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A Combinatorial Bound for Beacon-based Routing in Orthogonal Polygons
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Abstract

Beacon attraction is a movement system whereby a
robot (modeled as a point in 2D) moves in a free space
so as to always locally minimize its Euclidean distance
to an activated beacon (also a point). This results in
the robot moving directly towards the beacon when it
can, and otherwise sliding along the edge of an obsta-
cle. When a robot can reach the activated beacon by
this method, we say that the beacon attracts the robot.
A beacon routing from p to q is a sequence b1, b2, . . . , bk
of beacons such that activating the beacons in order will
attract a robot from p to b1 to b2 . . . to bk, and where
a beacon placed at q will attract bk. A routing set of
beacons is a set B of beacons such that any two points
p, q in the free space have a beacon routing with the in-
termediate beacons b1, b2, . . . bk all chosen from B. Here
we address the question of “how large must such a B
be?” in orthogonal polygons, and show that the answer
is “sometimes as large as

⌊
n−4

3

⌋
, but never larger.”

1 Background

Beacon attraction has come to the attention of the com-
munity recently as a model of greedy geographical rout-
ing in dense sensor networks. In this application, each
node of the network has a location, and each commu-
nication packet knows the location of its destination.
Nodes having a packet to deliver forward the packet to
their neighbor that is the closest (using Euclidean dis-
tance) to the packet’s destination [5, 7].

In the abstract geometric setting, the destination
point is called a beacon, and the message is considered
to be a point (or robot) that greedily moves towards
the beacon. The robot, under this motion, may or may
not reach the beacon—if it does reach the beacon, we
say that the beacon attracts the robot’s starting point.
The attraction relation between points has the flavor of
a visibility-type relation, with the interesting twist that
it is asymmetric: if point p attracts point q, then it does
not follow that point q attracts p. In a series of pub-
lications, Biro, Gao, Iwerks, Kostitsyna, and Mitchell
have studied various visibility-type questions for beacon
attraction, such as computing attraction (and inverse-
attraction) regions for points, computing attraction ker-
nels, guarding, and routing [4, 3, 2]. Bae, Shin, and
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Vigneron addressed beacon-attraction guarding in or-
thogonal polygons [1].

In beacon-based routing, the goal is to route from a
source p to a destination q through a series of inteme-
diate points b1, b2, . . . bk where b1 attracts q, b2 attracts
b1, b3 attracts b2, etc., and finally q attracts bk. The
idea is that we activate the beacons b1, b2, . . . bk indi-
vidually in turn, and then activate a beacon at q, and
we will have attracted p all of the way to q. In the ap-
plication setting, this corresponds to using greedy ge-
ographical routing for each hop in a multi-hop routing
for the packet; beacons correspond to landmark or back-
bone nodes of the network [8]. Ad-hoc networks (and
to some extent, sensor networks) expect to see messages
from many different p’s to many different q’s. Thus it is
natural to ask whether we can find some set B of back-
bone nodes (beacons) such that one can route from any
p to any q using only backbone nodes chosen from B.

We call such a set B a routing set of beacons.
Biro et al.[3] studied the problem of finding minimum-
cardinality routing beacon sets in simple polygons.
They established that it is NP-hard to find such a
minimum-cardinality B, and that such a B can be as
large as, but never exceed,

⌊
n−2

2

⌋
. Biro [2] also conjec-

tured that, in orthogonal polygons, such a B could be as
large as, but never exceed,

⌊
n−4

4

⌋
. In this paper, we dis-

prove this conjecture, pinning this maximum minimum
size at

⌊
n−4

3

⌋
instead.

In this paper, we omit many details, lemmas, and
proofs due to size constraints. Full details are available
in the arXiv preprint [9].

2 Preliminaries

2.1 Routing segments

If p and q are points in a polygon with a beacon rout-
ing from p to q, then by a routing segment we mean
any maximal section of the beacon-routing path during
which a point travelling the path is attracted by a single
beacon (or by the destination point q). If the beacon
routing from p to q starts at p, proceeds to beacon b1,
then to beacon b2, then to q, then the routing segments
are the part from p to b1, the part from b1 to b2, and
the part from b2 to q.
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2.2 Decomposition and neighboring rectangles

Let P be an orthogonal polygon of n vertices in gen-
eral position; handle special-position instances with the
usual perturbation technique. Construct the vertical de-
composition (or trapezoidation [6]) of P by creating a
vertical chord from every reflex vertex (see Figure 1).

Because of our restriction to general position, there
are n−4

2 verticals, decomposing the polygon into n−2
2

axis-aligned rectangles. Each such rectangle has be-
tween one and four neighboring rectangles. If we form a
graph of the neighbor relation on the rectangles, then we
have the dual tree (or weak dual) of the decomposition,
as shown in Figure 1.

Figure 1: The vertical decomposition of a polygon, with
its dual tree.

We classify the different types of neighbors of a rect-
angle R in 3 primary ways: left vs. right, depending on
the side of R they are on; top vs. bottom, depending
on whether the neighbor and R have the same polygon
edge as their top or bottom; and short vs. tall, depend-
ing on whether the neighbor is shorter or taller than R.
We combine these classifications: for instance, in Figure
1, A is a short bottom left neighbor of B, and D is a
tall top right neighbor of C.

Observation 1 If a rectangle R is a tall left (or right)
neighbor of S, then it is the only left (or right, respec-
tively) neighbor of S.

Observation 2 If a rectangle R is a short left (or
right) neighbor of S, then it is either the only left (or
right, respectively) neighbor of S (which we call a solo
neighbor), or there is one other short left (or right, re-
spectively) neighbor of S (in which case we call R a
paired neighbor of S).

We generally divide the different cases of a neigh-
boring rectangle’s type into into tall, solo, and paired.
Figure 2 shows these three types of neighbors.

Figure 2: The three types of top right neighbor R of a
rectangle S: (a) tall, (b) solo, (c) paired.

2.3 Beacon coverage

If a point p in a polygon attracts a point q, and q attracts
p, then we say that p covers q. If p covers every point
in some region C, then we say that p covers C. And if
there is a set of points B in the polygon such that for
every point q in C, there is a b in B that attracts q, and
a b′ in B that q attracts, then we say that B covers C.
Typically, the point set B will be our set of beacons,
and C will be the entire polygon, or a small region of it.

To build a set of beacons we need to know which
regions an individual beacon will cover. Fortunately,
for our purposes it will mainly suffice to know which
rectangles of the decomposition a beacon covers.

First, a beacon b will cover any rectangle of the de-
composition it is in. (If b is on a vertical then it will
be in two such rectangles.) The lemmas in this section
establish some beacon placements that cover rectangles
other than their containing rectangles. To save space,
in this paper we ignore details about issues of closure
that affect the analysis only at reflex vertices. Also, in
this section we will omit the proofs of the lemmas but
leave the corresponding figures to illustrate definitions
and to give the reader a hint at the proofs.

Lemma 1 If rectangle S is a solo neighbor of rectangle
R in the decomposition of a polygon, then any point of
R covers S, and any point of S covers R.

See Figure 3.

Figure 3: S is a solo neighbor of R. (a) p is attracted
into the left wall of R. (b) q is attracted into the bottom
wall of S.
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Next we look at a rectangle with paired neighbors.
Let R have paired neighbors on the left; we define

the left center of R as the closed rectangle that is the
full width of R and has the vertical span of the polygon
edge on the left of R (as illustrated in Figure 4a).

We similarly define the right center if R has paired
neighbors on the right. See Figure 4.

Figure 4: (a) the left center of R is shown shaded. (b)
If p is attracted to the left side of R at or above r1, it
proceeds into S1 (and directly to q). If p is attracted to
the left wall of R between r2 and r1, it is pulled up the
wall and at r1 will enter S1 and then will reach q. If p
is attracted to the left wall at the point r2, the behavior
is indeterminate. If p is attracted to the left side below
r2, it proceeds into S2 and does not reach q.

Lemma 2 If rectangles S1 and S2 are paired left (right)
neighbors of rectangle R in the decomposition, then any
point in the left (right, respectively) center of R covers
S1 and S2.

We will mostly be applying Lemma 2 with the point
in the center of R being either r1 + εx̂ or r2 + εx̂, where
x̂ is the unit vector in the x-direction.

3 Trapping and repair

3.1 Locality

We will call a routing segment local if there are (at most)
three rectangles of the vertical decomposition whose
union contains the segment. We will similarly call a
routing path local if all of its segments are local, and
a routing beacon set local if it supports a local routing
path between every pair of points in the polygon. The
routing beacon sets that we construct will all be local.

We let the local attraction relation be the attraction
relation restricted to those ordered pairs of points (p, q)
where p attracts q via a local routing segment.

3.2 Trapped paths

In the inductive step of our proof, we will be removing
a few rectangles from the polygon Pk by cutting the

polygon along a vertical V of the decomposition. Let C
denote the (closed) region that is removed; it will consist
of a few rectangles. The (closed) polygon remaining is
denoted Pk+1. In Pk+1, the vertical V is part of the
polygon boundary, but in Pk it is not.

To form a beacon set Bk for Pk, we would like to take
the beacon set Bk+1 for Pk+1 (which inductively exists)
and add a few beacons to it. We could use Bk+1 for
routing between pairs of points in Pk+1 (as a subset of
Pk), and then just worry about routing the points of C
(to each other, and into and out of Pk). However, this
simple strategy does not work, because in Pk, the bea-
cons Bk+1 may not be a routing set for the region Pk+1.
This happens because the points of V have changed sta-
tus from boundary to non-boundary.

We will call the rectangle of C that contains the ver-
tical V the detachment rectangle, and the rectangle of
Pk+1 containing V the base rectangle. By consider-
ing whether the detachment rectangle is a tall, solo,
or paired neighbor of the base (analysis omitted in this
paper), we find the only problematic case is when it is
paired.

In this case, the beacon routing of Pk+1 may have
segments dependent on V being boundary: a routing
path segment may encounter the wall of Pk+1 at a point
on V , and then be pulled along that wall containing V
until it reaches the reflex vertex (and then leaves the
wall; see Figure 5a). In Pk, the corresponding attraction
path, upon encountering V , would continue into C and
become trapped, not reaching the beacon, as shown in
Figure 5b.

Figure 5: A trapped path. (a) a path segment from r
to s hits a wall in Pk+1. (b) the attraction path from
r towards s continues into C in Pk. (c) repairing a
segment from bi to bi−1 with r′.

3.3 Repair of trapped paths

To fix the problem of trapped paths, we will have to
devote a new beacon to repair such trapped path seg-
ments, as suggested in Figure 5c.

Lemma 3 Let Bk+1 be a local routing set of beacons in
Pk+1. If a left (or right) paired neighbor Q has been cut
from rectangle R in Pk to form Pk+1, we can add the
point r + εx̂ (or r − εx̂) to Bk+1 to obtain a beacon set
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that supports local routing between any pair of points in
the subpolygon Pk+1 of Pk, where r is the reflex vertex
of Pk common to Q and R.

The proof of this lemma, lengthy and omitted here,
relies crucially on the locality of path segments. If a
segment is trapped, then locality allows us to contain
that segment in the union of S and R (as in Figure 5),
and one other rectangle. The other rectangle must be
some sort of neighbor of S or R, and we treat each such
possibility in a case analysis.

We use the term repair position to refer to the place-
ment of the new beacon (point) in the previous lemma.

4 Upper bound

We will prove the theorem by induction on the size of
the dual tree of the vertical decomposition. We first root
the dual tree at an arbitrary leaf. At each step, we will
examine the structure of the vertical decomposition at
and around a deepest node in the rooted tree. We will
place some beacons and remove some rectangles/dual
tree nodes; we will place at most two beacons per three
rectangles removed. We stop and consider basis cases
when the depth of the dual tree reaches 0, 1, or 2.

We start with a tree T0 that is the entire dual tree
of the polygon P (which we also denote by P0). After
step k, we will have a tree Tk which is a subgraph of T0,
with the rectangles corresponding to its vertices forming
a single polygon Pk which is a subpolygon of P . We call
each induction step from Tk and Pk to Tk+1 and Pk+1

a reduction.
Since the case analysis that will follow gets tedious,

we first establish easily-verified sufficient (but not nec-
essary) conditions to form an beacon routing set by in-
ductively cutting off a region C from Pk to yield Pk+1.
We use these conditions for most but not all of our cases.

Lemma 4 If the following conditions hold, then Bk =
Bk+1 ∪B′ is a routing beacon set for Pk.

1. The beacons given (B′) cover the region C = Pk \
Pk+1, using local paths.

2. B′ induces a strongly connected graph in the graph
of the local attraction relation.

3. At least one element b′ of B′ is in Pk+1.

4. If the base rectangle is taller than the detachment
rectangle, then b′ is in repair position.

Assume we are after step k, having tree Tk and poly-
gon Pk remaining. If Tk is of height 1 or 2, we stop.
Otherwise, let L be a deepest node in the dual tree, let
A1 be its direct ancestor (parent), and in general let
Aj be the direct ancestor of Aj−1. The grandparent A2

of L exists. In general, we will try to reduce the size

of Tk by removing the dual tree nodes of A1’s subtree,
cutting the polygon between A1 and A2. In some cases,
we must consider alternatives to this cutting location.

The figures used in the case analysis obey the fol-
lowing visual conventions: Parts of the figure boundary
known to be boundary of Pk are shown with thick black
lines. Parts without may or may not be boundary of
Pk. Beacon placements are shown as green dots, and
rectangles removed in the reduction are shaded.

We assume without loss of generality (by symmetry)
that A2 is an upper right neighbor of A1. With respect
to A1, the neighbor A2 is either tall, solo, or paired. We
first examine the case when A2 is taller than A1.

In this paper, we will only outline this case, giving
just one proof; we will furthermore completely omit the
three sections for the other cases.

4.1 Case 1: A2 is a tall neighbor of A1

In this case, A1 must have at least one child (the deepest
leaf L) and can have at most two children. All of A1’s
children are left children.

Lemma 5 If A2 is a tall upper right neighbor of A1,
and A1 has two children, then Pk can be reduced by 3
rectangles at a cost of 2 beacons.

Figure 6: A2 is a tall neighbor of A1. (a) A1 has two
children L1 and L2. (b) A1 has a solo lower-left child.
(c) A1 has a tall lower-left child.

Proof. The two children L1 and L2 must be left paired
children, as shown in Figure 6a.

In this situation, we remove 3 rectangles (L1, L2, and
A1) at a cost of placing 2 beacons (b1 and b2). Now
we show that, if Pk+1 has a set Bk+1 of beacons that
allows a routing, then Pk has a set of beacons Bk =
Bk+1 ∪ {b1, b2} that allows a routing.

Let C = Pk \ Pk+1, i.e. C is the union of the rect-
angles L1, L2, and A1. Also let B = {b1, b2}. Now
the conditions of Lemma 4 are seen to be satisfied: b1

covers the cut-off rectangles L1, L2, and A1 (by Lemma
2); b1 and b2 are visible, so B′ is strongly connected
in the attraction graph, and b2 is in repair position in
Pk+1. �
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Lemma 6 If A2 is a tall upper right neighbor of A1,
and A1 has one lower-left child, then Pk can be reduced
by 2 rectangles at a cost of 1 beacon (see Figure 6b and
6c).

Lemma 7 If A2 is a tall upper right neighbor of A1,
and A1 has one short upper-left child, then Pk can be
reduced by 2 rectangles at a cost of 1 beacon (see Figure
7a).

Figure 7: A2 is a tall neighbor of A1. (a) A1 has a short
upper-left child L1. (b) A1 has a tall upper-left child
L1; the point b1 is not attracted by the point in L1.

Figure 7b shows the situation when L1 is a tall upper-
left child of A1. Here a beacon at b1 would not suffice,
as any point of L1 below b1 would not attract b1. The
technique we use to handle this case involves analyzing
A2 and all of its descendants.

4.2 The induction basis

The basis cases are when there are only one to three
levels in the dual tree. If it is one level, the polygon is
a rectangle. If it is two levels, the polygon is a 6-vertex
“L” shape. In both of these cases, every point in the
polygon attracts every other point in the polygon (see
Lemma 1). Thus, there are no intermediate beacons
required and the smallest beacon routing set is of size
0. We omit the analysis for a three-level dual tree.

4.3 The result

Theorem 8 Any orthogonal polygon of n vertices has
a local beacon routing set of at most

⌊
n−4

3

⌋
beacons.

Proof. Let r be the number of rectangles in the vertical
decomposition of the polygon. Since n = 2r+2, the floor

in the theorem is equivalent to
⌊

(2r+2)−4
3

⌋
=
⌊

2r−2
3

⌋
.

We proceed to prove that there is a beacon set no larger
than this, by induction on r.

Our basis has r = 1 to 6, with each case having a local
beacon routing set of 0, 1, or 2 beacons, as discussed
above. The number of beacons in each of the cases
satisfies b ≤

⌊
2r−2

3

⌋
.

For our inductive step, assume r ≥ 3 and we have
rooted the dual tree at a leaf, so the depth of the dual

tree is at least 2. One of the lemmas from the case
analysis will apply, giving a reduction of 2 rectangles
for 1 beacon, 3 rectangles for 2 beacons, 4 rectangles
for 2 beacons, or 5 rectangles for 3 beacons. In each of
these cases, we show that the local beacon routing set
has at most

⌊
n−4

3

⌋
beacons.

Take the first case: here we reduce P by 2 rectan-
gles to construct a P ′ with r′ = r − 2 rectangles. By
induction P ′ has a local beacon routing set of at most⌊

2r′−2
3

⌋
=
⌊

2(r−2)−2
3

⌋
=
⌊

2r−6
3

⌋
beacons. To construct

the beacon set for P , we add 1 beacon to that, and so we
have at most

⌊
2r−6

3

⌋
+ 1 =

⌊
2r−3

3

⌋
≤
⌊

2r−2
3

⌋
beacons.

The other cases proceed in an identical fashion, and
the theorem follows. �

5 Lower bound

Here we establish that, for infinitely many n, there are

orthogonal polygons that require at least
⌊

(n−4)
3

⌋
bea-

cons in any routing set. The examples are geometri-
cally simple: each is an orthogonal spiral polygon with a
“corridor width” of 1. Bae, Shin, and Vigneron have in-
dependently developed similar orthogonal lower-bound
examples for the beacon-based art gallery problem [1].

Our polygons will spiral outwards clockwise as one
moves through the reflex chain when walking counter-
clockwise around the polygon (i.e. left hand on interior).
Call the reflex vertices of the polygon r1, r2, . . . r(n−2)/2

in this counterclockwise order, and let r0 and rn/2 de-
note the convex vertices adjacent to r1 and r(n−2)/2,
respectively. Let ck be the convex vertex just outside
of (and closest to) rk (refer to Figure 8). Let ek be the
edge from rk to rk + 1, and lk be the length of ek.

Now let Ck be the “corner” 1 by 1 square in P with
vertices rk and ck, and Hk be the “hallway” rectangle
(with dimensions 1 by lk) between Ck−1 and Ck.

If min
k is the midpoint of rk−1 and rk, and mout

k is the
midpoint of ck−1 and ck, we can partition the “hallway”
Hk into two halves H+

k and H−k by splitting with its

bisector min
k mout

k . Let H+
k be the half adjoining Ck,

and let that half (and not H−k ) contain the points on

the segment min
k mout

k .

Figure 8: Notation for an orthogonal spiral.
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We will construct polygons for n = 6r+ 4 for some r;
these polygons are specified simply by giving the lengths
l1, l2, . . . l3r+1 of the 3r + 1 “hallway” rectangles. Pro-
vided we have lj > lj−2 + 2 for all 3 ≤ j ≤ 3r, the
polygon will spiral outward and not self-intersect.

We specify r sections S1, S2, . . . Sr of the
polygon, by letting Si be the union of
H+

3i−2, C3i−2, H3i−1, C3i−1, H3i, C3i, and H−3i+1 (see
Figure 9). Note that no point of P is contained in more
than one section, and there are points at either end of
the spiral (in H−1 and H+

3r+1) that are in no section.
Now consider a set of beacons B that can route in such

a polygon P . We claim that |B| ≥ 2r. If this were not
the case, then by the pigeonhole principle some section
Si would contain fewer than two beacons.

Figure 9: A section of an orthogonal spiral.

In the full paper, we proceed to show that if Si con-
tains only one beacon, then this beacon must lie in
C3i−1. In order to route from points “before” the sec-
tion to points “after” it, and vice-versa, the beacon must
lie in the shaded region in Figure 10, above the line
r3i−1m

out
3i+1 and below the line r3i−1m

out
3i−2 (directions

relative to the figure). By making l3i (the vertical corri-
dor on the right) long enough, we can cross these lines,
leaving the reflex vertex r3i−1 as the only possibility for
the beacon location.

Showing that this reflex vertex cannot properly be
attracted to points both before and after section Si is
a purely definitional problem. A robot on a reflex ver-
tex is a peculiar thing. There are many possible ways to
define what happens when one pulls it towards the exte-
rior: the robot path is indeterminate, the robot follows
the wall to the left when it faces the direction of pull,
the robot follows the horizontal wall, etc. The model of
attraction must address this question somehow.

However, for reasonable, simple models, including
those above, such a point r3i−1 cannot be success-
fully attracted both to points before and points after
Si. Thus, in these models, we have a contradiction;

Figure 10: The beacon in Si must lie in the shaded area.

each section must contain at least two beacons. Hence
|B| ≥ 2r. Since n = 6r + 4, 2r = n−4

3 , and we have:

Theorem 9 For all n ≡ 4 (mod 6), there are orthog-
onal spiral polygons requiring at least n−4

3 beacons in a
routing beacon set.

The constraint on the length of the spiral corridors in
Section 5 works out to:

l3i+1 >
4l3i(l3i−1 + 1)

l3i−2
,

whose solution is lk ∈ 2Θ(k2). This growth rate is quite
high, leaving us unable to provide figures illustrating
these polygons. It would be interesting to try to develop
alternative examples that do not have exponentially-
growing coordinates.
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