

a canonical configuration.

By Lemma 7, if pn does not cross x1 = x′1 in the first
round and |C(x′n, x

′
1)| ≥ δ in F1, then we have found a

canonical configuration and our algorithm stops. Oth-
erwise, we proceed on the second round, as follows.

3.2.2 The second round

In the second round, we will move each pi ∈ P from x′i
counterclockwise to a new location x′′i , as follows.

We first define x′′1 . Recall that we proceed on the
second round because either pn crosses x1 = x′1 in the
first round or |C(x′n, x

′
1)| < δ. In either case we define

x′′1 = (x′n + δ) mod |C|. (2)

Hence, |C(x′n, x
′′
1)| = δ.

For each i = 2, 3, . . . , n, suppose pi−1 has been moved
to x′′i−1; then we move pi from x′i counterclockwise to
x′′i , with

x′′i = max{x′i, (x′′i−1 + δ) mod |C|} (3)

This finishes the second round of our algorithm. Let
F2 be the resulting configuration. In the sequel we show
that F2 is a canonical configuration.



CCCG 2015, Kingston, Ontario, August 10–12, 2015

Observation 1 There must be a point pi with i ∈ [2, n]
such that pi does not move in the first round of the al-
gorithm (i.e., xi = x′i).

Observation 2 If a point pi does not move in the sec-
ond round, then for each point pj with j ∈ [i, n], pj does
not move in the second round either.

Lemma 8 Suppose k is the largest index such that pk
does not move in the first round of the algorithm; then
pk does not move in the second round of the algorithm
either, i.e., xk = x′k = x′′k.

Based on the proof of Lemma 8, we have the following
two corollaries.

Corollary 9 The configuration F2 is feasible.

Corollary 10 The total counterclockwise moving dis-
tance of each point of P in the two rounds of the algo-
rithm is at most |C|−δ, which implies that |C(xi, x

′′
i )| ≤

|C| − δ for each 1 ≤ i ≤ n.

With the previous observations, Lemma 11 finally
shows that F2 is a canonical configuration.

Lemma 11 F2 is a canonical configuration.

Clearly, both rounds of our algorithm run in O(n)
time. Combining Lemmas 6, 7, and 11, we have the
following result.

Theorem 12 The cycle version of the points-spreading
problem is solvable in O(n) time.

Remark: One may verify that our algorithm for com-
puting the canonical configuration F2 essentially solves
the following one-direction case of the cycle version
problem: Move the points of P counterclockwise such
that any pair of points of P are at least δ away from
each other and the maximum counterclockwise moving
distance of all points of P is minimized.

4 The Facility-Location Movement Problem

In this section, we present our linear-time algorithm for
the facility-location movement problem. In this prob-
lem, we are given a set S of k “server” points and a
set Q of n “client” points sorted on a line L, and the
goal is to move all servers and clients on L such that
each client co-locates with a server and the maximum
moving distance of all servers and clients is minimized.

As shown by Dumitrescu and Jiang [4], the problem
is equivalent to finding k intervals (i.e., line segments)
on L such that each interval contains at least one server,
each client is covered by at least one interval, and the
maximum length of these intervals is minimized. In the

following, we will solve this interval coverage problem
(also called constrained k-center problem in [4]).

Dumitrescu and Jiang [4] presented an O((n +
k) log(n + k)) time algorithm using dynamic program-
ming. We discover a monotonicity property on their dy-
namic programming scheme, and consequently improve
their algorithm to O(n+k) time. Below, we first review
the algorithm in [4] and then show our improvement.

4.1 Preliminaries

Without loss of generality, we assume L is the x-axis.
For any two points p and q on L with p to the left of q, we
use [p, q] to denote the interval on L with left endpoint
at p and right endpoint at q. An easy observation is that
there exists an optimal solution consisting of k intervals
in {[p, q] | p, q ∈ S ∪ P}. For any two points p and q on
L, let d(p, q) denote the distance between them.

Let S = {s1, s2, . . . , sk} be the set of servers sorted
on L from left to right. Let Q = {q1, q2, . . . , qn} be the
set of clients sorted on L from left to right. For ease of
exposition, we assume no two points in S ∪Q are at the
same location.

The servers of S partition the clients of Q into k + 1
subsets, defined as follows. For each i ∈ [1, k − 1], let
Qi be the subset of the clients of Q between si and
si+1 on L. In addition, we let Q0 be the subset of the
clients of Q to the left of s1, and let Qk be the subset
of the clients of Q to the right of sk. Since both S and
Q are already given sorted, we can obtain the subsets
Q0, Q2, . . . , Qk in O(n + k) time. In the following, for
simplicity of discussion, we assume Qi is not empty for
each i ∈ [0, k]. This implies that the rightmost client
qn is to the right of the rightmost server sk and the
leftmost client q1 is to the left of the leftmost server s1.
For each i ∈ [1, k], let Q′i = {si} ∪Qi.

4.2 A Dynamic Programming Algorithm [4]

Consider any Q′i with 1 ≤ i ≤ k. Let q be any point in
Q′i. Consider the subproblem at q: Finding i intervals
on L such that each interval contains at least one server
of {s1, s2, . . . , si}, each client to the left of q (including
q if q 6= si) must be covered by at least one interval, and
the maximum length of these i intervals is minimized.
Define α(q) as the maximum length of the intervals in
an optimal solution of the above subproblem at q. Our
goal for the interval coverage problem is to solve the
subproblem at qn and compute the value α(qn).

For any point q ∈ S ∪Q, we use r(q) to denote right
neighboring point of q on L in S ∪ Q (i.e., the closest
point of S ∪ Q to q strictly to the right of q). Note
that after merging S and Q into one sorted list, we can
obtain r(q) for each q ∈ S ∪Q in constant time.

Initially, for each q ∈ Q′1, α(q) = d(q1, q) (recall that
q1 is to the left of s1). In general, consider any q ∈ Q′i



27th Canadian Conference on Computational Geometry, 2015

for any 2 ≤ i ≤ k. It holds that

α(q) = min
q′∈Q′i−1

max{α(q′), d(r(q′), q)}.

In words, in order to solve the subproblem at q, we
use the i − 1 intervals for the subproblem at q′ along
with an additional interval [r(q′), q]. To compute α(q),
Dumitrescu and Jiang [4] used the following observa-
tion: As we consider the points q′ of Q′i−1 from left to
right, α(q′) is monotonically increasing and d(r(q′), q)
is monotonically decreasing. Hence, if α(q′) for all q′ ∈
Q′i−1 are known, α(q) can be computed in O(log |Q′i−1|)
time by binary search.

In this way, α(qn) can be computed in O((n +
k) log(n+k)) time (more precisely, O((n+k) log n) time)
and an optimal solution can be found correspondingly.

4.3 An Improved Implementation

We give an O(n+k) time implementation for the above
dynamic programming scheme. To this end, we find a
new monotonicity property in Lemma 13.

Consider any point q ∈ Q′i such that r(q) is
still in Q′i. For any point q′ ∈ Q′i−1, define
f(q′) = max{α(q′), d(r(q′), q)}. Hence, α(q) =
minq′∈Q′i−1

f(q′). Let g(q) be the point in Q′i−1 such

that α(q) = f(g(q)) (if there is more than one such
point, we let g(q) refer to the rightmost one).

Lemma 13 Either g(r(q)) = g(q) or g(r(q)) is strictly
to the right of g(q).

Proof. We only give an “intuitive” proof. Recall that
as we consider the points q′ of Q′i−1 from left to
right, α(q′) is monotonically increasing and d(r(q′), q)
is monotonically decreasing. Intuitively, g(q) corre-
sponds to the intersection of the two functions α(q′) and
d(r(q′), q) for q′ ∈ Q′i−1 (e.g., see Figure 2). Similarly,
for the point r(q), which is still in Q′i, g(r(q)) corre-
sponds to the intersection of the two functions α(q′)
and d(r(q′), r(q)) for q′ ∈ Q′i−1. An observation is
that we can obtain the function d(r(q′), r(q)) by shift-
ing d(r(q′), q) upwards by the value d(q, r(q)) (e.g., see
Fig. 2). This implies that g(r(q)) cannot be strictly to
the left of g(q). The lemma thus follows. �

Lemma 13 essentially says that if we consider all
points q ∈ Q′i from left to right, then g(q) in Q′i−1
are also sorted on L from left to right. Due to this
monotonicity property on g(q), we can compute g(q)
and α(q) for all q ∈ Q′i in a total of O(|Q′i−1| + |Q′i|)
time by scanning the points of Q′i−1 from left to right.
More specifically, suppose we have computed g(q) and
α(q) for some q ∈ Q′i; then if r(q) is still in Q′i, we can
compute g(r(q)) and α(r(q)) by scanning the points of
Q′i−1 starting from g(q) to the right.

q′

α(q′)

g(q) g(r(q))

d(r(q′), r(q))

d(r(q′), q)

Figure 2: Illustrating the three functions α(q′), d(r(q′), q), and
d(r(q′), r(q)) for q′ ∈ Q′i−1.

In this way, the value α(qn) can be computed in
O(n + k) time, and an optimal solution can be found
correspondingly. Hence, we have the following theorem.

Theorem 14 The facility-location movement problem
can be solved in O(n+ k) time.

Acknowledgment. The authors would like to thank
Minghui Jiang for bringing these problems to them. The
research was supported in part by NSF under Grant
CCF-1317143

References

[1] S. Cabello. Approximation algorithms for spreading
points. Journal of Algorithms, 62:49–73, 2007.

[2] B. Chandra and M. Halldórsson. Approximation algo-
rithms for dispersion problems. Journal of Algorithms,
38:438–465, 2001.

[3] E. Demaine, M. Hajiaghayi, H. Mahini, A. Sayedi-
Roshkhar, S. Oveisgharan, and M. Zadimoghaddam.
Minimizing movement. ACM Transactions on Algo-
rithms, 5(3), 2009. Article No. 30.

[4] A. Dumitrescu and M. Jiang. Constrained k-center and
movement to independence. Discrete Applied Mathe-
matics, 159:859–865, 2011.

[5] A. Dumitrescu and M. Jiang. Dispersion in disks. The-
ory of Computing Systems, 51:125–142, 2012.

[6] J. Fiala, J. Kratochv́ıl, and A. Proskurowski. Systems of
distant representatives. Discrete Applied Mathematics,
145:306–316, 2005.

[7] Z. Friggstad and M. Salavatipour. Minimizing move-
ment in mobile facility location problems. ACM Trans-
actions on Algorithms, 7(3), 2011. Article No. 28.

[8] N. Karmarkar. A new polynomial-time algorithm for
linear programming. Combinatorica, 4:373–395, 1984.

[9] L. G. Khachiyan. Polynomial algorithm in linear pro-
gramming. USSR Computational Mathematics and
Mathematical Physics, 20:53–72, 1980.

[10] S. Ravi, D. Rosenkrantz, and G. Tayi. Heuristic and
special case algorithms for dispersion problems. Oper-
ations Research, 42(2):299–310, 1994.

[11] D. Wang and Y.-S. Kuo. A study on two geometric loca-
tion problems. Information Processing Letters, 28:281–
286, 1988.


