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Open Problems from CCCG 2015

Joseph O’Rourke∗

The following is a description of the problems pre-
sented on August 11, 2015 at the open-problem session
of the 27th Canadian Conference on Computational Ge-
ometry held in Kingston, Ontario, Canada.

Largest cell in an arrangement
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Is it possible to find the largest-area bounded cell
in an arrangement of n lines in R2 (Figure 1) in
subquadratic time? Sariel Har-Peled observed that

α

Figure 1: An arrangement and its largest cell area α.

if the largest cell’s area α is much greater than its
expected area 1/n2, then random sampling permits
achieving expected subquadratic time.

I conjecture Ω(n2) is a lower bound.

References

[OR15a] J. O’Rourke. Largest cell in an arrange-
ment. http://cstheory.stackexchange.com/q/
30802/337 13 March 2015.

Avoiding points on a sphere
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Let S be a unit-radius sphere in R3, and let P be
a finite set of points contained in a hemisphere of
S, viewed as a rigid pattern. Let R be any re-
gion/subset of S, not necessarily connected. Say
that P fits in R if there is some placement of P
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such that each of its points is strictly interior to R.
Say that R avoids P is no placement fits in R.

What is the largest area R that avoids a given
set P?

An example is shown in Figure 2, with |P | = 5.
The geodesic convex hull H avoids P , because the
four points on the boundary of H are not strictly
inside H. Similarly, the minimum enclosing disk D
also avoids P for the same reason. But D is not
the largest avoiding region for this particular P .

Figure 2: A 5-point set, its geodesic hull, and its mini-
mum enclosing disk.

Updates. (1) Paz Carmi observed that if the di-
ameter d of D is small relative to π (the length of
the great circle arc between the poles), two copies
of D centered at each pole avoid P , i.e., if d < π/2
those two pole-copies will be separated by a band
of width ≥ d. Even smaller d permit more copies
of D.

(2) Let the surface area of the sphere be A.
Alexandru Damain proved that, for an n-point set
P , the area of an avoiding set cannot be larger
than (n−1

n )A. Suppose to the contrary that there
is a region R whose measure A′ exceeds (n−1

n )A
and avoids P , with |P | = n. Rotate the set of
points P = {p1, . . . , pn} randomly. Associate a
random indicator variable Xi with each point pi,
with Xi = 1 if pi lands in R after the random
rotation, and Xi = 0 otherwise. We have that
E[Xi] = Pr[Xi = 1] > n−1

n , because A′/A > n−1
n .

Let X be the total number of vertices of P that lie
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in R. Then by linearity of expectation,

E[X] = E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi] > n · n− 1

n
= n− 1 .

Because the expected number of points covered by
a random rotation of P is greater than n− 1, there
must be at least one rotation of the points for which
all n are covered. Thus P fits in R, and R does not
avoid P .

For n = 2, let P be two antipodal points. Then
for R a hemisphere of S, P cannot fit in R, as both
points cannot be strictly interior to R. So R avoids
P . But increasing R slightly allows P to fit in R.
So here, the (n−1

n )A = ( 1
2 )A bound is tight.
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The point-set knot number
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

For a knot K, define z(K), the point-set knot
number, to be the smallest number n such that ev-
ery general-position point set S of n points may be
connected to a simple (i.e., non-self-intersecting)
polygonal knot P equivalent to K. S must be in
general position in the sense that no 3 points are
collinear, and no 4 points coplanar. The vertices
of the polygon P must be exactly the points in S.
Let z(K) =∞ if there is no such n.

For example, z(K01) = 3, for K01 the unknot.
Let p1, p2, . . . , pn be the points of S sorted top to
bottom, and let P = (p1, p2, . . . , pn, p1), connect-
ing the points in vertical order and closing with the
segment pnp1. It is clear that no self-intersections
can occur with the vertically sorted connections
(p1, p2, . . . , pn). So only the last segment s = pnp1
needs to be checked. If s passes through an inter-
mediate vertex, then 3 points of S are collinear. If s
passes through an edge interior point, then 4 points
of S are coplanar, as shown in Figure 3. Thus P is
simple. It should also be clear that P is an unknot.

Obviously z(K) is at least the stick number of
K. But is z(K) finite for every K? In particular,
what is z(K31), for the trefoil knot K31?

Update. Günter Ziegler informed me that
my question was answered positively by
Negami [Neg91]. “His first main observation
was that for any sufficiently large n, by a Ramsey

Figure 3: Edge (7, 1) crosses (4, 5).

Theory argument, every set of n points in general
position in R3 contains n points on an order-n
curve (without loss of generality: the moment
curve);. The second part of the argument shows
that every knot occurs on a sufficiently large set of
points on the moment curve. So z(K) is finite for
all knots K.

An answer for the trefoil knot was given by Alfon-
sin [Alf99]: Any set of 7 points in general position
contains a trefoil or its mirror image.”
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Compact source unfoldings of convex polyhedra
Anna Lubiw
Univ. Waterloo
alubiw@uwaterloo.ca

Given a convex polyhedron, find an unfolding
that has the minimum enclosing circle. One con-
tender might be the center source unfolding which
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we define to be the source unfolding from the point
c that is the center of the polyhedron’s surface,
i.e., c is the point that minimizes max d(p, c) as p
ranges over all points on the surface of the poly-
hedron, and distance d is measured on the surface
of the polyhedron. For background on source un-
folding, see [DO07]. The radius of the minimum
enclosing circle of the center source unfolding is the
radius R of the polyhedron’s surface, i.e., the value
max d(p, c).

Secondary question: Is there an efficient algo-
rithm to find point c? The algorithm to find the
diameter D of a convex polyhedron [AAOS97] is
surely relevant. Note that D/2 ≤ R ≤ D. Tight
examples for the two extremes are a cigar-shaped
ellipsoid and a sphere, respectively.

For a unit cube, R = D = 2, and a center source
unfolding is shown in Figure 4. This is probably the
unfolding of the cube that has the minimum enclos-
ing circle. The same unfolding yields the minimum
sized square needed to wrap a unit cube [P14].

Figure 4: Source unfolding of a cube from the center of
a face.
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Core set for median
Michael Kerber
Max Planck Institute for Informatics
mkerber@mpi-inf.mpg.de

Let P be a set of n points in Rd. The median opt
for P is the point in Rd that minimizes the sum of
the distances to P :

opt := argminq∈Rd

∑
p∈P

d(q, p)

where d(·, ·) is the Euclidean distance function. We
call a point q′ an ε-approximate median, if its sum
of distances to P is at most (1+ε) the optimal sum:∑

p∈P
d(q′, p) ≤ (1 + ε)

∑
p∈P

d(opt, p)

We call E ⊆ P an ε-coreset, if the affine sub-
space spanned by the points in E contains an ε-
approximate median. It is known that coresets of
constants size exists: Precisely, any point set P
has an ε-coreset of size O(1/ε log 1/ε), regardless
of the number of points or the ambient dimension.
See [KR15] for the details, which are based on a
result by Shyamalkumar and Varadarajan [SV12].

Question: Does every point set permit an
ε-coresets of size O(1/ε)?

This is the best bound one can hope for, because
points sets exist for which any coreset must be of
size Ω(1/ε). Moreover, it is known that corests of
size O(1/ε) exist for the related problems of ap-
proximating the mean of the point set (minimizing
the sum of squared distances) and the center of the
point set (where the sum of distances is replaced by
the maximal distance).
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A puzzle with convex sets
Michael Kerber
Max Planck Institute for Informatics
mkerber@mpi-inf.mpg.de

This puzzle was posed to me some weeks ago:
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Figure 5: An inifinite vertical stripe U and an infinite
horizontal stripe V split the plane into 4 regions.

Find two convex sets U and V in the plane such
that R2 \ U ∪ V splits into 5 components.

It should be emphasized that no further assump-
tions beyond convexity on U and V are made (U
and V need not to be finite, closed, or open). Four
components are easy to achieve as shown in Fig-
ure 5. During the workshop, the puzzle was solved
by Don Sheehy and Nicholas Cavanna. In order to
not spoil the nice solution, the explanation is not
given here.

Question 1: Can two sets split the plane into 6
(or more) component?

Update. One day after I posed the problem, Sang
Woo Bae contacted me with a proof outline. It
is based on the same idea that Don, Nicolas and
myself also had in mind: Show that at most one
component can be bounded (otherwise, at least one
of sets is not convex), and show that at most 4
components can be unbounded. It seems that the
answer to Question 1 is therefore negative.

Question 2: In how many components can two
convex sets split Rd?

As Don pointed out, 2d + 1 sets are possible by
extending the 5-split example in R2. Is this the
best possible?

Realizing trees with farthest-point Voronoi diagrams
Therese Biedl
Univ. Waterloo
biedl@uwaterloo.ca

Let T be a tree. Is there a set of points P such
that T corresponds to the farthest-point Voronoi
diagram of P?

Tree T could be given in three different ways:

1. T could be a geometric tree, i.e., be given with
coordinates for the nodes of the tree and with
the edges drawn straight-line between them.

2. T could be an ordered tree, i.e., it comes with
a fixed order of arcs around each node, and in
the farthest-point Voronoi diagram these or-
ders must be respected.

3. T could be an abstract tree, i.e., with nodes
and arcs but no further information.

Related work: The above question is completely
answered for Voronoi diagrams (see [H92, BHH13]
for setting (1) and [LM03] for settings (2,3)) and
for Straight Skeletons (see [BHH13] for setting (1)
and [ACD+12] for settings (2,3)). In a nutshell, in
setting (2) (and therefore also (3)) any tree can be
represented, and in setting (1) there exists a poly-
time algorithm to test whether a given tree can be
represented.

Progress at CCCG: Multiple CCCG partici-
pants discovered that the situation is the same
for farthest-point Voronoi diagrams: Any ordered
tree can be represented (even by points in convex
position), and for a given geometric tree we can
test in polynomial time, using linear programming,
whether it can be represented. We are now in the
process of working out the details and writing up
the results.
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Flipping open problems
Prosenjit Bose
Carleton University
jit@scs.carleton.ca

In Jit’s Ferran Hurtado Memorial lecture, he
posed more than 18 open problems. Here we men-
tion a theme that ran throughout his presentation:
finding flip-sequences sensitive to the difference be-
tween the start and end triangulations. See [BH09]
for more information.

1. Given two triangulations, is it possible to de-
termine the minimum number of flips to con-
vert one into the other?

2. Can we find an approximation to the mini-
mum number of flips or a sequence that is
sensitive to the minimum number somehow?
E.g., if k is the minimum number of flips, can
we find a sequence of f(k) = 2k flips?

3. Can one compute a set of simultaneous flips
that converts one triangulation into another
that is sensitive to the minimum number of
simultaneous flips required?

Update. Just after the conference [F15]: “the di-
ameter of the flip graph is at least 7n

3 + Θ(1), im-
proving upon the previous 2n+Θ(1) lower bound.”
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