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Abstract

Given an instance of a geometric set cover problem on a
set of points X and a set of objects R, the dual is a geo-
metric hitting set problem on a set of points P and a set
of objects Q, where there exists a one-to-one mapping
from each xj ∈ X to a dual object Qj ∈ Q and for each
Ri ∈ R to a dual point in pi ∈ P , so that a dual point
pi is contained in a dual object Qj if and only if the cor-
responding primal point xj is covered by the object Ri.
In this work, we explore the setting of geometric dual-
ity for geometric set cover problems on pseudodisks. We
first show that there does not always exist a geometric
dual on pseudodisks. We initiate the search for a char-
acterization of the class of objects that may be dualized
by identifying a sufficient (but not necessary) property
for a dual to exist on distinct pseudodisks, called the
pair-cover and crossing-quad free property. We show
that such problems may be dualized into hitting set in-
stances on pseudodisks by building a planar support for
the dual instance, and then constructing an orthogo-
nal drawing of the support which we transform into a
dual set of pseudodisks. A corollary of these results is a
PTAS for dualizable set cover problems using the PTAS
for hitting set on pseudodisks.

1 Introduction

Geometric duality is a beautiful and useful tool for com-
putational geometers, as some problems are conceptu-
ally simpler to solve in the dual setting. The classic
example is point-line duality in the plane, see e.g. [8,
§8.2]. Duality has been the catalyst for breakthroughs
such as the first optimal algorithm for the half-plane
range query problem [6]. Our interest lies in geomet-
ric set cover and hitting set problems, motivated by the
distinction that there exists a PTAS for the hitting set
problem on pseudodisks [14],1 while none is known for
the set cover problem on pseudodisks. Therefore, we en-
deavoured to prove that any set cover problem on pseu-
dodisks could be dualized to a hitting set problem on
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pseudodisks in polynomial time (and vice versa), which
would permit the use of the PTAS to obtain an approx-
imate solution.

Unfortunately, it turns out that the dualization we de-
sired is not always possible, and we open our study by
proving this fact. We show that dualization is straight-
forward for problems where all regions in the instance
are translations of a geometric object. We proceed by
studying dualization on pseudodisks having the pair-
cover and crossing-quad free property, and we prove
that such objects may always be dualized.

1.1 Definitions and Nomenclature

We begin by reviewing concepts required for our discus-
sion.

Definition 1 Pseudodisk: A pseudodisk is a region of
the plane bounded by a closed Jordan curve, with the
restriction that the boundaries of any two pseudodisks
in a given instance may intersect only transversely and
at most twice.

Definition 1 could be generalized to allow pseudodisks
to intersect exactly once (tangentially at a single point),
but we ignore this detail for clarity of exposition.

Definition 2 Geometric Set Cover Problem: Given a
set of points X and a set of geometric objects R, the
geometric set cover problem is to find a subset R? ⊆ R
of minimum cardinality so that all elements of X are
covered by R?, i.e. X ⊆ ∪R∈R?R ∩X.

Definition 3 Geometric Hitting Set Problem: Given
a set of points P and a set of geometric objects Q, the
geometric hitting set problem is to find a subset P ? ⊆ P
of minimum cardinality so that all objects in Q contain
at least one element of P ?, i.e. ∀Q ∈ Q, Q ∩ P ? 6= ∅.

Definition 4 Geometric Dual: Given an instance of
the set cover problem S = (X,R) (the primal setting),
an instance of the hitting set problem H = (P,Q) is
a geometric dual of S (the dual setting) if there are
bijections between X and Q as well as R and P and
any point pi ∈ P is contained in an object Qj ∈ Q if
and only if the corresponding point xj ∈ X is covered
by the object Ri ∈ R in the primal setting. An optimal
solution P ? for the dual setting corresponds exactly to
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an optimal solution R? for the primal setting. A set
cover instance dualizing a hitting set instance is defined
analogously.

In this discussion, we usually omit the prefix “geomet-
ric” from the concepts defined here. We consistently use
X and R for set cover and P and Q for hitting set to
differentiate the two settings. We write ∂Ri to denote
the boundary of a pseudodisk Ri. We assume that all
points and pseudodisks are distinct.

1.2 Related Work

The conventional application of duality is to points and
lines (or pseudolines, which are curves that intersect
pairwise at most once, and such intersections must not
be tangential) [2, 10]. A set of pseudolines can define
the boundaries of a set of pseudo-halfplanes so that the
setting becomes a set cover or hitting set problem, and
the preservation of the “above-below” property in the
dual means that duality exists and is well defined for
our purposes. Our work seeks to extend these results to
pseudodisks.

A corollary of our result is the derivation of a PTAS
for some set cover problems on pseudodisks by showing
that they may be dualized to hitting set problems on
pseudodisks, allowing the hitting set PTAS of Mustafa
and Ray [14] to be applied. This is an active area of
research; a QPTAS for broad classes of set cover prob-
lems was recently found [13]. Our algorithm makes use
of the arrangement of the boundaries of a set of pseu-
dodisks (this set of boundaries is also known as a set
of pseudo-circles); the combinatorial properties of such
arrangements are well studied [1].

A hypergraph is a generalization of a standard graph,
where a hyperedge may contain any number of points.
Therefore, a hypergraph H = (V, F ) may be used
as an abstract representation of a set cover problem
S = (X,R) (or hitting set problem) by creating a ver-
tex vj in V for each point xj in X, and mapping each
edge fi ∈ F to an object Ri ∈ R so that the vertices
in fi ∩ V correspond exactly to the points in Ri ∩ X.
A planar support of a hypergraph H = (V, F ) is a pla-
nar graph G = (V,E) where the subgraph of G induced
by any hyperedge fi ∈ F is connected. Much of the
research with respect to planar supports has been to
determine whether a planar support exists for a given
hypergraph [5, 12]. Our use of planar supports is re-
versed, since finding the hypergraph corresponding to
the hitting set instance dualizing a given set cover in-
stance is straightforward. We build a planar support for
the hypergraph, and the support is used to create the
dual hitting set instance on pseudodisks. To our knowl-
edge, supports have not been used in a similar manner
before.

2 A Counterexample for Duality on Pseudodisks

Theorem 1 There exists a family of set cover problems
on pseudodisks for which there is no dual hitting set for-
mulation on pseudodisks (and equivalently, such hitting
set problems on pseudodisks cannot be dualized into set
cover instances on pseudodisks).

See Appendix A for the proof of Theorem 1.

3 Geometric Dual of Set Cover

Our aim is to identify classes of set cover problems on
pseudodisks that may always be dualized. We begin
with a more general result that is fairly trivial to estab-
lish.

Theorem 2 Problems defined on translates of any sin-
gle object can always be dualized.

See Appendix A for the proof of Theorem 2.
For the remainder of the paper, we outline a method

for reducing an instance of another class of geometric
set cover problems on pseudodisks to an instance of a
geometric hitting set problem on pseudodisks (or vice
versa, of course).

Definition 5 Pair-Cover Free Property: The Pair-
Cover Free (PF) property holds for a set of geometric
objects R if Ri 6⊆ Rj ∪Rk for all Ri, Rj , Rk ∈ R.

Definition 6 Crossing-Quad Free Property: If
Rk ∩ R` 6⊆ Ri ∪ Rj for any four pseudodisks
{Ri, Rj , Rk, R`} ⊆ R where Ri ∩ Rj ⊆ Rk ∪ R`,
then the Crossing-Quad Free (CF) property holds.2

We define the pair-cover and crossing-quad free set
cover (PCF-SC) problem on pseudodisks as the set
cover problem S = (X,R) where R is a set of pseu-
dodisks with the PF and CF properties.

Theorem 3 Any instance S = {X,R} of PCF-SC may
be reduced to an instance of a hitting set problem H =
{P,Q} in polynomial time, where P is a set of points, Q
is a set of pseudodisks (both in R2), and H is a geometric
dual of S.

The reduction progresses in two stages. First, the set
cover instance is converted to a special graph known as
a planar support G = (V,E), where each vertex vi ∈ V
corresponds to a pseudodisk Ri ∈ R and each point
xj ∈ X maps to a connected induced subgraph Sj of G.
Finally, we show how to fatten each of the subgraphs
in the plane to form a pseudodisk, creating an instance
of the hitting set problem on pseudodisks that is a geo-
metric dual of the original set cover instance. We give
an overview of the proof below, which is then proved
formally in the remainder of Section 3:

2This property is only used in the proof of Lemma 9.
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is forbidden by the
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Figure 1: Cases illustrating the different ways in which one pseudodisk may intersect two others. The figures are
oriented so the walk on Ri is clockwise.

1. Convert the set cover instance to a planar support:

(a) Build the support by iterating over the regions of
the plane in the arrangement of the pseudodisks in
order of increasing depths (Algorithm 1).

(b) Show that the subgraph of the support imposed by
any point is connected (Lemma 7).

(c) Show that the support is planar (Lemma 8).

2. Convert the planar support to a hitting set instance:

(a) Show that the support may be embedded orthogo-
nally (Theorem 10).

(b) Show that each edge may be fattened to define a
bounded region of the plane, and that these objects
may be arranged and manipulated to become pseu-
dodisks (Lemma 11).

3.1 Properties of Pair-Cover Free Set Cover

Various arguments in this discussion consider the possi-
ble ways in which three pseudodisks may interact, and
so we enumerate all possible cases. Consider two pseu-
dodisks Rj and Rk that each intersect a third pseu-
dodisk Ri. Let j+, j−, k+, k− denote the set of events
that occur during a clockwise walk around ∂Ri, where
j+ indicates the point of entry into Rj and j− indicates
the point of exit. We may arbitrarily begin our walk
at j+, and so there are 3! possible walks (see Figure 1),
which we divide into cases. Note that for Cases 1–3, we
begin outside Rk, while for Cases 4–6 we begin inside.

Case 1. j+, j−, k+, k−: A pseudodisk Ri may either
cover Rj ∩ Rk completely or not at all depending on
how the path is closed to create a pseudodisk. Call these
Cases 1a (Figure 1a) and 1b (Figure 1b), respectively.

Case 2. j+, k+, j−, k−: Ri covers exactly one point in
∂Rj ∩ ∂Rk, as shown in Figure 1c.

Case 3. j+, k+, k−, j−: Ri covers either both points or
neither point in ∂Rj ∩ ∂Rk. However, covering both
points entails violating the PF property, since Rk ⊂
Ri ∪Rj in this scenario (see Figure 1d). Therefore, the
only valid scenario for Case 3 is that where Ri covers
neither point in ∂Rj ∩ ∂Rk, shown in Figure 1e.

Case 4. j+, j−, k−, k+: This is symmetric with Case 3
(swap the labels j and k).

Case 5. j+, k−, j−, k+: This is symmetric with Case 2.

Case 6. j+, k−, k+, j−: The beginning of the tour is in
Rj∩Rk. The next event is k−, so the path is now in Rj\
Rk, and the following event is k+, so both intersection
points of ∂Ri ∩ ∂Rk are in Rj . The last event j− is in
Rk, and so both points of ∂Ri∩∂Rj are in Rk, implying
that Ri ⊆ Rj ∪Rk which violates the PF property.

Therefore, the distinct cases are 1a, 1b, 2, and 3.
Lemma 4 is an immediate consequence of Case 2:

Lemma 4 Given any instance of PCF-SC, if a pseu-
dodisk Ri intersects the boundaries of two other pseu-
dodisks (say ∂Rj and ∂Rk) in the closed region Rj∩Rk,
then exactly one point of ∂Rj ∩ ∂Rk is covered by Ri.

3.2 Building the Support

To build the support we describe how to construct an
adjacency list that is a supergraph of the support and a
subgraph of the intersection graph of R; as we explain
later, the support may be derived from the adjacency
list. The support G has the property that if (vi, vj) ∈ G
then Ri∩Rj 6= ∅, but the reverse is not necessarily true.
Rule 1 holds for the adjacency list and the support G:

Rule 1 For any three pseudodisks {Ri, Rj , Rk}, if Ri∩
Rj ⊆ Rk then there is no edge (vi, vj) in the support G.

The adjacency list is stored as a map from each vertex vi
to the set of neighbouring vertices, where a neighbour
vertex corresponds to a pseudodisk that intersects Ri

in the primal without violating Rule 1. A non-empty
intersection between pseudodisks R1 and R2 does not
necessarily imply the existence of the edge (v1, v2) in
the adjacency list; it does, however, imply the following
lemma:

Lemma 5 For every i ≥ 1 and R′ = {Ra1
, . . . , Rai

} ⊆
R, where R′ is the set of all pseudodisks covering some
cell of the arrangement, then G′ is connected, where G′

is the subgraph of the adjacency list induced by the ver-
tices va1

, va2
, . . . , vai

associated with R′.
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Proof. Suppose otherwise. That is, there exists R′ =
{Ra1

, . . . , Rai
} ⊆ R such that

⋂
1≤j≤i Raj

6= ∅ and the
corresponding induced subgraph of the adjacency list is
disconnected. Suppose Raa and Rab

in R′ lie in separate
components in the induced subgraph. Since there is
no edge (vaa

, vab
) in the subgraph, Rule 1 must have

been applied such that Raa
∩ Rab

⊆ Rac
for some Rac

.
Consequently, Rac

∈ R′. Without loss of generality,
suppose Raa and Rac lie in separate components. Again,
Rule 1 must have been applied such that Raa ∩ Rac ⊆
Rad

for some Rad
∈ R′. Observe that Raa

∩Rab
⊆ Raa

∩
Rac
⊆ Rad

. Since R′ is finite, this argument cannot be
applied indefinitely, leading to a contradiction. �

The support is built iteratively using the depths of
regions of the plane in the primal, where the depth
is defined as the number of pseudodisks entirely cov-
ering that region of the plane (a region in this case is a
cell in the arrangement of the set of pseudodisks), and
so a region with depth k is covered by k pseudodisks.
Let A(R) denote the arrangement defined by the pseu-
dodisks in R. Note that although some cells of the ar-
rangement do not necessarily contain a point of X in the
primal, we create a subgraph in the support for each cell
in the arrangement. We show that a pseudodisk may be
created in the dual for each cell, and those not needed
in the dual may be discarded later. The algorithm for
building the support is sketched in Algorithm 1.

Algorithm 1 BUILD-SUPPORT(S = {X,R})
1: Input: An instance of the PCF-SC problem S.
2: Output: G = (V,E), a planar support for the dual

of S.
3: Insert a vertex vi in V for each Ri in R.
4: Consider the arrangement of the plane imposed by

the pseudodisks R, call it A(R). Sort the cells of
A(R) in order of increasing depth. An element Z ∈
A(R) is defined by a subset of R.

5: For each vertex vi ∈ V , compute the adjacency list.
6: For each region of depth 1, add a self-loop to the

corresponding vertex in G (Figure 2).
7: for each region Z ∈ A(R) (in order of depth = 2→
|R|) do

8: If the subgraph of G induced by the vertices corre-
sponding to the set of pseudodisks R′(⊆ R) that
cover Z has two or more connected components,
then iteratively add edges to join pairs of com-
ponents using edges selected from the adjacency
lists until the induced subgraph is connected.

9: end for
10: return G

Each region of depth 1 corresponds to a pseudodisk
that uniquely covers some region of the plane in the
primal (one pseudodisk may cover many such regions).
Each vertex in G corresponding to such a pseudodisk is

R1 R2 R3

(a)

v1

v2

v3

(b)

Figure 2: Building the neighbourhood graph. (a) Three
pseudodisks R1, R2, R3, where R1 ∩R3 ⊆ R2. (b) Each
pseudodisk has a self-edge in G, and there are edges
(v1, v2) and (v2, v3). The region of depth 3 in (a) is
covered by R1, R2, R3, but in the graph v1, v2, v3 form
a connected subgraph of G, so no further edges are re-
quired.

given a self-loop in E so that each cell in the arrange-
ment corresponds to a non-empty set of edges in E.

The iterative procedure continues by considering re-
gions of increasing depth, although edges are only added
to G if the subgraph induced by the set of vertices cor-
responding to the region is not already connected. If
the subgraph is not connected, then a pair of vertices
(vi, vj) is selected so that vi and vj are in separate com-
ponents of the subgraph and vj is in the adjacency list
for vi. As shown in Lemma 5, some such pair must al-
ways exist, and so edges are added until the induced
subgraph is connected. The algorithm can be made
consistent by imposing a total ordering on the edges
using their labels as keys, and always choosing the first
edge in the ordering that connects components of the
graph. The algorithm for connecting induced subgraphs
operates somewhat analogously to Kruskal’s minimum
spanning tree algorithm, where edges already in G have
zero weight, edges permitted by the adjacency lists are
given unit weight, and those not permitted have infi-
nite weight. Our approach has additional complexities,
however, because we are operating on subgraphs of the
support, and we must take care when adding edges to
maintain the planarity of the support.

3.3 Planarity of the Support

The relative order of the edges around a vertex may
be defined unambiguously by the objects in the primal.
Call the pseudodisk R2 a neighbour of pseudodisk R1

if an edge between v1 and v2 exists in G. Let Ri be
a region of the plane which is intersected by both Rj

and Rk, as we examined in Figure 1. If there is an
unambiguous sense that Rj ∩ ∂Ri is clockwise or coun-
terclockwise of Rk ∩ ∂Ri w.r.t. any R` ∩ ∂Ri on ∂Ri,
then the edges (vi, vj) and (vi, vk) must have the same
relative ordering w.r.t. (vi, v`) around vi in G, for each
such R` where the edge (vi, v`) exists. For brevity going
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forward, we simply refer to the relative order of Rj and
Rk on ∂Ri.

The boundaries ∂Rj and ∂Rk may intersect 0, 1, or
2 times in Ri. If 0 times, then we are in either Case
1b or Case 3 (refer to §3.1). If 1b, then Ri ∩ Rj ∩ Rk

is empty and the relative order of Rj and Rk on ∂Ri is
unambiguous. Case 3 does not arise, as it implies that
either Ri ∩ Rj ⊆ Rk or Ri ∩ Rk ⊆ Rj , which means
(vi, vj) 6∈ G or (vi, vk) 6∈ G respectively by Rule 1. If
|∂Rj ∩ ∂Rk ∩ Ri| = 1, i.e. Case 2, then necessarily
|∂Ri ∩ ∂Rk ∩Rj | = 1 and |∂Ri ∩ ∂Rj ∩Rk| = 1 as well,
by Lemma 4. In this case, there is an unambiguous
sense where one of Rj or Rk is clockwise of the other on
Ri. If |∂Rj ∩ ∂Rk ∩ Ri| = 2, then Case 1a applies and
so Rj ∩ Rk ⊆ Ri, which means the relative ordering of
the pseudodisks Rj and Rk on Ri is again unambiguous.
Therefore, relative orderings may always be consistently
applied to the edges of G in the embedding.

A cycle in G corresponds to a set of pseudodisks that
partitions the plane into an unbounded region and a
(possibly empty) set of bounded regions.

Lemma 6 There is a deterministic method for creating
a cycle C in the embedding of G so that the clockwise
ordering of the vertices in C is defined by corresponding
pseudodisks in the primal.

See Appendix A for the proof of Lemma 6.
The support now contains subgraphs corresponding

to cells of the arrangement in the primal, where each
vertex of the support corresponds to a pseudodisk in the
primal that covers the point corresponding to the sub-
graph. This is immediate from the construction, since
the point must exist in one of the regions of the plane
used to build the graph, and a subgraph is built for each
region. G adheres to the definition of a support for the
dual, since each necessary subgraph is a connected in-
duced subgraph of G, which gives the following lemma:

Lemma 7 For any point xj in the primal, and all ver-
tices vi ∈ V in the support corresponding to pseudodisks
Ri ∈ R in the primal, there exists a connected subgraph
Sj ⊆ G where vi ∈ Sj if and only if xj ∈ Ri.

Lemma 8 The support G is planar.3

See Appendix A for the proof of Lemma 8.

3.4 Dual Properties of the Support

The support G encapsulates some of the combinatorial
structure of the dual; to complete the dual we must

3Note that if our goal was to simply derive a PTAS for this
class of set cover problems, we could stop here by showing that
the PTAS of [14] applies given that the support has the requisite
locality property. However our primary goal is to demonstrate
the existence of duality, so we proceed nonetheless.

construct a set of pseudodisks defined by the connected
subgraphs on G that correspond to the points in the
primal. The subgraphs have several characteristics that
allow the creation of the dual hitting set instance.

Lemma 9 Let C denote a cycle in an induced subgraph
S of G in the embedding, where S corresponds to a point
x in the primal and C corresponds to pseudodisks RC .
Any vertices on the interior of the bounded region de-
fined by C must correspond to pseudodisks that cover x
in the primal.

See Appendix A for the proof of Lemma 9.

3.5 Building the Hitting Set Instance

We now describe how to embed the support G in the
plane and transform it into the dual hitting set instance.
To begin, remove subgraphs from the support that do
not correspond to points in X in the primal. We con-
struct a planar orthogonal box drawing4 of the support
G using the following result:

Theorem 10 (Biedl and Kaufmann (1997) [4])
Given a planar triconnected graph G = (V,E), a planar
orthogonal box drawing of G can be drawn in O(m + n)
time on a (m−n+ 1)×min{m−n+ 1,m/2} grid with
m− n edge bends, where n = |V | and m = |E|.

The drawing of the support remains planar, and while
G is not necessarily triconnected, one may add dummy
edges to make it triconnected and then remove the
dummy edges once the drawing is computed [9]. The
placement of the point set P for the dual hitting set in-
stance is simple: place a point inside each of the vertices
(boxes) of the orthogonal drawing of the support, and
these will dualize the corresponding pseudodisks of R
in the primal (and so |P | = |V |). Now we describe how
to create the set of pseudodisks Q for the dual hitting
set instance.

A finer grid is imposed upon the orthogonal drawing
with a resolution of 1/(2m+ 1), where m is the number
of pseudodisks needed in the dual, i.e., the cardinality
of X in the primal. The pseudodisks that are created
for the dual are orthogonal polygons with edges incident
upon the lines in this finer grid. An edge e is made k-fat
by taking the Minkowski sum of e with [−k, k]× [−k, k].
We fatten parts of the edges as necessary using points
on the refined grid, so that parts of the edges may be
(k/(2m + 1))-fat, for k ∈ [0, . . . ,m], (i.e., all edges of
the drawing are less than (1/2)-fat).

If all edges of a subgraph are grown to be k-fat (for
possibly varying values of k), the subgraph defines a
polygon. Any introduced holes are removed (Lemma 9

4A box drawing is a graph with orthogonal non-overlapping
edges, where vertices may be drawn as rectangles in order to ac-
commodate all incident edges.
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established the validity of this action, since removing a
hole never causes the simplified region to cover any new
vertices of G).

The planar regions are constructed iteratively. For
subgraph S1 = (V1, E1), create a polygon so that the
subgraph is (1/(2m+1))-fat. Now S2 is added, and any
overlap must be resolved. Overlapping edges may be
resolved by making one of the edges (2/(2m + 1))-fat
in the area of overlap. Repeating this operation of in-
serting and fattening existing edges for each subgraph
creates a hitting set instance that dualizes the set cover
instance, although the resulting objects are not neces-
sarily pseudodisks. However, the removal of extraneous
intersections is always possible so that all objects are
pseudodisks. See Appendix B for details.

This establishes the following lemma:

Lemma 11 All subgraphs of the support induced by a
set of vertices corresponding to a point in the primal
may be enclosed with a region of the plane so that all
such regions are pseudodisks.

Finally, any cell of the arrangement that contained k
points in the primal requires k − 1 additional pseu-
dodisks in the dual. Since we are not concerned with the
PF property in the dual, we nest the missing dual pseu-
dodisks just inside the existing dual pseudodisk so that
they all have the same combinatorial structure with re-
spect to all other points and pseudodisks in the hitting
set instance. These pseudodisks form the objects Q for
the dual hitting set instance. If the dualization may be
completed in polynomial time, then Theorem 3 follows.

Theorem 12 Dualization of an instance of PCF-SC
on pseudodisks to an instance of the hitting set problem
on pseudodisks can be completed in O(Im5 logm+mn)
time, where m = |R| = |V | = |P |, n = |X| = |Q|, and
I denotes the time required to compute the intersection
points of a pair of pseudodisks.

See Appendix A for the proof of Theorem 12.

4 Conclusions

Our examination of the geometric duality of set cover
and hitting set problems on pseudodisks has revealed
positive and negative results. Perhaps surprising is the
fact that not all instances are dualizable. The construc-
tion of a geometric dual is possible on translates of an
object, or when we restrict instances on pseudodisks to
those that have what we call the pair-cover and quad-
crossing free property. A corollary of the dualization
is that there exists a PTAS for set cover problem on
pseudodisks with this property. Our algorithm for the
construction of the dual applies interesting techniques,
as we make use of graph drawing techniques to build
the dual from a planar support.

There remain several open questions. Our dualiza-
tion technique requires that the primal setting have the
PF property, while the dual instance that is created
does not necessarily have this property. It would be
preferable if the dual instance also had the PF prop-
erty, but we conjecture that there exists a counter-
example to show that such duality does not always ex-
ist. Finally, the dualization also requires that the quad-
crossing free property applies, but this property does
not seem tremendously important to the dualization.
We conjecture that duality is possible on instances with-
out the CF restriction.
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A Appendix: Proofs

Proofs omitted from the main text due to space constraints
appear in full in this section.

Theorem 1 There exists a family of set cover problems on
pseudodisks for which there is no dual hitting set formulation
on pseudodisks (and equivalently, such hitting set problems
on pseudodisks cannot be dualized into set cover instances
on pseudodisks).

Proof. Consider a set X of n points in the plane in general
position. Let R be a maximal set of circular disks so that
Ri ∩X 6= Rj ∩X for any Ri, Rj ∈ R; there are ω(n2) such
disks [11]. Since the arrangement of a set of n pseudodisks
has at most n2 − n + 2 cells [15], this is the maximum num-
ber of cells in the arrangement dualizing the n points of X.
However, the ω(n2) disks in the primal require ω(n2) distinct
cells in the arrangement, and so such an instance cannot be
dualized. �

Theorem 2 Problems defined on translates of any single
object (including pseudodisks) may always be dualized.

Proof. Given a canonical object C, choose a reference point
r so that r ∈ C, and let −C be the reflection of C through
r. To create a dualization, replace every translated object
with a similarly translated instance of r, and replace every
point with a translation of −C so that r is incident upon the
point. Due to the reflection through r, every point (of the
plane) in C maps to a unique point in −C, and this point
maps back to the original point again. Therefore, a set R in
the primal contains a point x if and only if the dual of R is
in the dual of x. �

Lemma 6 There is a deterministic method for creating a
cycle C in the embedding of G so that the clockwise ordering
of the vertices in C is defined by corresponding pseudodisks
in the primal.

Proof. Suppose we wish to add the edge (v1, vk) to the
graph G, which will result in a new cycle C. Let (v1, v2)
be the other edge incident upon v1 in the cycle. We know
that part of ∂R1 lies outside of R2 ∪Rk by the PF property.
Consider a very small pseudodisk R′ that covers some point
on ∂R1 \ R2 ∪ Rk as a reference, and assume that the edge
(v1, v

′) is required in G.
Any edge (vi, vi+1) in the cycle represents two vertices

whose corresponding objects Ri and Ri+1 in the primal have
a non-empty area of intersection. By Rule 1, Ri ∩ Ri+1 is
not covered by any other object, and so there exists a point
in Ri ∩Ri+1 outside of R1. Therefore, we may place a point
in Ri ∩ Ri+1 in the primal for every edge (vi, vi+1) in the
cycle. Given two consecutive edges of the cycle (vi, vi+1) and
(vi+1, vi+2), there exists a path in the primal inside Ri+1\R1

from the point in Ri∩Ri+1 to that in Ri+1∩Ri+2, since the
objects are pseudodisks (to prevent such a path, Ri+1 \ R1

would have to be disjoint). Let H be the path defined by
joining all of the points defined by the cycle in this manner.

The points in R1∩R2 and R1∩Rk are in R1, so the union
of the path H with R1 defines one unbounded region of the
plane and at least one bounded region outside of R1 (H need
not be simple). The reference pseudodisk R′ will either be on
the boundary of the unbounded region or a bounded region.
The relative order of the edges (v1, v2), (v1, vk), and (v1, v

′)
around v1 is uniquely defined, as discussed earlier. Now the
rule for closing the cycle is as follows: the cycle encloses v′

in G if and only if R′ is on the boundary of a bounded region
of the plane defined by H ∪Ri in the primal. �

Lemma 8 The support G is planar.

Proof. We establish that G is planar by demonstrating that
edge crossings are never necessary under this scheme. Sup-
pose the graph G has been built so that the support is planar
so far, but the next edge to be added would violate pla-
narity. Let one such edge be (v1, v2). Therefore, v2 is in the
adjacency list for v1, and R1 ∩ R2 contains the cell of the
arrangement for which we are building an induced subgraph
in the support.

If v1 cannot be connected to v2 with an edge while pre-
serving planarity, then v1 and v2 belong to a connected com-
ponent of G (otherwise we could place them in the same
face), but they are separated by at least one cycle of edges
C whose vertices are not part of the subgraph we are con-
structing (otherwise the vertex in the cycle would be part
of some connected component that we could add an edge
to). At minimum, the cycle C corresponds to a sequence of
pseudodisks that are pairwise intersecting, and whose union
is a bounded region of the plane and which may separate
the plane into several regions. The cell of the arrangement
must lie outside of all pseudodisks in C; any pseudodisk
covering the cell has a vertex in the subgraph. One of the
vertices in {v1, v2} is on the interior of C and the other is
not, and because the combinatorial structure of the primal is
preserved in the support G, one of {R1, R2} lies partially in
the bounded region of the plane defined by the boundaries
of the regions defining the cycle, and the other lies partially
on the unbounded region. Therefore, either R1 or R2 must
cross the pseudodisks in C to cover the cell in the arrange-
ment. However, no pseudodisk may cross C. To do so would
require either intersecting the boundary of a pseudodisk in
C in at least four places (which violates the definition of a
pseudodisk), or covering the area of intersection of at least
two pseudodisks in C (which means that C is not a cycle,
by Rule 1). �

Lemma 9 Let C denote a cycle in an induced subgraph S
of G in the embedding, where S corresponds to a point x
in the primal and C corresponds to pseudodisks RC . Any
vertices on the interior of the bounded region defined by C
must correspond to pseudodisks that cover x in the primal.

Proof. Consider a cycle C in S with a vertex v (correspond-
ing to a pseudodisk R in the primal) where v has a neighbour
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v
v′

vcw

vccw

x

R

Rcw

Rccw

R′

v1

vk

{v2, . . . , vk}

{R1, . . . , Rk}

(a) (b)

∂RC

Figure 3: (a) Let C be a cycle in a subgraph S where a
vertex v′ 6∈ S is in the interior of C, and the edge (v, v′)
exists in the support. vcw (resp. vccw) is the clockwise
(resp. counterclockwise) neighbour of v on the cycle. (b)
All vertices in S correspond to pseudodisks covering a
point x in the primal, and R′ (the dual of v′) does not
cover x. The union of the pseudodisks dualizing the
vertices in C (minus v) form a contiguous subset of the
boundary of R which we call ∂RC (drawn as the thick
dashed line). R′ covers a contiguous subset of ∂RC .

v′ on the interior of the cycle and v′ 6∈ S. The pseudodisks
in RC \ R (in the primal) have a common area of inter-
section in R (since they all cover x and x ∈ R), and each
edge of the cycle corresponds to a pair of pseudodisks that
must intersect outside of R by Rule 1. It follows that the
union of the pseudodisks in RC covers a contiguous portion
of the boundary of R, otherwise the boundaries of some pair
of pseudodisks would have to intersect each other at four
points. Let ∂RC denote this portion of the boundary of R,
as illustrated in Figure 3.

Now consider the two neighbours of v in C; call vcw (resp.
vccw) the clockwise (resp. counterclockwise) neighbour of v
on C, and let Rcw (resp. Rccw) denote the corresponding
pseudodisk in the primal. Since v′ lies on the interior of
cycle C, by our construction algorithm, the entry point of
R′ lies between that of Rcw and Rccw on ∂RC . Consider
a pseudodisk Ri ∈ RC that contains the entry point of R′.
The exit point of R′ must be outside of Ri, otherwise either
R′ ⊂ Ri ∪ R, which would violate the PF property, or R ∩
R′ ⊆ Ri, which would mean there is no edge (v, v′) by Rule 1.
Furthermore, the entry and exit points of R′ cannot span
those of any pseudodisk Rj ∈ RC . To do so would require
that |∂Rj ∩ ∂R′ ∩R| = 2, since R′ cannot cover the point x
in R ∩ Rj , which would imply that Rj ⊆ R ∪ R′, violating
the PF property. Therefore, if the entry point of R′ is in Ri,
we can choose a pseudodisk Rj containing the exit point so
that Ri and Rj are dualized by the vertices vi and vj and
the edge (vi, vj) is in C.

Since the entry point of R′ is in Ri \ Rj and the exit
point is in Rj \Ri, we may conclude that Ri ∩Rj ∩ ∂RC ⊂
R′. Therefore, by Lemma 4, R′ must cover either R ∩ Ri ∩
Rj or Ri ∩ Rj \ R. Of course, it cannot cover R ∩ Ri ∩
Rj since this includes the point x, and we assumed that
x 6∈ R′. However, R′ cannot cover Ri ∩ Rj \ R, since this
implies that {Ri, Rj , R,R′} is a crossing quad. Since either

R′ must cover x or v′ must be outside the cycle C, we have
a contradiction. �

Lemma 12 Dualization of an instance of PCF-SC on pseu-
dodisks to an instance of the hitting set problem on pseu-
dodisks can be completed in O(Im5 logm+mn) time, where
m = |R| = |V | = |P |, n = |X| = |Q|, and I denotes the
time required to compute the intersection points of a pair of
pseudodisks.

Proof. We show that the dualization can be completed in
O(Im5 logm + mn) time, where m = |R| = |V | = |P |,
n = |X| = |Q|, and I denotes the time required to compute
the intersection points of a pair of pseudodisks in the input
set cover instance. Better analysis might establish a lower
worst-case running time, but our goal is simply to establish
polynomial running time.

The construction of the support takes O(Im5 logm) time.
The arrangement of a set of m pseudodisks has at most
m2 − m + 2 cells [15], and so the support has O(m2) sub-
graphs. In Algorithm 1, line 3 takes O(m) time, line 4 may
be completed in O(Im2+m2 logm) time (sort the cells), line
5 may be done näıvely in O(m4) time, and line 6 may be com-
pleted in O(m2) time by traversing the arrangement. The
loop iterates O(m2) times, and inside the loop we find the
edges of the induced subgraph in G and then run Kruskal’s
minimum spanning tree algorithm to create a connected sub-
graph. Since we may have O(m2) edges in the graph, the
running time is in O(m2 logm) [7, p.570]. Checking whether
a new edge violates planarity may be done in O(m) time, but
the bottleneck on the running time is when an edge closes a
cycle. We can find the path in O(Im) time, and the determi-
nation of whether the pseudodisk R′ is on a closed face may
be done in O(Im) time by using one point in R′ as a test for
containment. This may be performed any time that an edge
is added, so the work inside the loop takes O(Im3 logm)
time, giving the O(Im5 logm) bound on the running time
for building the support.

The algorithm for the construction of the hitting set in-
stance from the support runs in O(m5 + mn) time. The
orthogonal box drawing of the support runs in O(m) time,
and the determination of the positions of the points in P may
be done at the same time. The insertion of a pseudodisk by
fattening the edges of the corresponding subgraph may be
done in O(m2) time, as each vertex of the subgraph may
require that O(m) other edges be fattened locally. There
are O(m2) pseudodisks to be inserted, and so this may be
done in O(m4) time. Any two objects have at most O(m)
intersections at this point, and each object is composed of
O(m) line segments, so the set of intersection points for the
pair may be found in O(m logm) time [3], and these may
placed in order around the boundary of one of the objects.
Reducing the number of intersection points for the pair re-
quires at most O(m) iterations of the algorithm to remove
pairs of intersection points. The algorithm may require de-
termining which of two differences of the objects contains
no points of P , and this may be done in O(m2) time by
checking each point for containment, since each of the dif-
ference regions has O(m) edges. Therefore, each pair may be
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Q1

Q2

Q1

Q2

(a) (b)

Qc

Figure 4: If ∂Q1 and ∂Q2 intersect in at least four
places, each set of four consecutive intersections falls
into one of two cases: (a) Q1 \Q2 and Q2 \Q1 are con-
nected, or (b) Q1 \Q2 and Q2 \Q1 are not connected.
The regions that may be resolved to reduce the number
of intersections are shaded.

repaired into pseudodisks in O(m3) time, for a total upper
bound of O(m5) time to convert all objects into pseudodisks.
Finally, pseudodisks are added for each point in X that has
no corresponding pseudodisk in Q, i.e., from those cells in
the arrangement containing more than one point from X.
There are O(n) such disks, and each may be placed in O(m)
time. �

B Appendix: Reducing the Number of Intersections

Consider a pair of objects, call them Q1 and Q2, enclosing S1

and S2 respectively, that are not pseudodisks. It has already
been established that the objects are simple and enclosed by
closed Jordan curves, so the only remaining possible viola-
tion is that the boundaries of Q1 and Q2 intersect more than
twice. The sequence of events of a walk on ∂Q1 (w.l.o.g.)
must contain 2+, 2−, 2+, 2−, and this gives rise to two cases
to consider: local to these events, Q1 \ Q2 and Q2 \ Q1 are
both either connected regions or not, as illustrated in Fig-
ure 4. The action taken to reduce the number of intersections
while preserving the dual property depends on the case.

Case 1. If Q1\Q2 and Q2\Q1 are connected, then there must
exist a bounded region of the plane Qc outside of Q1 ∪Q2.
We claim that we may remove the two points of intersection
between Q1 and Q2 on the boundary of this region by moving
the boundary of Q1 (w.l.o.g.) to be just inside that of Q2.
This will not cause Q1 to cover any additional points in
Q2 ∩ P , so the only way that this move affects the hitting
set combinatorially is if there exists any vertex vc of G in
Qc, i.e. the bounded region of the plane that was formerly
not covered by Q1 or Q2, but is now covered by Q1.

Consider the cycle of S1∪S2 that encloses Qc in the planar
embedding of the support. As with the proof of Lemma 9,
we note that if any vertex exists in Qc, then at least one
vertex v′ exists that is a neighbour of a vertex v in S1 ∪ S2,
and say w.l.o.g. that v ∈ S1. We define Rcw and Rccw as
before, and let Ri

cw be the first vertex in S1 ∩ S2 on the
cycle in a clockwise direction from v and Ri

ccw is defined
analogously for the counterclockwise direction (Rcw and Ri

cw

and also Rccw and Ri
ccw are not necessarily distinct). There

is a region of ∂R covered by the pseudodisks in the primal
corresponding to the vertices of the cycle moving clockwise
from Rcw to Ri

cw, and also analogously for Rccw and Ri
ccw,

call them ∂Rcw and ∂Rccw respectively. In fact, since Ri
cw ∩

Ri
ccw contains points dualizing both S1 and S2, their pairwise

area of intersection must extend across the boundary of R
to cover points x1 ∈ R and x2 6∈ R (Si dualizes xi), and so
∂Rcw ∪ ∂Rccw defines a contiguous interval of ∂R. Now the
same argument may be applied as in Lemma 9 to conclude
that either R′ covers x1 (the dual of S1), or else R′ must be
outside of the cycle. Therefore, removing intersections of the
dual in this case may be done without covering additional
vertices.

Case 2. If Q1 \ Q2 and Q2 \ Q1 are not connected, then
one of the two regions of Q2 \ Q1 may be moved inside Q1

unless both regions contain vertices of S2. Suppose this is
the case, and so an edge flip causes Q1 to cover additional
vertices of S2. This implies that there is some path that is a
subset of Q1 for which Q2 has vertices on both sides (i.e., the
endpoints of the path could not be joined to create a cycle
without enclosing vertices of Q2). However, it was demon-
strated that one subgraph cannot cross another in the proof
of Lemma 9, so one of the regions of Q2 \Q1 cannot contain
vertices of S2. Therefore, removing points of intersection
may again be done without covering additional vertices. In
both cases, there are no vertices in the regions where edges
are moved to resolve conflicts. Therefore, these resolutions
may be done without creating additional points of intersec-
tion with other objects by similarly translating other edges
if necessary.


